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Abbreviations 1 

APOL1    Apolipoprotein L1 gene 2 

BPAR    Biopsy-proven acute rejection 3 

CIT    Cold ischemia time 4 

CKD    Chronic kidney disease 5 

DBD    Donation after circulatory death 6 

DCD    Donation after brain death 7 

DGF    Delayed graft function 8 

ESKD    End-stage kidney disease 9 

HLA    Human leukocyte antigen 10 

HR    Hazard ratio 11 

MYH9    Myosin heavy chain 9 gene 12 

PRA    Panel-reactive antibody 13 

OR    Odds ratio 14 

SNP    Single-nucleotide polymorphism 15 

WIT    Warm ischemia time 16 
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Key points  1 

• In recipients, the MYH9 SNP was associated with delayed graft function and biopsy-proven acute 2 

rejection after kidney transplantation, although the significance was lost in multivariable analysis. 3 

• Presence of the MYH9 variant in both the donor and recipient significantly associated with long-4 

term kidney allograft survival in multivariable analysis. 5 

• Our present findings suggests that matching donor-recipient transplant pairs based on the MYH9 6 

polymorphism may attenuate the risk of graft loss.  7 
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Abstract 1 

 2 

Background 3 

Despite current matching efforts to identify optimal donor-recipient pairs in kidney transplantation, 4 

alloimmunity remains a major proponent of late transplant failure. While kidney allocation based on 5 

human leukocyte antigen (HLA) matching has markedly prolonged short-term graft survival, new data 6 

suggests that additional genetic parameters in donor-recipient matching could help improve the long-7 

term outcomes. Here, we studied the impact of a recently discovered non-muscle myosin heavy chain 8 

9 gene (MYH9) polymorphism on kidney allograft failure. 9 

Methods 10 

We conducted a prospective observational cohort study, analyzing the DNA of 1,271 kidney donor-11 

recipient transplant pairs from a single academic hospital for the MYH9 rs11089788 C>A polymorphism. 12 

The association of the MYH9 genotype with the risk of graft failure (primary outcome), biopsy-proven 13 

acute rejection (BPAR), and delayed graft function (DGF) (secondary outcomes) were determined. 14 

Results 15 

The MYH9 polymorphism in the donor was not associated with 15-year death-censored kidney graft 16 

survival, whereas a trend was seen for the association between the MYH9 polymorphism in the recipient 17 

and graft failure (recessive model, P=0.056). Having the AA-genotype of the MYH9 polymorphism in 18 

recipients was associated with a higher risk of DGF (P=0.031) and BPAR (P=0.021), although the 19 

significance was lost after adjustment for potential confounders (P=0.15 and P=0.10, respectively). The 20 

combined presence of the MYH9 polymorphism in donor-recipient pairs was significantly associated 21 

with long-term kidney allograft survival (P=0.036), in which recipients with an AA-genotype receiving a 22 

graft with an AA-genotype had the worst outcome. After adjustment for covariates, this combined 23 

genotype remained significantly associated with 15-year death-censored kidney graft survival (HR 1.68, 24 

95%-CI: 1.05 – 2.70, P=0.031). 25 

Conclusions 26 

Our results reveal that recipients with an AA-genotype MYH9 polymorphism receiving a donor kidney 27 

with an AA-genotype, have a significantly elevated risk of graft failure after kidney transplantation. 28 

29 
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Introduction 1 

Despite the excellent short-term outcomes following solid organ transplantation, the long-term survival 2 

of kidney transplants has only negligibly improved in recent years.1 As a consequence, one out of five 3 

patients on the waitlist for kidney transplantation are candidates whose previous grafts failed.2 4 

Maximizing the long-term outcomes of transplantation and preventing re-transplantation is, thus, 5 

paramount—not only for improving transplant recipients’ outcomes, but also for reducing waitlist 6 

pressures. Among the many drivers of late graft loss, alloimmunity, otherwise known as host anti-donor 7 

immune responses, remains to be the preeminent cause, notably, despite efforts to optimally match 8 

donor-recipient pairs.3,4 Recently, there are signs of a paradigm shift in the transplant field, with 9 

suggestions that allograft matching efforts should be updated to include novel genetic markers that 10 

better ensure long-term graft survival after kidney transplantation.5,6  11 

 In this regard, non-muscle myosin heavy chain II-A (MHCII-A), encoded by the myosin heavy 12 

chain 9 gene (MYH9), is a target of particular interest (Fig. 1A). Non-muscle MHCII-A is a ubiquitously 13 

expressed contractile protein involved in a myriad of processes ranging from cell division and adhesion 14 

to providing cytoskeletal support.7 Mutations in the MYH9 cause a complex set of disorders, known as  15 

