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Abstract 
 
Background: Advanced age and poor brain health have been associated with higher risk for more 
severe clinical and cognitive outcomes following stroke, but more accurate models for clinical 
prediction are needed. Machine learning based on brain scans can be used to estimate brain age of 
individual patients, and the corresponding difference from chronological age, the brain age gap 
(BAG) has been investigated in a range of clinical conditions. Yet, the predictive value for post stroke 
NCD has not been established. To this end, using longitudinal data we aimed to investigate the 
association between BAG and post-stroke neurocognitive disorder (NCD) over time.  
 
Methods: 269 stroke survivors (55.4% women, mean (SD) age = 71 (11) years) were included from 
the Norwegian Cognitive Impairment After Stroke (Nor-COAST) study. MRI and clinical data were 
collected shortly after the acute stroke (neuropsychological data first after 3 months) and at 18- and 
36 months follow-up. The brain age model was trained in an independent sample using established 
protocols based on machine learning and brain structural features from Freesurfer and applied to the 
current dataset. We used linear mixed effects (LME) models and survival analysis to assess the 
associations between cognitive status and longitudinal brain age. 
 
Results: LMEs revealed a main effect of BAG on post stroke NCD across time, confirming our main 
hypothesis that a younger appearing brain may protect against post stroke NCD. For patients with no 
NCD at baseline, survival analysis suggested that higher baseline BAG was associated with higher 
risk of post stroke NCD at 18 and 36 months.  
 
Conclusion: A younger appearing brain is associated with lower risk of post stroke NCD up to 36 
months after a stroke, even among those showing no evidence of impairments 3 months after hospital 
admission. Brain age prediction based on brain scans provides a reliable assessment of brain structure 
and is sensitive to post stroke NCD with predictive value for cognitive decline among patients with 
no impairment at the initial assessment. 
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1. Introduction 
Stroke increases risk of functional and cognitive decline, and 35-50% of stroke survivors fulfil criteria 
for mild or major neurocognitive disorder (NCD, previously ‘mild cognitive impairment’ and 
‘dementia’, respectively) (American Psychiatric Association, 2013) 15 months after a mild stroke 
(Jacquin et al., 2014; Weaver et al., 2021). While cognitive impairments are prevalent among stroke 
survivors, a substantial proportion remains largely unaffected or experience improvements or 
complete remission after initial impairments during the acute phase (Levine et al., 2015). It is well 
known that poor health and incipient neurocognitive deficits prior to the stroke is associated with 
poor outcome. However, less is known about resilience factors. The high prevalence and burden of 
post-stroke cognitive impairments warrant further studies to identify malleable protective factors, 
with implications for public health policies and prevention strategies as well as post stroke treatment 
and rehabilitation approaches to reduce the burden of post stroke cognitive impairments. 
 Several factors are associated with poorer outcomes after stroke, including old age, lower 
education, pre-stroke disability, left-sided stroke (Pendlebury, 2012; Pendlebury & Rothwell, 2009), 
diabetes mellitus, a history of stroke (Lo et al., 2019), larger stroke lesions and vascular factors, such 
as white matter hyperintensities (WMH) (Schellhorn et al., 2021a; Aamodt et al., 2021). Brain atrophy 
after stroke (Brodtmann et al., 2020; Levine et al., 2015) is also associated with cognitive decline 
(Mijajlovic et al., 2017; Haque et al., 2019), particularly if accompanied by hypertension (Sayed et 
al., 2020) or other vasculopathies (Schellhorn et al., 2021b), with global and medial temporal lobe 
atrophy and WMH load among the most predictive factors 12 months post-stroke (Jokinen et al., 
2020; Casolla, 2019; Wang et al., 2021; Ball et al., 2021; Schellhorn et al., 2021a).  
 Advanced age is a major risk factor for both stroke and of poorer prognosis following stroke 
(Pendlebury & Rothwell, 2009), and is the primary risk factor for neurodegeneration (Hou et al., 
2019) and lower cognitive reserve and resilience, rendering the individual more vulnerable to post 
stroke NCD (Mattson & Arumugam, 2018;Hou et al., 2019; Aamodt et al., 2021). The individual 
differences in cognitive function among seniors are substantial (Sanchez-Izquierdo & Fernandez-
Ballesteros, 2021) and chronological age alone is therefore not a reliable predictor for pre-stroke 
function and post stroke outcome (Wagner et al., 2016). Sensitive biomarkers or tools for assessing 
and monitoring biological age and aging may have great value for predicting decline and resilience 
following stroke. Current advances have allowed for an accurate estimation of an individual’s brain 
age based on machine learning on structural brain features from clinically accessible brain scans (Cole 
& Franke, 2017; Cole et al., 2017). Discrepancy between the predicted and chronological age, also 
termed the brain age gap (BAG; with lower values indicating a younger appearing brain) has been 
used as an intuitive, reliable and sensitive surrogate marker for brain health, various brain disorders, 
and cognitive aging (Wrigglesworth et al., 2021; Boyle et al., 2021; Kaufmann et al., 2019), and for 
predicting clinical conversion from mild to major NCD (Gaser et al., 2013).  
 With some exceptions (Richard et al., 2020) few brain age studies have been conducted on 
stroke patients and post stroke NCD (Wrigglesworth et al., 2021), and a careful evaluation of the 
clinical and predictive value of brain age among stroke survivors is warranted. To this end, using 
longitudinal brain imaging at baseline, 18- and 36 months, and clinical data obtained at baseline, 3-, 
18- and 36 months post stroke we tested the following hypotheses: I) patients with no or minimal post 
stroke cognitive impairments exhibit lower BAG than patients with post stroke cognitive 
impairments, II) lower BAG at baseline is associated with less cognitive impairments at 18 and 36-
months follow-up among patients showing normal cognitive function at baseline, and III) patients 
showing preserved cognitive function across the follow-up period show less increase in BAG over 
time compared to patients showing evidence of cognitive decline.  
 
