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Abstract:  37 

Background: Two molecular phenotypes of the acute respiratory distress syndrome (ARDS) 38 

with divergent clinical trajectories and responses to therapy have been identified. Classification 39 

as “hyperinflammatory” or “hypoinflammatory” depends on plasma biomarker profiling. 40 

Differences in pulmonary biology underlying these phenotypes are unknown.  41 

Methods: We analyzed tracheal aspirate (TA) RNA sequencing (RNASeq) data from 41 ARDS 42 

patients and 5 mechanically ventilated controls to assess differences in lung inflammation and 43 

repair between ARDS phenotypes. In a subset of subjects, we also analyzed plasma proteomic 44 

data. We performed single-cell RNA sequencing (scRNASeq) on TA samples from 9 ARDS 45 

patients. We conducted differential gene expression and gene set enrichment analyses, in silico 46 

prediction of pharmacologic treatments, and compared results to experimental models of acute 47 

lung injury.  48 

Findings: In bulk RNASeq data, 1334 genes were differentially expressed between ARDS 49 

phenotypes (false detection rate < 0.1). Hyperinflammatory ARDS was characterized by an 50 

exaggerated innate immune response, increased activation of the integrated stress response, 51 

interferon signaling, apoptosis, and T-cell activation. Gene sets from experimental models of 52 

lipopolysaccharide lung injury overlapped more strongly with hyperinflammatory than 53 

hypoinflammatory ARDS, though overlap in gene expression between experimental and clinical 54 

samples was variable. ScRNASeq demonstrated a central role for T-cells in the 55 

hyperinflammatory phenotype. Plasma proteomics confirmed a role for innate immune 56 

activation, interferon signaling, and T-cell activation in the hyperinflammatory phenotype. 57 

Predicted candidate therapeutics for the hyperinflammatory phenotype included imatinib and 58 

dexamethasone.  59 

Interpretation: Hyperinflammatory and hypoinflammatory ARDS phenotypes have distinct 60 

respiratory tract biology, which could inform targeted therapeutic development. 61 
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Introduction 66 

The acute respiratory distress syndrome (ARDS) is characterized by noncardiogenic 67 

pulmonary edema and hypoxemia within one week of a physiologic insult1. The global incidence 68 

of ARDS has surged during the COVID-19 pandemic, increasing the importance of finding 69 

effective treatments. While some pharmacologic interventions have decreased mortality in 70 

patients with severe COVID-192,3, no drug has consistently reduced mortality in more typical 71 

heterogeneous cohorts of patients with ARDS. There is a growing recognition that biological 72 

heterogeneity within the syndrome is a significant barrier to identifying effective treatments4.  73 

Two clinically distinct molecular phenotypes of ARDS (termed “hyperinflammatory” and 74 

“hypoinflammatory”) have been identified using latent class analysis of clinical and plasma 75 

biomarker data in eight cohorts1,5–11. The hyperinflammatory phenotype is characterized by 76 

elevated plasma inflammatory cytokines (IL-8, IL-6, TNFr-1), lower plasma Protein C and 77 

bicarbonate, and higher mortality compared to the hypoinflammatory phenotype. Importantly, 78 

significant differences in treatment response to simvastatin, ventilator settings, and fluid 79 

management have been observed across molecular phenotypes in retrospective analyses of 80 

three ARDS clinical trials5,6,11; further, in patients with COVID-19-related ARDS, 81 

hyperinflammatory patients may preferentially respond to corticosteroid treatment12,13. These 82 

results suggest that understanding and targeting the heterogeneous biology underlying ARDS 83 

molecular phenotypes is essential to identifying effective new treatments for ARDS. Prospective 84 

studies designed to identify these phenotypes using parsimonious models are laying the 85 

groundwork for precision clinical trials4,14.  86 

Despite this exciting progress, a critical barrier to developing new therapies for ARDS is 87 

the limited understanding of the biological pathways characterizing each phenotype. This 88 

knowledge gap was recently cited by NHLBI and European Respiratory Society workshops on 89 

precision medicine in ARDS as a top research priority for the field4,15. To date, analyses of the 90 

biological differences between these phenotypes have been largely limited to circulating 91 
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biomarkers, due to the relative ease of sampling. Understanding the biological differences 92 

between ARDS molecular phenotypes in the lung, the active site of injury, will be critical to 93 

development of informative pre-clinical models of disease and targeted treatments for ARDS. 94 