MYH9-related diseases, that can affect every system in the body but are characterized by congenital 16 

thrombocytopenia, giant platelets and leucocyte inclusions.7 Although non-muscle MHCII-A is 17 

expressed by a variety of cell types, the podocyte lineage in particular, expressed high levels of this 18 

protein.7 Unsurprisingly, patients with MYH9-related disorders can clinically present with persistent 19 

proteinuria and a progressive decline in kidney function leading to end-stage kidney disease (ESKD).7,8 20 

Subsequent studies linked common MYH9 polymorphisms to an increased risk of developing focal 21 

segmental glomerulosclerosis and non-diabetic ESKD.9,10 However, it is worthy to note that these 22 

associations were later shown to be dependent on a strong linkage disequilibrium of these MYH9 23 

polymorphisms with variants in the apolipoprotein L1 gene (APOL1).7,11 Still, there are studies that show 24 

an association between MYH9 polymorphisms and chronic kidney disease (CKD) independently of 25 

linkage with APOL1, suggesting a potential role for MYH9 polymorphisms in the pathogenesis of 26 

ESKD.12,13 27 

 In a recent genome-wide linkage analysis, a significant association between the MYH9 28 

rs11089788 polymorphism and kidney function was identified in a meta-analysis of three European 29 

populations.14 This MYH9 polymorphism was additionally found to be significantly associated with 30 
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progressive loss of kidney function in other cohorts.13,15 Importantly, the associations between MYH9 1 

rs11089788 and kidney function could not be explained by linkage disequilibrium with APOL1.15  2 

Here, we investigated the impact of the recently discovered rs11089788 MYH9 polymorphism 3 

on long-term graft survival in the context of kidney transplantation (Fig. 1B). As a secondary outcome, 4 

we also assessed the association of this polymorphism with biopsy-proven acute rejection (BPAR) and 5 

delayed graft function (DGF). 6 
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Materials and Methods 1 

 2 

Patient selection and study end-point 3 

Patients receiving a single kidney transplantation at the University Medical Center Groningen (UMCG) 4 

in the Netherlands were recruited between March 1993 and February 2008. 1,271 of the 1,430 screened 5 

donor-recipient kidney transplant pairs were included in the current study as previously reported.16–21 6 

Ethical approval for this study and the study protocol was given by the Institutional Review Board of the 7 

University Medical Center Groningen in Groningen, The Netherlands (Medical Ethical Committee  8 

2014/077). The study protocol adhered to the Declaration of Helsinki. All subjects provided written 9 

informed consent. Reasons for exclusion of patients in this study were technical complications during 10 

surgery, lack of DNA, loss of follow-up, or re-transplantation at the time of recruitment. The primary 11 

endpoint of this study was long-term death-censored graft survival and the maximum follow-up period 12 

was 15 years. Graft failure was defined as the need for dialysis and/or re-transplantation. Secondary 13 

endpoints included: The occurrence of delayed graft function (DGF; described by the United Network 14 

for Organ Sharing as, “The need for at least one dialysis treatment in the first week after kidney 15 

transplantation,”) and biopsy-proven acute rejection (BPAR; based on the Banff ‘07 classification). 16 

 17 

DNA extraction and MYH9 genotyping 18 

Peripheral blood mononuclear cells from blood or splenocytes were obtained from both the donor and 19 

recipient. DNA isolation was done with a commercial kit according to the manufacturer’s instructions 20 

and stored at -80°C. Genotyping of the single nucleotide polymorphism (SNP) was performed using the 21 

Illumina VeraCode GoldenGate Assay kit as per the manufacturer’s instructions (Illumina, San Diego, 22 

CA, USA). We opted for the MYH9 rs11089788 C>A SNP, which has previously been associated with 23 

kidney function in healthy individuals and with disease progression in patients with CKD.13–15 Genotype 24 

clustering and calling were performed using BeadStudio Software (Illumina). The overall genotype 25 

success rate was 99.9% and only two samples were excluded from subsequent analyses because of a 26 

missing call rate. 27 

 28 

Statistical analysis  29 
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SPSS software version 25 (SPSS Inc, Chicago, IL, USA) was used for our statistical analyses. Data 1 

are presented as the total number of patients with percentage [n (%)] for nominal variables, mean ± 2 

standard deviation for parametric variables, and median [IQR] for non-parametric variables. Differences 3 

among groups were tested with the χ2 test for categorical variables or Student’s t-test for normally 4 

distributed variables, and the Mann-Whitney U-test for not-normally divided variables, respectively. The 5 

Log-rank test was used to test for differences in kidney allograft survival or rejection-free survival among 6 

the different genotypes. Logistic regression was used to assess the association of the MYH9 7 

polymorphism with DGF. Univariable analysis was used to examine the association of the MYH9 8 

polymorphism, recipient, donor, and transplant characteristics with BPAR as well as death-censored 9 

graft survival. Significant associations in univariable analyses were then assessed in a multivariable 10 