2. Material and methods 
2.1 Sample and inclusion criteria 
The study is based on data from the Norwegian Cognitive Impairment After Stroke study (Nor-
COAST) - a prospective longitudinal multicenter cohort study recruiting patients hospitalized with 
acute stroke at five Norwegian stroke units (Thingstad et al., 2018). Patient recruitment started in 
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May 2015 and was completed in March 2017. Study details are described elsewhere (Thingstad et al., 
2018). Nor-COAST was approved by the regional committee for medical and health research, REK 
Nord (REK number: 2015/171), and registered on clinicaltrials.gov (NCT02650531). REK Nord has 
also approved this current sub study (REK number: 2019/397). All participants provided written 
informed consent in accordance with the Declaration of Helsinki. If a participant was unable to give 
consent, written informed consent for participation was provided by a family proxy.  
 Inclusion criteria for Nor-COAST: (a) patients admitted with acute ischemic or hemorrhagic 
stroke hospitalized within one week after onset of symptoms, diagnosed according to the World 
Health Organization (WHO) criteria; (b) age over 18 years; (c) fluent in a Scandinavian language.  
Exclusion criteria for Nor-COAST: (a) not treated in the participating stroke units; (b) symptoms 
explained by other disorders than ischemic brain infarcts or intracerebral hemorrhages; (c) expected 
survival less than three months after stroke. Additional inclusion criteria for the MRI study: (a) 
modified Rankin scale (mRS) <5 before the stroke; (b) able and willing to perform MRI. Reasons for 
declining participation in the MRI sub study were not recorded, in line with ethical guidelines.  

 
2.2 Clinical characteristics 
Demographic and clinical data were collected by study nurses and stroke physicians. Based on 
previous literature, the following baseline factors were included; age, years of education, sex, waist-
to-hip ratio (WHR), stroke severity measured with the National Institute of Health Stroke Scale 
(NIHSS), disability measured using mRS, atrial fibrillation (AF), diabetes mellitus, and pre-stroke 
hypertension and global cognition, based on the global deterioration scale (GDS, Reisberg et al., 
1982). NIHSS ranges from 0 to 42, with higher scores indicating more severe strokes. mRS ranges 
from 0 to 6, with higher scores indicating worse disability (Wilson et al., 2005). As described in 
Munthe-Kaas et al. (2020), AF was defined as a history of permanent or paroxysmal AF or atrial 
flutter detected in electrocardiogram and described in medical records and/or permanent or 
paroxysmal AF or atrial flutter detected in electrocardiogram and/or telemetry during hospital stay. 
Diabetes mellitus was defined as a history of diabetes mellitus from medical records and/or pre-stroke 
use of antidiabetic medication and/or HbA1c≥6.5% at admittance for stroke. Hypertension was 
defined as pre-stroke use of antihypertensive medication. GDS ranges from 1 to 7 and pre-stroke GDS 
was collected through interviews with relatives or caregivers.  
 
2.3 Neurocognitive and neuropsychiatric assessment   
The neuropsychological test battery included Trail making A and B (TMT A and B) (Reitan, 1958), 
ten word memory and recall test (CERAD) (Morris et al., 1988), the controlled oral word association 
test (COWAT) (Loonstra, Tarlow & Sellers, 2001), the Montreal Cognitive Assessment (MoCA) 
(Nasreddine et al., 2005), the Ascertain Dementia 8-item informant questionnaire (AD-8) (Galvin et 
al., 2005), and the Global Deterioration Scale (GDS) (Reisberg et al., 1982).  
 Criteria for NCD were based on the Diagnostic and Statistical Manual of Mental Disorders 
(DSM‐5), encompassing neuropsychological assessment and instrumental activities of daily living (I-
ADL) (American Psychiatric Association, 2013). Patients scoring >1.5 SD below the normative mean 
on at least one of the cognitive domains tested (attention, executive function, learning and memory, 
language, or perceptual-motor function) were defined as having post stroke NCD. Major NCD was 
defined as post stroke NCD accompanied by dependency in I‐ADL, whereas mild NCD was defined 
as post stroke NCD with independencies in any I‐ADL (Munthe-Kaas et al., 2020). NCD status was 
grouped into no NCD and any NCD (mild NCD plus major NCD).  

 
2.4 MRI acquisition and processing 
MRI was performed at baseline (within 2-7 days of the acute stroke), and at 18- and 36 months follow-
up. The assessments were done at five hospitals (supplementary table 4), using a single scanner at 
each site (GE Discovery MR750, 3T; Siemens Biograph_mMR, 3T; Philips Achieva dStream, 1.5T; 
Philips Achieva, 1.5T; Siemens Prisma, 3T). The MRI protocol comprised 3D-T1 weighted, axial T2, 
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3D-Fluid attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and 
susceptibility-weighted imaging (SWI) sequences (details in supplementary table 3).  
  