Here, we employ a systems biology approach incorporating bulk and single-cell RNA-95 

sequencing, in silico analyses, and proteomics to understand differences in lung immunology 96 

and inflammatory responses between ARDS phenotypes.  97 

 98 

Methods:  99 

Study subjects 100 

 Subjects were enrolled in two prospective observational cohorts of critically ill patients. 101 

We used bulk RNASeq data and plasma proteomic data from the Acute Lung Injury in Critical 102 

Illness (ALI) study, a cohort of mechanically ventilated adults admitted to the intensive care unit 103 

at the University of California, San Francisco Medical Center (UCSFMC) between July 2013 and 104 

March 2020. We used single-cell RNA-Sequencing (scRNASeq) data from the COVID-19 105 

Multiphenotyping for Effective Therapies (COMET) study, a study of hospitalized patients with 106 

COVID-19 or other acute respiratory illnesses admitted to UCSFMC or Zuckerberg San 107 

Francisco General Hospital (ZSFGH). COVID-19 status was confirmed by clinical PCR testing 108 

and metagenomic sequencing. These studies were approved by the UCSF Institutional Review 109 

Board (17-24056, 20-30497), which granted an initial waiver of informed consent to collect TA 110 

and blood samples. Informed consent was then obtained from patients or surrogates, as 111 

previously described16.  112 

In this analysis, we included all available subjects in each cohort who were admitted to 113 

the intensive care unit for mechanical ventilation for ARDS or for airway protection without 114 

radiographic evidence of underlying pulmonary disease. For non-ARDS control patients in the 115 

ALI study, we excluded subjects on immunosuppression, including corticosteroids, and those 116 

with immunocompromising conditions (e.g., bone marrow transplant recipients).  117 
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 118 

ARDS adjudication and phenotype assignment 119 

 Electronic health records were adjudicated for ARDS (Berlin Definition17) by at least two 120 

clinicians blinded to all biological data. Lower respiratory tract infections were diagnosed using 121 

the CDC surveillance definition18. ARDS phenotype was determined using a validated three-122 

variable classifier model (IL-8, protein C, and bicarbonate)14. Subjects with a probability of class 123 

assignment greater than 0.5 were assigned to the hyperinflammatory phenotype. Plasma 124 

biomarkers were not available for five subjects with TA bulk RNA sequencing. For these 125 

subjects, we used a validated clinical classifier model to assign phenotype10,19.  126 

 127 

Tracheal aspirate sampling and RNA sequencing 128 

Following enrollment in the ALI cohort, TA was collected within three days of intubation. 129 

In the COMET cohort, TA samples were collected daily, and the first available sample collected 130 

within three days of enrollment was used for this analysis. For bulk RNA sequencing, TA was 131 

collected and stored in DNA/RNA Shield (Zymo, Inc.) at -80C16. Samples underwent library 132 

preparation and Illumina paired-end sequencing using established methods described in detail 133 

in the online supplement.  For scRNASeq, TA was collected and processed within 3 hours as 134 

previously described20.   135 

 136 

Cell annotation, differential expression, pathway, and network analysis 137 

We performed pairwise comparisons of gene expression in each ARDS phenotype and 138 

controls using DESeq2. Single cell transcriptomes were annotated using SingleR. We compared 139 

gene expression between phenotypes for each cell type using MAST, using a mixed effects 140 

model with fixed effects for phenotype and cellular detection rate and a random effect for 141 

subject. Differentially expressed genes were then analyzed using Ingenuity Pathway Analysis 142 

(IPA, Qiagen). Full details of cell annotation, differential gene expression, and IPA analyses are 143 
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provided in the online supplement. To study how cell-cell signaling contributed to observed 144 

differential expression, we used CellChat21 to infer intercellular communication networks by 145 

comparing scRNASeq data to a curated database of ligands, receptors, and their cofactors.  146 