Cox regression. Two-tailed tests were regarded as significant at P < 0.05. 11 

12 
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Results 1 

 2 

Study population and determinants of graft failure 3 

All patients who underwent a single kidney transplantation at the University Medical Center Groningen 4 

were recruited for this study (n=1,271). Baseline patient characteristics are shown in Table 1. During 5 

the mean study period of 6.2 years ± 4.2, 215 of 1,271 kidney transplant recipients (16.9%) developed 6 

graft failure. The main reason for graft failure was rejection (n = 126, containing acute rejection, 7 

transplant glomerulopathy, and chronic antibody-mediated rejection). Other causes for graft loss were 8 

surgical complications (n = 33), relapse of the original kidney disease (n = 16), other causes (n = 16), 9 

vascular disease (n = 12), and unknown cause (n = 12). In univariable analysis, DGF, recipient age, 10 

recipient blood type (AB vs others), donor type (living vs cadaveric), donor age, donor blood type (AB 11 

vs others), cold ischemia time, warm ischemia time, use of cyclosporin, and use of corticosteroids were 12 

all associated with graft failure (P < 0.05).  13 

 14 

Distribution of the MYH9 polymorphism  15 

The observed genotypic frequencies of the MYH9 SNP (rs11089788 C>A) did not differ between donors 16 

(n = 1269; CC, 25.0%; CA, 54.1%; AA, 20.9%) and recipients (n = 1269; CC, 25.7%; CA, 50.0%; AA, 17 

24.3%) (P = 0.07). The distribution of the SNP was in Hardy−Weinberg equilibrium. Compared to the 18 

1000 genomes project, the genotypic frequencies of the MYH9 polymorphism in recipients and donors 19 

were significantly different (P < 0.001).22 In both recipients and donors, the A-allele of the MYH9 SNP 20 

was more prevalent than the reported allele and genotype frequencies in the 1000 genomes project. 21 

The percentage of kidney allografts with DGF significantly differed based on the recipient MYH9 22 

genotype (33.7% in CC, 29.6% in CA, 37.7% in AA, P = 0.041), but not for the donor MYH9 genotype 23 

(P = 0.93). For further analysis, heterozygotes (CA) and homozygotes (CC)-genotypes were combined 24 

into one group (CA/CC). In logistic regression, recipients carrying the AA-genotype of the MYH9 25 

polymorphism had a significantly elevated risk of DGF (OR = 1.34 compared to CA/CC-genotypes; 95%-26 

CI: 1.03 – 1.76; P = 0.031). In multivariable logistic regression, the AA-genotype of the MYH9 27 

polymorphism in recipients was no longer significantly associated with the occurrence of DGF (OR = 28 

1.26 compared to CA/CC-genotypes; 95%-CI: 0.92 – 1.72; P = 0.15, Table 2). There was no difference 29 

in the overall BPAR frequency among the MYH9 genotypes in the donor (34.7% in CC, 33.0% in CA, 30 
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35.8% in AA, P = 0.69). In contrast, the distribution of the MYH9 polymorphism in the recipient showed 1 

a trend towards a higher risk of BPAR (31.6% in CC, 32.4% in CA, 39.3% in AA, P = 0.068, Fig. 2A). A 2 

significant association was found with BPAR when the AA-genotype of the MYH9 polymorphism in the 3 

recipient was compared to CA- and CC-genotypes (39.3% in AA versus 32.2% in CA/CC, P = 0.021, 4 

Fig. 2B). In multivariable Cox regression, the AA-genotype of the MYH9 polymorphism in recipients was 5 

no longer significantly associated with the occurrence of BPAR (HR = 1.22 compared to CA/CC-6 

genotypes; 95%-CI: 0.97 – 1.54; P = 0.10, Table 3). In summary, although the AA-genotype of the MYH9 7 

polymorphism in recipients was associated with DGF and BPAR, the significance was lost when 8 

correcting for potential confounders. 9 

 10 

Long-term kidney graft survival based on the MYH9 genotypes  11 

Kaplan–Meier survival analysis demonstrated no association between the MYH9 SNP in the recipient 12 

or the donor and death-censored kidney graft survival (Figure 3). However, a trend was seen for a 13 

heightened rate of graft failure in the recipients with an AA-genotype of the MYH9 polymorphism 14 

compared to CA- and CC-genotypes (graft loss: 33.2% in AA versus 24.1% in CA/CC, P = 0.056, Fig. 15 

3B). Next, donor-recipient pairs were separated into four groups according to the presence or absence 16 

of the AA-genotype of the MYH9 polymorphism in the donor and recipient. Kaplan–Meier survival 17 

analyses showed a significant difference in graft failure rates among the four groups (P = 0.036, Fig. 18 