2.5 Stroke volume extraction and stroke location  
As previously described (Schellhorn et al., 2021a), lesion masks were generated based on the DWI 
data obtained in the acute/-sub-acute phase, and were semi-automatically labeled and quantified using 
ITK-Snap snake tool (v. 3.8.0) (Yushkevich et al., 2006). Stroke location was determined using the 
Talairach lobe atlas (Lancaster et al., 1997; Lancaster et al., 2000). The labels ‘anterior lobe’ and 
‘posterior lobe’ were then gathered into ‘cerebellum’, and ‘medulla’, ‘midbrain’, and ‘pons’ were 
gathered into ‘brainstem’. If the stroke was labeled as ‘background’, the Harvard-Oxford structural 
atlas (Makris et al., 2006; Frazier et al., 2005; Desikan et al., 2006; Goldstein et al., 2007) was used. 
Stroke location was established as the location with the highest probability, as set by the atlas. For 
participants with multiple lesions, the location of the largest lesion was used.      
 
2.6 WMH segmentation 
As previously described (Aamodt et al., 2021), WMH segmentation was performed using the fully 
automated and supervised tool BIANCA (Griffanti et al., 2016). BIANCA is based on an algorithm 
using the k-nearest neighbor and classifies the probability of WMHs based on intensity and spatial 
features of voxels. The intensity- and spatial based lesion classification probability threshold was set 
to 0.7.  WMH volume was calculated in mm3 and converted to millilitre (ml). 
 
2.7 Brain age prediction  
Features used for brain-age prediction were generated through cortical reconstruction and 
parcellation, and volumetric segmentation of the 3D-T1 scans using the longitudinal stream of 
Freesurfer 6.0.1 (http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012), including brain extraction, 
intensity normalization, tissue segmentation and surface reconstruction. Quality control of the 
FreeSurfer output was conducted based on the ENIGMA protocol (http://enigma.ini.usc.edu) 
supplemented by Euler numbers extracted from FreeSurfer (Rosen et al., 2018). Scans were discarded 
if involving major errors in reconstruction, segmentation, or parcellation, or involving extensive 
motion or other artefacts.  
 We used machine learning to predict the age of each patient based on cortical thickness, 
surface area, and gray- and white matter volume. This approach has revealed highly accurate and 
reliable estimates in stroke patients (Richard et al., 2019). 
 For model training we used an independent sample of healthy controls (n = 934, age range = 
18-88 years, mean = 55.8, SD = 17.4) from the Cambridge centre for Aging and Neuroscience 
(CamCAN) (Shafto et al., 2014; Taylor et al., 2017) and StrokeMRI (Richard et al., 2018; Sanders et 
al., 2021). In line with previous work (Kaufmann et al., 2019; Richard et al., 2020; Høgestøl et al., 
2019; Beck et al., 2022a; Anatürk et al., 2020), the age-prediction model was trained using XGBoost 
regression (Chen & Guestrin, 2016) in Python 3 with scikit-learn (Pedregosa et al., 2011) including 
nested cross-validation for hyperparameter tuning and model evaluation (5 inner and 10 outer folds). 
The prediction model was run using both global and regional feature inputs, and based on the 
Desikan-Killiany atlas (Desikan et al., 2006) and subcortical segmentation.  
 Next, we applied the trained model on previously unseen data from the Nor-COAST patients. 
To quantify model performance, we calculated the Pearson’s correlation between predicted and 
chronological age and mean absolute error (MAE) in the test set. BAG was computed per scan per 
individual, and defined as the difference between estimated and chronological age (Figure 1 for 
examples). To account for age-related bias in the age prediction (Le et al., 2018; de Lange & Cole, 
2020), a linear model was used to regress out the main effect of age, age2, and sex.  
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2.8 Statistical analysis 
Statistical analyses were performed using R v. 3.3.3 (R Core Team 2017) and Stata v. 16. Means and 
standard deviations (SD) were calculated and outliers and normality checked using histograms. The 
three main hypotheses outlined above were tested using the following approaches:  

First, to test if patients with minimal or no post stroke cognitive impairments exhibited lower 
BAG than patients with cognitive impairments, we performed one linear mixed effects (LME) model 
with BAG as dependent variable, patient as random variable and NCD status (no NCD vs. any NCD), 
timepoint and age as independent variables. An additional model including the interaction between 
NCD status and time point was also tested. To complement the LME model, we performed three 
student t-tests comparing BAG between the two NCD groups at each time point, and a survival 
analysis with NCD status (any NCD) as outcome stratified by BAG (quartiles for cognitive 
impairments, at 18- and 36-months follow-up).  

Figure 1: Examples of groups of three patients with same exact chronological age and differing brain 
age. *Chronological age has been scrambled in order to preserve privacy. 
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Next, among patients with normal cognitive function at baseline we performed one LME 
model with BAG as dependent variable, patient as random variable and NCD status (dichotomous), 
timepoint and age as independent variables. An additional model including the interaction between 
NCD status and time point was also performed. In addition, we performed two student t-tests to 
compare BAG between the NCD groups at 18 and 36 months and a survival analysis with NCD status 
as outcome stratified by BAG (quartiles) at baseline.  

Lastly, to test if patients with preserved cognitive function across the three-year follow-up 
period show smaller increases in BAG over time compared to patients with cognitive decline, we 
performed one LME with the dependent variable of BAG, patient as random variable and NCD status 
change (dichotomous, preserved vs. declined), time point and age as independent variables. An 
additional model including the interaction between NCD status and time point was also performed. 
To complement the LME model, we performed two student t-tests to compare BAG between groups 
(preserved vs. declined) at 18- and 36 months and a survival analysis with NCD status change as 
outcome stratified by BAG (quartiles) at baseline. 
 Normality of residuals from the LME models were assessed through visual inspection of 
quantile-quantile-plots. Margins were calculated and margin plots and survival plots were created. 
Significance threshold was set to p<.05 after corrections for multiple comparisons. In addition, we 
performed several analyses to identify variables associated with attrition (supplementary table 6).  
 