 147 

Plasma proteomic analysis 148 

 Plasma samples from the Acute Lung Injury in Critical Illness cohort and 14 healthy 149 

controls from a previously published dataset22 were analyzed using the O-link Proteomics 150 

Assay, which generates a semi-quantitative measurement of 96 plasma proteins. We excluded 151 

all samples that were flagged with a QC warning from the O-link platform and excluded any 152 

biomarker for which protein concentrations could not be measured for at least 90% of samples. 153 

Measurements for 73 proteins passed the manufacturer’s quality control filter and were included 154 

for analysis. Normalized protein expression measurements were compared using a Wilcoxon 155 

rank-sum test and p-values were adjusted using the Benajmini-Hochberg method (FDR < 0.1).  156 

 157 

Comparison of differentially expressed genes to experimental models of acute lung 158 

injury 159 

 We identified experimental models of acute lung injury in the Gene Expression Omnibus. 160 

Lists of all genes differentially expressed at a Benjamini-Hochberg adjusted p-value less than 161 

0.05 were downloaded using GEO2Enrichr23. We then used the genes that were upregulated in 162 

the experimental lung injury model as gene signatures in GSVA24 (Supplemental Data 3A). If 163 

more than 200 genes were differentially expressed in the experimental model, we used the top 164 

200 genes (by p-value) for the experimental gene signature. We used limma25 to compare 165 

GSVA scores in samples from each phenotype to GSVA scores in controls. 166 

 167 

Results 168 

Patient Characteristics: Acute Lung Injury in Critical Illness Cohort 169 
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In the Acute Lung Injury in Critical Illness cohort, TA sequencing data was available for 170 

41 ARDS participants and five controls (Figure S1). Ten of 41 ARDS subjects (24%) were 171 

classified as the hyperinflammatory phenotype, consistent with the proportion observed in 172 

previous studies5–8,11. There were no significant differences in age, sex, BMI, 173 

immunosuppression, respiratory viral or bacterial infections, or ARDS risk factors between 174 

hyperinflammatory and hypoinflammatory patients (Table 1).  175 

 176 

Bulk RNA-Sequencing  177 

1,334 genes were differentially expressed between ARDS phenotypes with an absolute 178 

empirical Bayesian posterior log2-fold change >0.5 (Figure S2A, Supplementary Data S1A). IPA 179 

predicted increased activation of several cytokines and other upstream regulators of 180 

differentially expressed genes in hyperinflammatory ARDS, compared with hypoinflammatory 181 

ARDS (Figure 1A, Supplementary Data S2A). These included several cytokines classically 182 

associated with an innate response previously found to be elevated in plasma of patients with 183 

hyperinflammatory ARDS, including IL1B, IL6, and TNF. In addition, IPA identified activation of 184 

cytokine responses not previously studied in hyperinflammatory ARDS, including numerous 185 

interferon-stimulated genes; IL2 and IL15, which stimulate cytotoxic T cell and NK cell 186 

responses26; and the chemokine ligand CCL2/MCP-1. Upstream regulator analysis predicted 187 

increased activation of transcriptional regulators critical to the integrated stress response 188 

(XBP1, NFE2L2) and increased cellular differentiation (MYC, NONO), as well as stimulation of 189 

Toll-like receptors (TLR2, TLR3, TLR4, TLR7, TLR9) and receptors integral to T cell activation 190 

(CD3, CD28) in hyperinflammatory ARDS.  191 

To further understand how pathways in each phenotype were dysregulated, we 192 

compared each phenotype to mechanically ventilated control patients with neurologic injury. 193 

2,989 genes were differentially expressed between hyperinflammatory ARDS and controls 194 