4A). Intriguingly, the AA-genotype of the MYH9 polymorphism in the donor seemed to have a marginal 19 

positive impact on graft survival, whereas the AA-genotype in the recipient had a modest detrimental 20 

impact compared to donor-recipient pairs with the combined CC/CA-genotype. Recipients with an AA-21 

genotype receiving a graft with an AA-genotype had the worst outcome. This combined genotype was 22 

identified in 6.3% of the donor-recipient pairs. Moreover, the significant association with graft failure 23 

increased when the combined AA-genotype of the MYH9 polymorphism in donor-recipient pairs was 24 

compared to the other groups (P = 0.011, Fig. 4B). The cumulative 15-year death-censored kidney 25 

allograft survival was 50.4% in this combined AA-genotype group and 74.9% in the reference group, 26 

respectively. These data suggest that matching donor-recipient pairs on the MYH9 polymorphism may 27 

impact long-term graft survival in kidney transplantation. 28 

 29 

Regression analysis for the MYH9 polymorphism in donor-recipient pairs and graft failure  30 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 4, 2022. ; https://doi.org/10.1101/2022.03.29.22272996doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.29.22272996
http://creativecommons.org/licenses/by-nd/4.0/


Page 12 of 34 

Finally, we investigated if the MYH9 variant in donor-recipient pairs is an independent risk factor for 1 

graft failure. In univariable analysis, the combined AA-genotype of the MYH9 SNP in donor-recipient 2 

pairs was associated with a hazard ratio of 1.78 (95%-CI: 1.13 – 2.79; P = 0.012) for graft failure after 3 

complete follow-up. Subsequently, multivariable analysis was performed to adjust for potential 4 

confounders, including donor and patient characteristics as well as transplant variables (Table 4). In 5 

these Cox regression analyses, the combined AA-genotype of the MYH9 SNP in donor-recipient pairs 6 

remained significantly associated with graft failure. Lastly, we performed a multivariable Cox regression 7 

analysis using all variables that were significantly associated with graft failure in univariable analysis 8 

(Table 5). In this model, the MYH9 SNP (rs11089788) in donor-recipient pairs, the occurrence of DGF, 9 

recipient age, and donor age were all significantly associated with graft loss. After adjustment, the 10 

hazard ratio for graft failure of the combined AA-genotype for the MYH9 SNP in donor-recipient pairs 11 

was 1.68 (95% CI: 1.05 – 2.70, P = 0.031). In conclusion, our results reveal that recipients with an AA-12 

genotype of the MYH9 SNP receiving a kidney allograft with an AA-genotype have a significantly 13 

elevated risk of graft failure after kidney transplantation. 14 

15 
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Discussion 1 

A multitude of strategies can be pursued to improve the long-term outcomes after kidney transplantation, 2 

ranging from the development of novel drugs that can pull the brakes on allo-immune cascades, to the 3 

refinement of donor-recipient matching systems to minimize the severity of allograft recognition. 4 

Regarding allograft matching, HLA-centric systems remains the cornerstone of allocating kidney 5 

allografts—although a paradigm shift in the approach to donor-recipient matching is urgently needed.23 6 

Genetic analyses in transplantation provides a particularly unique opportunity for the development of 7 

innovative strategies that can improve donor-recipient pairing and drive personalized medicine, in part 8 

by enabling individualized risk stratification.24,25 Presently, we report the impact of a recently discovered 9 

polymorphism in MYH9 on long-term kidney allograft survival. The key finding of our study is that 10 

recipients with an AA-genotype of the MYH9 rs11089788 variant receiving a kidney allograft with an 11 

AA-genotype of the same variant, have a significantly elevated risk of developing graft loss. In contrast, 12 

no association for the MYH9 polymorphism with long-term allograft survival was found in either the 13 

recipient or donor when assessed individually. Hence, our study provides evidence that matching 14 

recipients with donor kidneys based on the MYH9 polymorphism may well impact the risk of graft loss. 15 

 To our knowledge, our study is the first to show an association between this MYH9 variant and 16 

long-term graft survival after kidney transplantation. Specifically, we found that the combined AA-17 

genotype in donor-recipient pairs nearly doubled the risk of graft failure. Genome-wide linkage analysis 18 

recently highlighted the MYH9 rs11089788 polymorphism as a top variant for kidney function in a meta-19 

analysis of three European populations.14 In accordance with our results, the C-allele of the MYH9 20 

rs11089788 polymorphism was consistently associated with better kidney function in healthy 21 

Europeans.14 Furthermore, in a Chinese cohort of IgA nephropathy patients, the A-allele of this variant 22 

was associated with hastened progression to kidney failure.13 Other groups, however, did not 23 

recapitulate an association between this MYH9 variant and kidney outcomes.26,27 In particular, 24 