3. Results  
3.1 Study population 
Figure 2 summarizes the study outline and population. From the complete Nor-COAST population, 
352 (43.2%) patients performed baseline MRI which passed quality assessment. Of the MRI group, 
mean (SD) age at baseline was 72.8 (11.2) years, 157 (44.6%) were women, and average NIHSS 
score was 4 (4.9). NCD status was missing for 45 patients and Freesurfer reconstruction failed for 38 
(10.8%), resulting in a final sample of 269 (76.4% of the total MRI sample) at baseline (55.4% 
women, mean age = 71 (11) years, education = 12.4 (3.6) years, NIHSS = 3.6 (4.5)). At the 
neuropsychological testing at three months, 79 (29.4%) and 61 (22.7%) patients fulfilled criteria for 
mild or major NCD, respectively, resulting in a group of 140 (52%) patients with any NCD and 129 
(48%) with no evidence of NCD at three months.  
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3.2 Baseline clinical and stroke characteristics  
Table 1 summarizes demographic and clinical patient characteristics. At baseline, 167 (69.3%) 
patients were overweight (WHR>.89 for men and WHR>.98 for women (WHO, 2008)). Other 
baseline comorbidities and risk factors included hypertension (n = 137, 50.1%), AF (n = 55, 20.4%), 
and diabetes type 1 or type 2 (n = 50, 18.6%). Pre-stroke cognitive decline (GDS score of 3 to 7) was 
found in 21 (7.4%) patients (M = 1.4 SD = .73, min = 1, max = 5). Mean NIHSS scores of 3.58 (4.51, 
min = 0, max = 42) indicated mainly mild strokes.  
 Mean (SD) stroke lesion volume was 8.6 (17.4) ml. Right hemisphere lesions were most 
frequent (51.4%), and 6 (2.9%) patients showed acute bilateral strokes. The most frequent stroke 
locations were the frontal lobe (28.8%) and subcortical structures (20.6%, supplementary table 5).   
 The NCD group had higher risk scores compared to the no NCD group, with higher age (72.9 
(10.3) vs. 68.9 (11.5)), more women (57.1% vs. 53.5%), lower baseline MoCA scores (22.0 (5.0) vs. 
26.3 (2.7)), higher baseline BAG (2.11 (9.38) vs. -1.91 (8.16)), larger stroke volume (10.33 (21.77) 
vs. 7.23 (11.03)), and larger WMH volume (27.62 (25.20) vs. 16.74 (14.78)).  
 
 
 
 
 
 

Figure 2: Study population selection and NCD-group categorization by all three timepoints (B (baseline), 18- (18m) 
and 36 months (36m)). Ending in the two study groups of Any-NCD (mild NCD + Major NCD) and No-NCD. 
*Baseline NCD status collected at 3 months post-stroke.   
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No-NCD Any-NCD All 

 
Baseline 18 mo. 36 mo. Baseline 18 mo. 36 mo. Baseline 18 mo. 36 mo. 

N 129 115 56 140 91 40 269 206 96 

Age 68.9 
(11.5) 

69.5 
(12.4) 

72.7 (8.8) 72.9 
(10.3) 

74.2 
(8.7) 

78.7 (8.3) 71.0 
(11.0) 

71.6 
(11.2) 

75.2 (9.1) 

Women 69 
(53.5%) 

66 
(57.4%) 

31 
(55.4%) 

80 
(57.1%) 

52 
(57.1%) 

26 (65%) 149 (55.4) 118 
(57.3%) 

57 
(59.4%) 

Education 
(yrs) 

13.2 (3.8) 13.5 
(4.1) 

13.4 (4.0) 11.8 (3.4) 12.0 
(3.3) 

11.6 (3.6) 12.4 (3.6) 12.8 (3.9) 12.7 (3.9) 

Over-weight 

b,c 
77 (67%) 75 

(74.3%) 
12 
(66.7%) 

90 
(71.4%) 

58 
(72.5%) 

9 
(64.3%) 

167 
(69.3%) 

133 
(73.5%) 

21 
(65.6%) 

NIHSS b  3.2 (3.8) 4.0 (5.8) 4.0 (6.7) 3.9 (5.0) 3.3 (3.6) 4.2 (4.1) 3.6 (4.5) 3.7 (3.9) 4.1 (5.7) 

AFb  21 
(16.3%) 

22 
(19.1%) 

10 
(17.9%) 

34 
(24.3%) 

27 
(29.7%) 

10 (25%) 55 
(20.4%) 

49 
(23.8%) 

20 
(20.8%) 

Diabetesb  20 
(15.5%) 

22 
(19.1%) 

9 
(16.1%) 

30 
(21.4%) 

17 
(18.7%) 

6 (15%) 50 
(18.6%) 

39 
(18.9%) 

15 
(15.6%) 

Hyper-
tensionb 

57 
(44.2%) 

56 
(48.7%) 

26 
(46.4%) 

80 
(57.1%) 

52 
(57.1%) 

25 
(62.5%) 

137 
(50.1%) 

108 
(52.4%) 

51 
(53.1%) 

mRS*  1.73 
(1.78) 

.97 (.75) 1.26 
(1.26) 

2.23 
(1.23) 

1.57 
(1.10) 

1.92 
(1.55) 

1.99 
(1.23) 

1.24 (.97) 1.58 (1.43) 

GDS* (pre-
stroke) 

1.16 (.39) 1.13 
(.34) 

1.12 (.31) 1.55 (.91) 1.37 
(.72) 

1.38 (.67) 1.36 (.73) 1.24 (.56) 1.22 (.51) 