(Figure S2B, Supplementary Data 1C), while 2,132 genes were differentially expressed between 195 
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hypoinflammatory ARDS and controls (Figure S2C, Supplementary Data 1D). Notably, 196 

upstream regulator analysis identified several cytokines that were activated in both 197 

hyperinflammatory and hypoinflammatory ARDS compared to controls (Figure 1C, 198 

Supplementary Data 2C and 2D), including IL1B, TNF, and IFNG. While this analysis identified 199 

some similarities between phenotypes, it also confirmed that several upstream regulators that 200 

were activated in pairwise comparisons of hyperinflammatory ARDS to hypoinflammatory ARDS 201 

and hyperinflammatory ARDS to controls, suggesting these upstream regulators play an 202 

important role in the distinct features of hyperinflammatory ARDS. These included IL6, which 203 

was one of plasma cytokines used to define the hyperinflammatory phenotype5; IL18, which was 204 

not measured in the original LCA studies, but, like the hyperinflammatory phenotype, was 205 

associated with higher mortality and a response to simvastatin in the HARP-2 trial27; the T cell 206 

receptor; Type I/III interferons (IFNA, IFNL, IFNB), indicative of an enhanced mucosal interferon 207 

response28; several Toll-like receptors (TLR2/3/9); and FAS, which stimulates apoptosis29. In 208 

addition, several upstream regulators associated with specific immune cells were predicted to 209 

be activated in hyperinflammatory ARDS but not in hypoinflammatory ARDS, including markers 210 

of activated T cells (NFATC130), NK cells (NCR131, KLRK132), and platelets (PF433), suggesting 211 

these cells play a key role in the distinct biology of hyperinflammatory ARDS.  212 

 213 

Alignment with Experimental Models of Lung Injury 214 

IPA identified lipopolysaccharide (LPS), a component of gram-negative bacteria, as an 215 

upstream regulator of genes differentially expressed between ARDS phenotypes 216 

(Supplementary Data S2A) and in comparisons of each ARDS phenotype to controls 217 

(Supplementary Data S2C and S2D). We hypothesized that genes upregulated in LPS models 218 

of lung injury would be more upregulated in hyperinflammatory ARDS compared to controls than 219 

in hypoinflammatory ARDS compared to controls. Respiratory tract gene expression data was 220 

available from four LPS models of ARDS in the Gene Expression Omnibus. We also identified 221 
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17 more datasets from other experimental models of ARDS including ventilator-induced lung 222 

injury (VILI), ozone, hyperoxia, Pam3Cys (a TLR2 agonist), and hemorrhagic shock 223 

(Supplementary Data S3A). Gene sets from four models were significantly enriched (FDR < 0.1) 224 

in TA from both ARDS phenotypes (Figure 1B; Supplementary Data S3B and S3C). As 225 

expected, LPS models had a significant overlap with both phenotypes, but LPS experimental 226 

gene sets had higher GSVA scores in hyperinflammatory participants. In addition, gene sets 227 

from two ozone models, two LPS models, and one VILI model were enriched in 228 

hyperinflammatory ARDS but not in hypoinflammatory ARDS, suggesting these models better 229 

replicated dysregulated gene expression observed in the hyperinflammatory phenotype. 230 

 231 

In silico analysis of candidate drugs for hyperinflammatory ARDS 232 

To identify candidate treatments for the hyperinflammatory ARDS phenotype, we used 233 

Upstream Regulator Analysis to identify drugs predicted to decrease expression of genes 234 

upregulated in hyperinflammatory ARDS compared to hypoinflammatory ARDS or controls 235 

(Figure 1C). For example, dexamethasone, which decreases interferon-gamma signaling34, was 236 

predicted to shift gene expression away from hyperinflammatory ARDS. Interestingly, several 237 

drugs which cause drug-induced pneumonitis (e.g., nitrofurantoin, amiodarone, and cytarabine) 238 

were predicted to shift gene expression from controls toward hyperinflammatory ARDS 239 

(Supplementary Data S2C).  240 

 241 

Single-cell RNA-sequencing 242 

We used a neutrophil-preserving scRNASeq method to study TA from nine COVID-243 

negative patients with ARDS enrolled in a separate observational cohort (COMET; described in 244 

Methods). TA scRNASeq was available from five participants with hypoinflammatory ARDS and 245 

four with hyperinflammatory ARDS; clinical characteristics of these patients are provided in 246 
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Supplementary Table 1. 26,429 cells passed quality filters, and we used SingleR35 to identify 247 

cell types (Figure 2A). Neutrophils were the most common cell in both phenotypes (Figure 2B),  248 