Franceschini and colleagues found no relationship between the MYH9 rs11089788 polymorphism and 25 

kidney function or CKD in native Americans.27 Importantly, we found no relationship of this MYH9 variant 26 

in the recipient or the donor alone with death-censored kidney graft survival either. Our findings, thus, 27 

suggest that only donor-recipient interactions in MYH9 may lead to kidney function decline after renal 28 

transplantation. 29 
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 The importance of the MYH9 for the kidney has been investigated by several group but remains 1 

controversial. Initial reports linked certain variants in the MYH9 to a greater risk of CKD.9,10 Later studies 2 

uncovered that this association was based on the strong linkage disequilibrium between MYH9 variants 3 

and variants in APOL1.7,11 Nonetheless, patients with rare mutations in MYH9 leading to MYH9-related 4 

diseases often present with signs of CKD and can develop ESKD.7,8 In line with these results, 5 

heterozygous mice with mutations in Myh9 manifest similar pathological kidney phenotypes as humans 6 

with MYH9-related diseases, including proteinuria, focal segmental glomerulosclerosis, and CKD.28 7 

Intriguingly, Myh9 knockdown in zebrafish lead to the malformation and dysfunction of their glomeruli.29 8 

More specifically, these zebrafish failed to correctly develop the glomerular capillary structure, lacking 9 

fenestration in the endothelial cells and having an absence or reduced number of mesangial cells 10 

together with irregular thickening of the glomerular basement membrane.29 Although kidney clearance 11 

experiments showed that the glomerular barrier function remained unaltered, glomerular filtration in 12 

these zebrafish was significantly reduced.29 Altogether, these findings attest a key role for MYH9 and 13 

non-muscle myosin heavy chain II-A in kidney development and physiology. 14 

In humans, non-muscle myosin II-A, whose heavy chains are encoded by MYH9, is expressed 15 

in the podocytes, tubular cells, endothelial cells of the peritubular capillaries, interlobular arteries, and 16 

arterioles.30 A potential mechanism underpinning the association between MYH9 polymorphism and 17 

graft failure would likely be dependent on kidney-expressed non-muscle myosin heavy chain II-A. On 18 

the basis of our findings, however, alternative mechanisms may be more probable. Firstly, in the 19 

recipients a trend was found for the association between the MYH9 polymorphism and graft loss, while 20 

there was no association in the donor genotypes. Secondly, the AA-genotype of the MYH9 variant in 21 

the recipient, but not the donor, was associated with BPAR and DGF, although significance was lost 22 

after adjusting for potential confounders. Lastly, in the genotypic analysis of the donor-recipient pairs, 23 

the isolated donor AA-genotype was marginally protective while the isolated AA-genotype in the 24 

recipient had a modest detrimental effect on graft survival. Additional evidence supporting a systemic 25 

role of the MYH9 variant in determining kidney allograft outcomes is provided by case report of a patient 26 

with focal segmental glomerulosclerosis, where proteinuria rapidly recurred following a deceased donor 27 

kidney transplantation that therapeutically responded to plasmapheresis.31 Moreover, the fact that 28 

donor-recipient pairs with the combined AA-genotype of the MYH9 variant had the highest risk of graft 29 

loss in our population, suggests both donor-recipient interactions in MYH9 with perhaps a leading role 30 
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for extra-renal expressed non-muscle myosin heavy chain II-A. A case report of two kidney transplants 1 

in pediatric patients suggested a similar donor-recipient MYH9 interaction.32  2 

Overall, there are several limitations to our study that warrant consideration. First, our study 3 

design is observational in nature and thus cannot determine whether associations are based on 4 

causality. Therefore, we cannot exclude the possibility that the MYH9 rs11089788 variant is a tag SNP 5 

in the neighboring APOL1 to APOL6 region, justifying further investigation in this regard. Second, we 6 

investigated a single polymorphism in MYH9 and did not examine the impact of MYH9 haplotypes. 7 

Nevertheless, crucial strengths of our study were the analysis of the recently described MYH9 8 

polymorphism in both donors and recipients, our large patient population, the long and complete follow-9 

up, and the hard clinical endpoints. 10 

In conclusion, we found that patients with an AA-genotype of the MYH9 rs11089788 variant 11 

receiving a donor kidney with the AA-genotype have an elevated risk of late graft loss. Considering the 12 

impact of this combined genotype, our findings imply donor-recipient interactions in MYH9 that 13 

negatively influence the long-term allograft survival of kidney allografts. 14 
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Table 1: Baseline characteristics of the donors and recipients 1 

Data are displayed as mean ± standard deviation for parametric variables; median [IQR] for non-2 

parametric variables, and nominal data as the total number of patients with the corresponding 3 

 
All Patients 
(n = 1271) 

Functioning graft  
(n = 1056) 