MoCA* 26.3 (2.7) 26.6 
(2.9) 

20.4 
(10.5) 

22.0 (5.0) 22.8 
(4.9) 

22.3 (7.3) 24.1 (4.6) 24.9 (4.3) 21.2 (9.3) 

BAGd -1.91 
(8.16) 

-1.83 
(8.99) 

-3.36 
(9.16) 

2.11 
(9.38) 

.84 
(9.38) 

.92 (9.94) .18 (9.03) -.65 
(9.24) 

-1.58 
(9.67) 

Stroke 
volume 
(ml)*b 

7.23 
(11.03) 

5.41 
(9.45) 

5.62 
(9.23) 

10.33 
(21.77) 

11.04 
(21.06) 

12.88 
(27.03) 

8.90 
(17.67) 

7.96 
(15.96) 

8.41 
(18.40) 

WMH 
(ml)*b 

16.74 
(14.78) 

16.18 
(13.20) 

15.94 
(14.29) 

27.62 
(25.20) 

23.17 
(24.19) 

19.13 
(18.94) 

22.47 
(4.59) 

19.41 
(19.31) 

18.18 
(16.19) 

 
3.3. BAG and NCD across time   
Figure 3 shows the results from the LMEs and survival analyses. LMEs revealed a significant main 
effect of NCD status on BAG (coef. = 1.37, p = .010), and no significant effect of time (coef. = -.30, 
p = .23). We found no significant interaction between NCD status and time (coef. = .50, p = .33). 
Further summary statistics are reported in supplementary table 1 and 2. T-tests revealed higher BAG 
in the NCD group (M = 2.11, SD = .79, n = 140) than the no NCD group (M = -1.91, SD = .72, n = 
129) at baseline (t(267) = -3.73, p<.001). At 18 months, BAG was higher among patients with NCD 
(M = .84, SD = .72, n = 91) than those without NCD (M = -.1.83, SD = .84, n = 115) (t(204) = -2.08, 
p = .04). Similar patterns were found at 36 months, with higher BAG in the NCD group (M = .92, SD 
= 1.57, n = 40) than the no NCD group (M = -.3.36, SD = 1.22, n = 56) (t(94) = -2.18, p = .03). 
Survival analysis revealed a significant difference between the four BAG groups in having any NCD 

Table 1: Table depicting demographic, clinical, stroke characteristics and BAG for baseline, 18 months and 36 months, for 
those with no-NCD, any-NCD and all participants. BAG = Brain age gap. NIHSS = National Institutes of Health Stroke Scale. 
AF = Atrial fibrillation. GDS = Global Deterioration Scale. MoCA = Montreal Cognitive Assessment. WMH = White matter 
hyperintensities. * = Missing data. b baseline. C Overweight defined as waist-hip-ratio (WHR) = >.86 in women and >1.00 in 
men. D BAG defined as chronological age subtracted from brain age. 
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over time (p = .01), such that patients in the upper BAG quartile at baseline (+15 to +33 yrs.) had a 
higher chance of having NCD over time.  
 
3.4 Baseline BAG and NCD over time in those with no-NCD at baseline 
Among the 89 patients with no NCD at baseline LMEs revealed no significant main effect of NCD 
status on BAG (coef. = .56, p = .50) and no significant effect of time (coef. = -.57, p = .095). We 
found no significant interaction between NCD status and time (coef. = .71, p = .65). T-tests revealed 
no significant BAG differences at baseline between patients with (M = .51, SD = 1.69, n = 22) and 
without (M = -.2.47, SD = 1.03, n = 67) NCD at 18 months (t(87) = -1.46, p = .15). Similarly, no 
significant group difference in BAG was found between the NCD (M = .42, SD = 2.74, n = 10) and 
the no NCD (M = -1.34, SD = 1.49, n = 37) group at 36 months (t(45) = -.55, p = .59). Survival 
analysis showed a significant difference between the four BAG groups in having NCD over time for 
those with no NCD at baseline (p = .008), such that the groups with the upper BAG quartiles (0 to 
+14 and +15 to +30) had a higher risk of NCD at 18- or 36 months.  
 
3.5 BAG and preservation of NCD over time 
LMEs revealed no significant main effect of cognitive decline on BAG (coef.= .27, p = .71) and no 
significant effect of time (coef. = .04, p = .92). We found no significant interaction between NCD 
status change and time (coef. = -.78, p = .60). T-tests revealed no significant group differences in 
BAG at 18 months between preserved NCD status (M = -.70, SD = .80, n = 142) or cognitive decline 
(M = .63, SD = 1.66, n = 26) from baseline to 18 months (t(166) = -.066, p = .51). No significant 
group difference was found of BAG at 36 months between preserved NCD status (M = -1.86, SD = 
1.31, n = 59) or cognitive decline (M = .86, SD = 2.04, n = 17) from baseline (t(74) = -1.01, p = .31). 
Survival analysis showed no significant difference between the four BAG groups in having cognitive 
decline (as opposed to preserved NCD) over time (p = .49).  
 



 10 

 

 
 
4. Discussion 
By the use of longitudinal brain age prediction and neurocognitive assessment in a clinical context 
we tested the hypotheses that I) brain structural characteristics are associated with post stroke 
cognitive function and impairments, II) a younger appearing brain among patients showing normal 
cognitive function at baseline is associated with lower risk of cognitive impairments at 18 and 36-
months follow-up, and III) patients showing preserved cognitive function from baseline and across 
the follow-up period show less evidence of brain aging over time compared to patients showing 
cognitive decline. Our analyses revealed that higher BAG was associated with post stroke cognitive 
impairment across time, confirming our main hypothesis that a younger appearing brain may reflect 
relevant protective factors against cognitive decline after stroke. Next, survival analysis of patients 
with no NCD at baseline suggested that higher BAG at baseline was associated with NCD at 18 and 
36 months. Lastly, our findings revealed no significant difference in BAG between the group showing 
preserved versus the group showing a declined cognitive function from baseline and across follow-
up times.  
 