 CellChat predicted markedly higher interaction between T cells and other cell types in 249 

the hyperinflammatory phenotype (Figure 2C), which was consistent with the bulk analysis 250 

predicting increased T cell activation. Phenotype-specific differences in cell-cell signaling were 251 

driven by ligand-receptor pairs in several pathways (Figure 2D; Supplementary Figure 6A and 252 

6B). In the hyperinflammatory phenotype, CellChat predicted increased MHC-I signaling, which 253 

was driven by increased signaling to CD8 on T cells and NK cells. In contrast, MHC-II activity 254 

was predicted to be higher in hypoinflammatory ARDS. CellChat also identified increased 255 

NAMPT signaling by NK and T cells to integrin �5β1 on monocytes, macrophages, and 256 

dendritic cells in hyperinflammatory ARDS (Supplementary Data 6). Notably, NAMPT 257 

polymorphisms are associated with a 7.7-fold increased risk of sepsis-associated ARDS36 and 258 

NAMPT was identified as an upstream regulator of differential gene expression in our bulk 259 

RNASeq data (Figure 1C). These results further supported the hypothesis that there are marked 260 

differences in respiratory tract signaling between phenotypes driven by differences in T and NK 261 

cell signaling.  262 

We next used MAST to compare differential gene expression in TA neutrophils, T cells, 263 

monocyte-derived macrophages, and monocytes (Supplementary Figure 4, Supplementary 264 

Data S4). We used IPA to identify upstream regulators of gene expression and analysis 265 

identified several cell-specific differences in gene expression (Figure 2E, Supplementary Data 266 

S5). Notably, some cytokines that were predicted to be activated in hyperinflammatory ARDS in 267 

the bulk RNA sequencing data, including TNF and IFNG, were relatively less active in 268 

neutrophils and monocytes from hyperinflammatory TA samples. In contrast, interferon lambda, 269 

which is produced by the respiratory epithelium, was predicted to be more activated in 270 

hyperinflammatory neutrophils and T cells. IPA also predicted increased activation of cell 271 
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activation of the integrated stress response (XBP1, EIF2AK2) and TLR4 in T cells from the 272 

hyperinflammatory phenotype (Supplementary Data S5D).  273 

 274 

Plasma proteomic analysis identifies additional cytokines upregulated in 275 

hyperinflammatory ARDS 276 

To further validate the biologic relevance of the TA findings, we measured plasma 277 

concentrations of 96 protein biomarkers. 21 participants included in the TA bulk sequencing 278 

analysis had protein biomarker data available, as did four participants from the same cohort who 279 

did not have TA bulk sequencing available. Of these 25 participants, five had hyperinflammatory 280 

ARDS and 20 had hypoinflammatory ARDS (Supplementary Table 2). We compared these 281 

subjects to 14 healthy controls (mean age: 38, 43% female) and included in a previously 282 

published analysis22.  283 

Plasma concentrations of 28 proteins were higher in hyperinflammatory ARDS than in 284 

hypoinflammatory ARDS (FDR < 0.1, Figure 3A). Some of these biomarkers confirmed known 285 

differences between phenotypes, including higher concentrations of IL6 and TNF in 286 

hyperinflammatory ARDS. Nine of these biomarkers were also elevated in hyperinflammatory 287 

ARDS compared to controls but were not elevated in hypoinflammatory ARDS (Figure 3B and 288 

3C), suggesting they identify distinctly dysregulated pathways in the hyperinflammatory 289 

phenotype. These proteins included IL-8, which is one of the cytokines that defines the 290 

hyperinflammatory phenotype; CASP-8, an effector of FAS signaling37; interferon-induced 291 

proteins CXCL9 and CXCL1038; plasma urokinase (uPA); oncostatin M; and adenosine 292 

deaminase (ADA). In addition, CCL2/MCP-1 and the T cell activation marker CD539 were higher 293 

in hyperinflammatory ARDS and in controls compared to hypoinflammatory ARDS. These 294 

observations were consistent with differences in TA gene expression at both the bulk RNASeq 295 

and scRNASeq level. Plasma proteins that were higher in controls than in ARDS subjects are 296 

shown in Supplementary Figure S7.  297 
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 298 