Graft loss 
(n = 215) P-value* HR P-value# 

Donor       

MYH9 SNP 
CC, n (%) 317 (25.0) 264 (25.0) 53 (24.8) 

0.97  0.98 CA, n (%) 687 (54.1) 572 (54.2) 115 (53.7) 
AA, n (%) 265 (20.9) 219 (20.8) 46 (21.5) 

Age, years 44.4 ± 14.4 44.1 ± 14.6 46.1 ± 13.4 0.044 1.02 <0.001 
Male sex, n (%) 645 (50.7) 535 (50.7) 110 (51.2) 0.89  0.96 
Blood group 
Type O, n (%) 642 (50.5) 541 (51.3) 101 (47.2) 

0.033 

0.39 0.004 
Type A, n (%) 502 (39.5) 414 (39.3) 88 (41.1) 0.42 0.01 
Type B, n (%) 97 (7.6) 82 (7.8) 15 (7.0) 0.36 0.012 
Type AB, n (%) 27 (2.1) 17 (1.6) 10 (4.7) Ref 0.035 
Donor type 
Living, n (%) 282 (22.2) 257 (24.3) 25 (11.6) 

<0.001 
Ref 

0.002 
 

Brain death, n (%) 787 (61.9) 642 (60.8) 145 (67.4) 
1.94 

Circulatory death, n (%) 202 (15.9) 157 (14.9) 45 (20.9) 
Recipient       

MYH9 SNP 
CC, n (%) 326 (25.7) 270 (25.6) 56 (26.2) 

0.15  0.31 CA, n (%) 635 (50.0) 539 (51.1) 96 (44.9) 
AA, n (%) 308 (24.3) 246 (23.3) 62 (29.0) 

Age, years 47.9 ± 13.5 48.5 ± 13.4 45.0 ± 13.2 <0.001 0.99 0.027 
Male sex, n (%) 739 (58.1) 607 (57.5) 132 (61.4) 0.29  0.21 
Primary kidney disease 
Glomerulonephritis, n (%) 340 (26.8) 271 (25.6) 69 (32.2) 

0.28 

 

0.45 

Polycystic disease, n (%) 208 (16.4) 188 (17.8) 20 (9.3)  
Vascular disease, n (%) 145 (9.9) 123 (11.6) 22 (10.3)  
Pyelonephritis, n (%) 148 (11.4) 120 (11.4) 28 (13.1)  
Diabetes, n (%) 51 (4.0) 44 (4.2) 7 (3.3)  
Idiopathic, n (%) 168 (13.2) 134 (12.7) 34 (15.9)  
Other, n (%) 211 (16.6) 177 (16.7) 34 (15.9)  
Blood group 
Type O, n (%) 567 (44.6) 474 (44.9) 93 (43.3) 

0.004 

0.46 0.002 
Type A, n (%) 536 (42.2) 448 (42.4) 88 (40.9) 0.46 0.002 
Type B, n (%) 113 (8.9) 98 (9.3) 15 (7.0) 0.35 0.002 
Type AB, n (%) 55 (4.3) 36 (3.4) 19 (8.8) Ref 0.008 
Dialysis vintage, weeks 172 [91 – 263] 174 [87 – 261] 168 [109 – 270] 0.15  0.10 
Highest PRA, in % 10.1 ± 23.6 10.0 ± 23.3 10.9 ± 25.0 0.60  0.75 
Immunosuppression 
Anti-CD3 Moab, n (%) 19 (1.5) 14 (1.3) 5 (2.3) 0.27  0.51 
ATG, n (%) 103 (8.1) 79 (7.5) 24 (11.2) 0.07  0.14 
Azathioprine, n (%) 72 (5.7) 53 (5.0) 19 (8.8) 0.027  0.29 
Corticosteroids, n (%) 1201 (94.5) 1002 (94.9) 199 (92.6) 0.17 0.51 0.01 
Cyclosporin, n (%) 1085 (85.4) 911 (86.3) 174 (80.9) 0.044 0.66 0.016 
Interleukin-2 RA, n (%) 199 (15.7) 163 (15.4) 36 (16.7) 0.63  0.12 
Mycophenolic acid, n (%) 907 (71.4) 775 (73.4) 132 (61.4) <0.001  0.06 
Sirolimus, n (%) 38 (3.0) 33 (3.1) 5 (2.3) 0.53  0.54 
Tacrolimus, n (%) 97 (7.6) 77 (7.3) 20 (9.3) 0.31  0.39 
Transplantation       
CIT, in hours 17.7 [10.9 – 23.0] 17.0 [8.6 – 23.0] 20,0 [15.3 – 25.0] <0.001 1.03 0.001 
WIT, in minutes 37.0 [31 – 45] 37.0 [30 – 45] 38.0 [32 – 45] 0.12 1.02 0.003 
Total HLA mismatches 2 [1 – 3] 2 [1 – 3] 2 [1 – 3] 0.48  0.11 
DGF, n (%) 415 (32.7) 289 (27.4) 126 (58.6) <0.001 3.79 <0.001 
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percentage [n (%)]. MYH9,  non-muscle myosin heavy chain 9 gene; PRA, panel-reactive antibody; 1 