4.1 Brain structural characteristics associated with post stroke cognitive function and impairments 

Figure 3: Plots of predicted margins for BAG by NCD status (or change), and Kaplan-Meier estimation plots of survival 
analysis of any-NCD (or cognitive decline) by baseline BAG, per analysis. BAG = Brain age gap. NCD = 
neurocognitive disorder. Mo = months.  
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In line with our hypothesis, longitudinal analysis across all patients and assessments revealed a 
significant association between brain age and cognitive impairment across all time points, indicating 
more impairment among patients with higher BAG. A previous longitudinal study reported reliable 
brain age prediction among chronic stroke patients, and, while patients with lower BAG showed 
marginally better cognitive performance, no significant associations with post stroke cognitive 
function were found (Richard et al., 2020). A likely explanation for the diverging results is that the 
previous study included relatively young and mild cases with less cognitive impairment than the 
current study. Also, the current sample is larger, which offers more statistical power.  

Advanced age is a risk factor for stroke and post stroke cognitive impairment, and younger 
age is associated with better prognosis following stroke (Pendlebury & Rothwell, 2009; Mattson & 
Arumugam, 2018). While the current study population had a relatively high mean age, several patients 
displayed both a younger appearing brain and lack of post stroke cognitive impairment. This is not 
too surprising, as the strokes in this cohort were overall relatively small. However, this finding is also 
in line with the idea that brain age is a better predictor of post stroke cognitive outcome than what 
chronological age is.  

Aging is also associated with an overall vulnerability to both peripheral and central nervous 
system disease, likely partly due to an overall decreased maintenance and damage repair on cell level 
(Rattan, 2012) and the possible increased burden of multi-morbidity (Bektas et al., 2018). Around 
half of the participants in the current study suffered from pre-stroke hypertension, and a previous 
study on the same cohort has shown high levels of pre-stroke brain pathology (Schellhorn et al., 
2021b). These diseases render the brain at risk and more vulnerable to the consequence of future 
events (Kelly et al., 2021). One example of this is through systemic inflammation, which has been 
found to cause neurodegeneration (Marogianni et al., 2020; Yang et al., 2020). Another example is 
cerebral small vessel disease, often caused by hypertension (Paolini Paoletti et al., 2021), which leads 
to brain tissue atrophy, but also an enhanced risk of NCD on its own. A stroke may thereby exacerbate 
on two different levels; compromising or destroying brain tissue in an already atrophying brain, and 
by introducing a taxing event on an already taxed system. An ischemic stroke leads to inflammatory 
responses both acutely and long-term (Shi et al., 2019; Low et al., 2019). Chronic inflammation will 
aggravate existing diseases but also factors associated with aging (Germolec et al., 2018) and 
cognitive decline (Darweesh et al., 2018; Gabin et al., 2018; Zheng & Xie, 2018). Pre-existing 
diseases (Cipolla et al., 2018) and brain pathology are common in stroke patients, in particular among 
those who develop cognitive impairment (Schellhorn et al., 2021b).  
 
4.2 Brain age and no NCD at baseline and risk of cognitive impairments at 18 and 36-months follow-
up  
Longitudinal LMEs revealed no significant relationship between baseline BAG and NCD at 18- and 
36 months in those with no NCD at baseline. In contrast, survival analysis among the same initially 
non-impaired patients revealed that the patients belonging to the upper BAG quartiles at baseline 
were more likely to develop NCD during the follow-up period, indicating that a younger appearing 
brain represents a protective factor for longitudinal cognitive decline after stroke.  

Among the 129 patients with no NCD at baseline, 24 showed evidence of cognitive decline at 
18 months and 12 at 36 months. Although the survival analysis supported the clinical relevance of 
BAG for long-term prognosis, the lack of predictive value of acute-phase BAG for long-term decline 
suggested by the LMEs may be explained by non-random study attrition at the 36 months assessment 
and low power at the follow-up examinations. Further, while our study design does not allow us to 
test this hypothesis, it is conceivable that pre-stroke BAG is a more reliable predictor for future 
decline than post-stroke BAG. More studies on the use of early-phase BAG as a predictor for future 
risk of cognitive impairments in those with no initial NCD is needed.  

Brain aging is associated with a natural ‘wear and tear’, but is highly influenced by 
environmental factors throughout life. Although linked to genetics (Kaufmann et al., 2019; Cole et 
al., 2017) and birth weight (Vidal-Pineiro et al., 2021), brain structure and related brain age is 
associated with a range of proxies for general and cardiometabolic health (Montine et al., 2019; Beck 
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et al., 2022a; Beck et al., 2022b) and life-style choices such as unhealthy diet (Onaolapo et al., 2019), 
lack of physical exercise (Stillmann et al., 2020; Sanders et al., 2021) and heavy alcohol use (Sullivan 
& Pfefferbaum, 2019). In line with our current findings, a younger appearing brain is not only 
associated with lower risk of cognitive deficits, but also increases resilience to consequences after 
injury, such as a stroke (Montine et al., 2019).  
 