Discussion  299 

This analysis represents the first report of significant differences in pulmonary biology 300 

between ARDS molecular phenotypes, which have previously been characterized primarily 301 

using plasma biomarkers. In addition to confirming evidence of innate immune activation 302 

suggested by prior data on circulating plasma biomarkers, these analyses identify several novel 303 

pathways as relevant to the pathogenesis of hyperinflammatory ARDS, including interferon-304 

stimulated pathways, apoptosis, and T-cell signaling, and suggest that each ARDS phenotype 305 

has distinct pulmonary pathobiology which could help identify new therapeutic targets.  306 

We identified a central role of T and NK cells in coordinating dysregulated inflammation 307 

in hyperinflammatory ARDS. Hyperinflammatory ARDS was associated with markedly higher 308 

mucosal interferon-stimulated gene expression and T/NK cell activation in bulk sequencing of 309 

TA. Network analysis of scRNASeq data was also consistent with a central role of T and NK 310 

cells in hyperinflammatory ARDS. These analyses identified differences in APC to T/NK cell 311 

signaling, with greater MHC-I to CD8 signaling in the hyperinflammatory phenotype. Single cell 312 

differential expression also predicted increased activation of TLR4 and XBP1 in 313 

hyperinflammatory ARDS, suggesting the integrated stress and innate immune responses are 314 

upregulated in T cells from the hyperinflammatory phenotype. In contrast to prior literature on 315 

ARDS40,41, which has emphasized the role of neutrophils, activated macrophages, and alveolar 316 

epithelial cells in ARDS pathogenesis, our observations suggest lymphocytes play an 317 

underrecognized role in coordinating dysregulated inflammation in hyperinflammatory ARDS.  318 

Some features that characterized the hyperinflammatory phenotype in bulk sequencing 319 

(e.g., higher predicted activation of cytokines classically associated with an innate response) 320 

were not observed in specific cell types in scRNASeq. This observation has several possible 321 

explanations. First, the results in bulk RNA sequencing may be driven by differences in the 322 

immune cell composition of TA in each phenotype, as suggested by our scRNASeq analyses. 323 
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Notably, a similar pattern of high interferon-stimulated gene expression in T cells but diminished 324 

immune responses in macrophages has also been reported in severe COVID-1942. Second, the 325 

bulk signals may be driven by highly activated cells that do not survive the scRNASeq 326 

processing pipeline, as has been reported previously for activated macrophages and 327 

neutrophils. Third, some signals observed in the bulk data may be driven by epithelial cells, 328 

which were selected against in our scRNASeq pipeline (in favor of enriching for immune cell 329 

populations) and are thus not well-represented.  330 

Plasma proteomics identified increased concentrations of the interferon-stimulated 331 

proteins CXCL9 and CXCL10 and the T cell activation marker CD5 in hyperinflammatory ARDS 332 

but not in hypoinflammatory ARDS. Notably, in an alternative molecular phenotyping approach 333 

that used k-means clustering of plasma biomarkers to categorize ARDS subjects into two 334 

molecular phenotypes (“reactive” and “uninflamed”), plasma IFNγ is one of the defining 335 

biomarkers of the higher mortality “reactive” phenotype43. Taken together, these analyses 336 

support a central role of mucosal interferons and T cell activation in hyperinflammatory ARDS.  337 

To our knowledge, only one prior study has attempted to characterize the pulmonary 338 

compartment in ARDS phenotypes44. This study included 10 hypoinflammatory patients and 16 339 

hyperinflammatory patients and found no difference between these groups in concentration of 340 

several inflammatory protein biomarkers in mini-BAL samples or in the lung microbiome. Our 341 

results may differ from these because of a larger sample size, differing analytic approaches, 342 

differing sampling strategies, or some combination thereof. 343 

We compared differentially expressed genes in clinical samples to experimental ARDS 344 

models to determine the relevance of these models to each phenotype. An experimental model 345 

combining intratracheal LPS and mechanical ventilation was the murine model with the 346 

strongest overlap in gene expression with ARDS subjects in both phenotypes. This gene 347 