CD3, cluster of differentiation 3; ATG, Anti-thymocyte globulin; RA, receptor antagonist; CIT, cold 2 

ischemia time; WIT, warm ischemia time; HLA, human leukocyte antigen; DGF, delayed graft function. 3 

Bold values are used to show which testing was statistically significant (P-value < 0.05) 4 

      P-value* indicates the P-value for the differences in baseline characteristics between the groups, 5 

tested by Student’s t-test or the Mann–Whitney U-test for continuous variables, with the χ2 test for 6 

categorical variables.  7 

     P-value# indicates the P-value for univariable analysis with 15-year death censored graft survival.  8 
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Table 2 1 

Logistic regression analysis for the risk of delayed graft function after kidney transplantation 2 

Variables P-value Hazard Ratio 

MYH9 rs111089788 SNP in the recipient  

(AA versus CA/CC) 0.15 1.26 (0.92 – 1.72) 

Donor age 

(in years) <0.001 1.02 (1.01 – 1.03) 

Donor gender 

(male versus female) 0.001 1.61 (1.22 – 2.13) 

Donor type 

(deceased versus living) 0.001 31.61 (4.14 – 214.57) 

Total HLA mismatches 0.006 1.16 (1.04 – 1.30) 

Dialysis vintage 

(in years) 0.007 1.08 (1.02 – 1.14) 

Warm ischemia time 

(in minutes) 0.020 1.01 (1.00 – 1.03) 

Recipient age 

(in years) 0.44 1.00 (0.99 – 1.02) 

Cold ischemia time 

(in minutes) 0.47 1.00 (1.00 – 1.00) 

 3 
Multivariable logistic regression was performed for delayed graft function after kidney transplantation. 4 

Only variables with a P < 0.05 in the univariable analysis were included. Data are presented as an odds 5 

ratio with a 95% confidence interval (CI) and P-value. Donor age, donor gender, donor type, total HLA 6 

mismatches, dialysis vintage, and warm ischemia time were significant, whereas the MYH9 SNP 7 

(rs11089788) in the recipient, recipient age, and cold ischemia time were not. 8 
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Table 3 1 

Multivariable analysis for the risk of biopsy-proven acute rejection after kidney transplantation 2 

Variables P-value Hazard Ratio 

MYH9 rs111089788 SNP in the recipient  

(AA versus CA/CC) 0.10 1.22 (0.97 – 1.54) 

Recipient age 

(in years) <0.001 0.97 (0.97 – 0.98) 

Total HLA mismatches <0.001 1.20 (1.11 – 1.29) 

Delayed graft function 

(yes versus no) 0.015 1.31 (1.05 – 1.62) 

Recipient gender 

(female versus male) 0.039 1.25 (1.01 – 1.55) 

Warm ischemia time 

(in minutes) 0.08 0.99 (0.98 – 1.00) 

 3 
Multivariable Cox regression was performed for biopsy-proven acute rejection (BPAR) after kidney 4 

transplantation. Only variables with a P < 0.05 in the univariable analysis were included. Data are 5 

presented as a hazard ratio with a 95% confidence interval (CI) and P-value. Recipient age, total HLA 6 

mismatches, delayed graft function (DGF), and recipient gender were significant, whereas the MYH9 7 

SNP (rs11089788) in the recipient and warm ischemia time were not. 8 
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Table 4 1 

Associations of non-muscle myosin heavy chain 9 polymorphism in donor-recipient pairs with 2 

graft loss after kidney transplantation. 3 

 4 

Data are presented as a hazard ratio with a 95% confidence interval (CI) and P-value. 5 

Model 1: Crude model. 6 

Model 2: Adjusted for model 1 plus recipient characteristics: Recipient age, recipient sex, recipient 7 

blood type, and dialysis vintage. 8 

Model 3: Adjusted for model 1 plus donor characteristics: Donor age, donor sex, donor blood type, and 9 

donor origin.   10 

Model 4: Adjusted for model 1 plus transplant characteristics: Cold and warm ischemia time, and the 11 

number of human leukocyte antigen (HLA)-mismatches. 12 

13 

 MYH9 SNP (rs1800472) in donor-recipient pairs 
Hazard ratio  

(AA+AA vs. others) 
95% CI P-value 

Model 1 1.78 1.13 – 2.79 0.012 

Model 2 1.90 1.19 – 3.02 0.007 

Model 3 1.95 1.24 – 3.08 0.004 

Model 4 1.91 1.16 – 3.12 0.011 
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Table 5 1 