4.3 Preserved cognitive function across the follow-up period and brain changes over time  
Our analysis comparing rate of BAG change with the patients showing preserved cognitive status 
revealed no significant group difference. The increasing BAG over time in the declining group 
indicates a connection between BAG and cognition over time, which emphasizes the link between 
preserved brain structure and cognitive functions. The current study is the first (to the author’s 
knowledge) one of its kind, looking at the link between BAG and the preservation of cognition after 
stroke. Findings from non-stroke cohorts do however exist. One study looking at BAG and NCD in 
non-stroke participants found overall higher BAG in participants exhibiting progressive mild NCD 
compared to those with a preserved mild NCD over time, although this difference was not statistically 
significant (Popescu et al., 2021). Also, a preserved cognitive function in processing speed over the 
course of 2.5 years in functionally intact older adults has been associated with larger corpus callosum 
volume and lower levels of inflammation (Bott et al., 2017). Such superior agers exhibit similar 
memory ability as participants 20-30 years younger and also show less cortical atrophy compared to 
younger controls (Harrison et al., 2012), and less atrophy of the hippocampus and other regions of 
the default mode and salience networks (Sun et al, 2016) compared to age-matched controls. 
Postmortem studies also find less Alzheimer type neurofibrillary tangles in these superior agers 
(Gefen et al., 2015) and they have a reduced risk for cognitive impairment (Dang et al., 2019). This, 
taken together with our findings, signifies the value of using brain age rather than chronological age 
in post stroke NCD prediction.  
 
4.4 Strengths and limitations  
This study has some major strengths, such as utilizing a large dataset that incorporates MRI, clinical 
and neuropsychological examinations over the course of three years following a stroke. The 
longitudinal perspective enables the identification of factors associated with preserved cognition and 
delays in the onset of post stroke cognitive decline. While higher clinical and investigator variability 
related to the multi-center design may reduce statistical power, the naturalistic multi-study design 
increases generalizability.  

This study also has limitations that need consideration. First, although brain age prediction is 
based on clinically available MRI data, the analysis still requires a substantial amount of processing. 
To increase feasibility in a clinical context future work may implement novel approaches allowing 
for accurate estimations based on e.g. deep neural networks and minimally processed MRI data 
(Leonardsen et al., 2021). Next, study attrition at 36 months was considerable, leading to reduced 
statistical power and possible biases. Attrition is a typical challenge in longitudinal studies, especially 
when investigating disease in older participants (Teague et al., 2018). Participants who remained in 
the study throughout the follow-up period were generally healthier and had better cognition than those 
lost to follow-up (supplementary figure 6). Lastly, we primarily included patients with mild to 
moderate strokes, reducing generalizability to patients suffering severe strokes. In comparison to the 
Norwegian Stroke Registry, Nor-COAST patients have previously been found to be representative of 
the majority of the Norwegian stroke population, primarily suffering from mild strokes (Kuvås et al., 
2020). Automated software for segmentation and image reconstruction in brains with more severe 
strokes is challenging due to the lesion itself, but also severe strokes making it more challenging for 
the patient to undergo MRI (Ozzoude et al., 2020). Future work could prevent selection bias through 
utilizing standard clinical protocols rather than requiring a second (study-specific) MRI at baseline.  
 
Conclusion 
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Our analyses revealed that higher BAG was associated with post stroke cognitive impairment across 
the follow-up time, indicating that a younger appearing brain increases resilience and is associated 
with lower risk for post stroke NCD up to 36 months after a stroke. The current study indicate that 
this may also be true for those with no cognitive impairment 3 months after stroke. The findings show 
that BAG is sensitive to cognitive impairment after stroke and may be used in order to predict 
cognitive outcome in stroke patients.  
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Supplementary table 1: Linear mixed model results per analysis 

 ANALYSIS I ANALYSIS II ANALYSIS III 
 Coef. CI p Coef. CI p Coef. CI p 
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NCD 1.37 .33 to 2.42 .010 .56 -1.05 to 2.18 .50 .27 -1.11 to 1.64 .71 
Time -.30 -.79 to .19 .23 -.57 -1.25 to .10 .095 .04 -.77 to .85 .92 
NCD#time .50 -.51 to 1.52 .33 .71 -2.34 to 3.76 .65 -.78 -3.68 to 2.12 .60 
Age -.03 -.12 to .05 .47 -.05 -.16 to .06 .35 -.05 -.17 to .08 .44 

 
 
 
Supplementary table 2: Estimated margins of NCD status and time interactions across analyses  

 ANALYSIS I ANALYSIS II ANALYSIS III 
 Margins CI Margins CI Margins CI 
No-NCD (“preserved” in A-
III) # Baseline 

-.17 -1.37 to 
1.03 

-1.54 -2.91 to -
.16 

-.74 -2.55 to 
1.08 

Any-NCD (“changed” in A-
III) # Baseline 

.65 -.56 to 
1.87 

-2.16 -6.67 to 
2.35 

.59 -3.78 to 
4.95 

No-NCD (“preserved” in A-
III) # 18 mo. 

-.68 -1.81 to 
.44 

-2.14 -3.49 to -
.78 

-.57 -1.96 to 
.82 

Any-NCD (“changed” in A-
III) # 18 mo. 

.64 -.48 to 
1.76 

-2.05 -4.24 to 
.14 

-.02 -2.30 to 
2.25 

No-NCD (“preserved” in A-
III) # 36 mo. 

-1.20 -2.59 to 
.19 

-2.74 -4.39 to -
1.10 

-.40 -1.92 to 
1.12 

Any-NCD (“changed” in A-
III) # 36 mo. 