signature was from an experiment demonstrating that a combined MV/LPS model generated 348 

markedly higher neutrophilic inflammation in the lung than LPS or MV alone45. In addition, gene 349 
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signatures from five LPS models were enriched in hyperinflammatory ARDS but were not 350 

enriched in hypoinflammatory ARDS, suggesting that hypoinflammatory patients, on average, 351 

have less of an overlap in respiratory biology with the preclinical models. Our results also 352 

indicate that the overlap in gene expression between experimental models and clinical samples 353 

is highly variable, even among models with similar injurious stimuli (e.g., among VILI models). 354 

Further study is required to understand how best to model each phenotype experimentally and if 355 

our observations partially explain why therapies that appear promising in pre-clinical models are 356 

not effective in more heterogeneous clinical trial populations.  357 

Our results have important implications for developing a precision approach to treating 358 

ARDS4. The in silico analysis identified several candidate therapies that target the dysregulated 359 

pathways identified in hyperinflammatory ARDS. Several of the candidate drugs, including 360 

imatinib, dexamethasone, and metformin, decrease lung injury caused by LPS in experimental 361 

models46–48, again suggesting LPS replicates important features of the hyperinflammatory 362 

phenotype.  Approximately one-third of candidate drugs identified using pathway analyses are 363 

validated in in vivo49 and these treatments require validation in further preclinical studies and 364 

clinical trials. 365 

Strengths of this study include transcriptomic analysis of samples from the focal organ of 366 

injury in ARDS, providing a detailed picture of the pulmonary biology of both ARDS phenotypes, 367 

and deepening of these observations with single-cell sequencing and peripheral blood 368 

proteomics. The inclusion of non-ARDS ventilated controls allowed us to further characterize the 369 

physiologic dysregulation in the phenotypes, rather than defining gene expression relative to 370 

another pathologic state. This analysis also has some limitations. Bulk and single-cell RNASeq 371 

samples were collected in separate cohorts, so we cannot integrate these analytical 372 

approaches. Although TA contains fluid from the distal airspaces50, more invasive BAL testing 373 

may identify additional differences between the phenotypes.  374 
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 In conclusion, an integrated, multi-omic analysis of ARDS molecular phenotypes 375 

originally defined by clinical and plasma protein biomarkers suggests the hyperinflammatory 376 

phenotype is characterized by increased interferon-stimulated gene expression coordinated by 377 

T cell signaling in the lower respiratory tract. Our findings suggest that the respiratory tract 378 

biology of these phenotypes is distinct and further supports the use of molecular phenotypes to 379 

study acute lung injury biology and develop new treatments for ARDS.  380 
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Figure 1: Bulk RNA sequencing analyses of TA collected in the Acute Lung Injury in Critical Illness 618 

cohort. (A) Upstream regulator z-scores based on IPA analysis of differential gene expression in pairwise 619 

comparisons of tracheal aspirate bulk RNA sequencing in hyperinflammatory ARDS (N=10), hypoinflammatory 620 

ARDS (N=31), and mechanically ventilated controls (N=5). A positive z-score indicates differential gene 621 

expression is consistent with greater activation of the upstream regulator of gene expression in the first group 622 

in each pairwise comparison. Circles identify upstream regulators that are statistically significant. (B) Gene set 623 

variation analysis for experimental models of lung injury. GSVA scores were calculated for each sample, and 624 

the difference between hyperinflammatory ARDS and controls (orange) and hypoinflammatory ARDS and 625 

controls (blue) was estimated with limma. For each model, the GEO Accession Number, organism, and lung 626 

injury model are listed on the x-axis. (C) Upstream regulator scores for selected drugs in the IPA database that 627 

are predicted to significantly shift gene expression away from hyperinflammatory ARDS in independent 628 

analyses of differential gene expression with hypoinflammatory ARDS (blue) or controls (green).  629 

Figure 2: TA single-cell RNA sequencing. (A) Seurat UMAP projection of 26,429 TA cell transcriptomes 630 

from four participants with hyperinflammatory ARDS and five participants with hypoinflammatory ARDS, 631 

annotated with cell type as predicted by SingleR. (B) UMAP projection of TA cells transcriptomes separated by 632 