Multivariable analysis for the risk of graft loss after renal transplantation 2 

Variables P-value Hazard Ratio 

rs111089788 in donor-recipient pairs 

(AA+AA versus others) 0.031 1.68 (1.05 – 2.70) 

Delayed graft function 

(yes versus no) <0.001 3.47 (2.56 – 4.72) 

Recipient age 

(in years) <0.001 0.98 (0.97 – 0.99) 

Donor age 

(in years) 
0.001 1.02 (1.01 – 1.03) 

Recipient blood type 

(AB versus other) 0.061  

Warm ischemia time 

(in minutes) 0.12 1.01 (1.00 – 1.02) 

Corticosteroids 0.20 1.53 (0.80 – 2.95) 
Cold ischemia time 

(in minutes) 0.32 1.00 (1.00 – 1.00) 

Donor type 

(living versus deceased) 0.41 0.76 (0.39 – 1.46) 

Cyclosporin A 0.71 1.04 (0.71 – 1.66) 
Donor blood type 

(AB versus other) 0.90  

 3 
Multivariable cox regression was performed for kidney graft survival. Only variables with a P < 0.05 in 4 

the univariable analysis were included. Data are presented as a hazard ratio with a 95% confidence 5 

interval (CI) and P-value. In the final model, the MYH9 SNP (rs11089788) in donor-recipient pairs, the 6 

occurrence of delayed graft function, recipient age, and donor age were significant, whereas recipient 7 

blood type, warm ischemia time, use of corticosteroids, cold ischemia time, donor type, use of 8 

cyclosporin A, and donor blood type were not. 9 

10 
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Figures 1 

 2 

Figure 1 3 

Illustration of the non-muscle myosin heavy chain 9 and the examined MYH9 polymorphisms. 4 

 5 

(A)  Non-muscle myosin heavy chain II-A (MHCII-A) is a contractile protein comprised of several 6 

domains: A globular motor head portion (heavy chain), a neck domain (essential light chain and 7 

regulatory light chain), coiled coil tail segment (MHCII-A), and non-helical tailpiece that can be 8 

phosphorylated. The coiled coil segment is notably encoded by the myosin heavy chain 9 (MYH9) gene. 9 

(B) In this study, we assessed the association of rs11089788 (C>A) MYH9 single-nucleotide 10 

polymorphism (SNPs) in kidney allograft donors and recipients with long-term graft survival outcomes. 11 

MHCII-A, non-muscle heavy chain II-A; MYH9, myosin heavy chain 9 gene; SNP, single nucleotide 12 

polymorphism. 13 

14 
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Figure 2 1 

Kaplan-Meier curves for rejection-free survival of kidney allografts according to the presence 2 

of a non-muscle myosin heavy chain 9 gene polymorphism in the recipient. 3 

 4 

(A) Cumulative rejection-free survival of kidney allografts according to the presence of the MYH9 SNP 5 

rs11089788 in the recipient. (B) Cumulative rejection-free survival of kidney allografts in recipients with 6 

the AA-genotype of the MYH9 SNP rs11089788 versus the AC/CC-genotype. Log-rank test was used 7 

to compare the incidence of biopsy-proven rejection between the groups. 8 
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Figure 3 1 

Kaplan-Meier curves for 15-year death-censored kidney graft survival according to the presence 2 

of a non-muscle myosin heavy chain 9 gene polymorphism in the donor or recipient. 3 

 4 

(A) Cumulative 15-year death-censored kidney graft survival according to the presence of a genetic 5 

variant in non-muscle myosin heavy chain 9 gene (MYH9, rs11089788 C>A) in (A, B) the recipient (blue 6 

line) or (C) the donor (yellow line). (B) Cumulative 15-year death-censored graft survival of kidney 7 

allografts in recipients with the AA-genotype of the MYH9 SNP rs11089788 versus the AC/CC-genotype. 8 

Log-rank test was used to compare the incidence of graft loss between the groups. 9 

10 
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Figure 4 1 

Kaplan-Meier curves for 15-year death-censored kidney graft survival according to the presence 2 

of a non-muscle myosin heavy chain 9 gene polymorphism in donor-recipient pairs.  3 

 4 

Cumulative 15-year death-censored kidney graft survival is shown according to the presence of the 5 

MYH9 polymorphism in donor-recipient pairs. (A) Pairs were divided into four groups according to the 6 

absence (black line) or presence of the AA-genotype in the recipient (blue line), donor (yellow line), or 7 

both (green line). (B) In addition, the presence of the AA-genotype in both the recipient and donor 8 

(green line) was compared to the rest (black line). Log-rank test was used to compare the incidence of 9 

graft loss between the groups. 10 
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