.63 -.85 to 
2.11 

-1.95 -4.64 to 
.75 

-.64 -2.72 to 
1.44 

 
 
 
Supplementary table 3: List of MRI sequence parameters across hospitals  

Hospita
l 

Sequence Repetiti
on 

Time 

Ech
o 

Tim
e 

Inversi
on 

Time 

Flip 

Ang
le 

Ro
ws 

Colum
ns 

FOV Slice 

Thickn
ess 

Oslo T1_BRAVO_
iso 

8.16 3.18 450 12 256 256 256x2
56 

1 

 
CUBE_FLAI
R 

8000 125.
87 

2092 90 256 256 256x2
56 

1.2 

 
T2-
PROPELLER 

6519 100.
9 

NA 142 512 512 512x5
12 

4 

 
SWAN_3D 37.2 23.2

4 
NA 10 512 512 512x5

12 
2 

 
DWI_TETRA 3500 61.2 NA 90 256 256 256x2

56 
6 

St. Olav T1_MPRAGE
_iso 

2300 2.01 900 9 256 256 256x2
56 

1 
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3D_FLAIR 5000 388 1800 120 256 256 256x2

56 
1 

 
T2_TSE 4200 81 NA 159 448 448 256x2

56 
3 

 
SWI 29 30 NA 15 512 384 512x3

84 
2 

 
DWI 6400 76 NA 90 128 128 128x1

28 
4 

Haukela
nd 

T1_MPRAGE
_iso 

2300 2.03 900 9 256 256 256x2
56 

1 

 
3D_FLAIR 5000 386 1800 120 256 256 256x2

56 
1 

 
T2 4370 73 NA 150 448 448 448x4

48 
3 

 
SWI 29 20 NA 15 512 384 512x3

84 
2 

 
DWI 6400 76 NA 90 130 130 130x1

30 
4 

Bærum T1-3D 7.47 3.44 NA 8 320 320 320x3
20 

1.1 

 
3D_FLAIR 4800 284.

1 
1660 90 288 288 288x2

88 
1.14 

 
T2 7069 100 NA 90 560 560 560x5

60 
4 

 
SWI 51 0 NA 20 672 672 672x6

72 
2 

 
DWI 4773 101 NA 90 224 224 224x2

24 
4 

Ålesund T1_3D 25 4.60
2 

NA 30 320 320 320x3
20 

1 

 
3D_FLAIR 4800 250.

5 
1660 90 432 432 432x4

32 
1.32 

 
T2 5463 100 NA 90 560 560 560x5

60 
5 

 
VEN_BOLD 24.56 34.7 NA 10 512 512 512x5

12 
1 

 
DWI 4623.9 108.

3 
NA 90 176 176 176x1

76 
4 
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Supplementary table 4: Hospital MRI, BAG and NCD-status numbers  

 
 
 
 
 
 
 



 23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 No-NCD Any-NCD ALL (also w/o NCD 
status) 

Stroke hemisphere 
N 97 111 244 
Left hemisphere 36 (37.1%) 59 (53.2%) 116 (47.5%) 

Right 
hemisphere 

60 (61.9%) 47 (32.3%) 120 (49.2%) 

Both 1 (1%) 4 (4.5%) 8 (3.3%) 
Stroke lobe 
N 96 110 243 
Frontal 27 (28.1%) 33 (30%) 70 (28.8%) 
Subcortical 18 (18.8%) 25 (22.7%) 50 (20.6%) 
Parietal 12 (12.5%) 13 (11.8%) 31 (12.8%) 
Cerebellum 16 (16.7%) 6   (5.5%) 27 (11.1%) 
Occipital 10 (10.4%) 10 (9.1%) 23 (9.5%) 
Brainstem 7   (7.3%) 11 (10%) 21 (8.6%) 
Temporal 2   (2.1%) 9   (8.2%) 13 (3.4%) 
Limbic 4   (4.2%) 3   (3.7%) 8   (3.3%) 

Supplementary table 5: Stroke location by NCD status  

 ONLY 1 TIMEPOINT 2 TIMEPOINTS 3 TIMEPOINTS 
N 163 201 72 

Women 82 (50.3%) 116 (57.7%) 42 (58.3%) 
Age  73.2 (12.6) 70.4 (10.8) 71.1 (8.5) 
Education (years) 12.3 (3.9) 12.6 (3.7) 12.5 (3.9) 
GDS (pre-stroke) 1.6 (1.0) 1.3 (.6) 1.2 (.4) 

mRS 2.3 (1.4) 1.9 (1.2) 1.8 (1.0) 
NIHSS  4.3 (4.9) 3.7 (4.9) 4.1 (5.9) 
MoCA  23.6 (5.3) 25.3 (3.8) 26.3 (3.0) 

NCD normal  47 (28.8%) 105 (52.2%) 42 (58.3%) 
NCD mild  29 (17.8%) 61 (30.4%) 19 (26.4%) 
NCD major  45 (27.6%) 29 (14.4%) 10 (13.9%) 
Stroke size (mL)  (N) 15.9 (31.9) 9.4 (26.4) 8.1 (18.6) 

Med temp thick (mm) (N) 2.82 (.16) 2.87 (.17) 2.97 (.11) 

Supplementary table 6: Characteristics of participants with 1, 2 or 3 
timepoints 

Supp. Table 6: (N) = Data missing. GDS = Global deterioration scale. 
mRS = modified Rankin Scale. NIHSS = National Institutes of Health 
Stroke Scale. MoCA = Montreal Cognitive Assessment. NCD = 
Neurocognitive disorder.  
GDS: 1-7. 2-3 = MCI. 4-7 = Dementia.  
mRS: 0-6.  
NIHSS: 0-42. 
MoCA: 0-30. 