ARDS phenotype. (C) Differential interaction between cell types predicted by CellChat. Red arrows identify cell 633 

pairs with greater strength of interaction in hyperinflammatory ARDS. (D) Differences in strength of ligand-634 

receptor interaction for pathways in the CellChat database. (E) Upstream regulator analysis z-scores for 635 

differentially expressed genes in neutrophils, monocytes, monocyte-derived macrophages, and T cells. A 636 

positive z-score indicates the upstream regulator is predicted to be more highly activated in hyperinflammatory 637 

ARDS. Circles identify upstream regulators that were statistically significant.  638 

Figure 3: O-Link proteomics results for plasma biomarkers from 5 hyperinflammatory ARDS, 20 639 

hypoinflammatory ARDS, and 14 control participants. Each heatmap shows plasma protein biomarkers 640 

that were significantly different between groups (FDR < 0.1); for a complete list of proteins, see Supplementary 641 

Data S7. Each column represents an individual subject, and each row shows the z-scaled concentrations. 642 

Rows and columns are clustered using the Euclidean distance. Columns are annotated by phenotype. Z-score 643 

for expression is shown on the color bar on the right. (A) Hyperinflammatory ARDS vs. hypoinflammatory 644 
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ARDS (*: proteins that higher in hyperinflammatory ARDS vs. volunteers but not difference between 645 

hypoinflammatory ARDS and controls; ‡: proteins that are higher in hyperinflammatory ARDS vs. volunteers 646 

and lower in hypoinflammatory ARDS vs. volunteers) (B) Hyperinflammatory ARDS vs. healthy volunteers. (C) 647 

Hypoinflammatory ARDS vs. healthy volunteers. 648 
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 649 

Table 1: Characteristics of patients included in differential expression analysis of ARDS phenotypes from the Acute Lung Injury in 650 

Critical Illness cohort. Normally distributed values are reported as mean ± SD. Non-normally distributed values are reported as 651 

median [IQR]. Categorical data are reported as N (% of total for category). P-values are for a t-test for normally distributed 652 

 Hyperinflammatory Hypoinflammatory  P (1)   Control  P (2) P (3) 

N 10 31     5    

Age 66 [56, 72] 63 [51, 70]  0.63   66 ± 23  0.85 0.42 

Female 4 (40) 21 (68)  0.95   3 (60)  0.26 0.49 

BMI (kg/m2) 25.0 [23.6, 25.6] 25.9 [23.9, 32.2]  0.27   25.7 ± 4.8  0.24 0.23 

Vasopressors at enrollment 9 (90) 19 (61)  0.19   1 (20)  <0.01 0.21 

Minimum PF ratio (mmHg) 76 [62, 97] 93 [67, 138]  0.25   296 [216,366]  <0.01 <0.01 

SOFA score at enrollment 18 [16, 19] 9 [7, 11]  <0.01   5 [4, 5]  <0.01 <0.01 

IL-8, pg/ml 424 [228, 1068] 15 [9, 25]  <0.01   10 [8, 11]  <0.01 0.21 

Protein C, % control 51 [31, 62] 103 [76, 132]  <0.01   115 [79, 148]  <0.01 0.76 

Immunosuppression 4 (40) 6 (19)  0.37       

Primary ALI Risk Factor    0.79       

Pneumonia 4 (40) 16 (48)            

Sepsis 4 (40) 7 (23)           

Aspiration 2 (20) 6 (23)            

Pancreatitis 0 (0) 1 (3)         

None 0 (0) 1 (3)         

Clinical respiratory microbiology           

Respiratory viral pathogen 1 (10) 1 (3)  0.98       

Respiratory bacterial pathogen 3 (30) 11 (36)  1.00       
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continuous data, Wilcoxon rank-sum for non-normally distributed, and chi-square test for categorical data. P values are for (1) 653 

hyperinflammatory ARDS vs. hypoinflammatory ARDS; (2) hyperinflammatory ARDS vs. controls; (3) hypoinflammatory ARDS vs. 654 

controls655 
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