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Abstract 

Aims To provide a comprehensive evaluation of the biomedical effects of circulating 

concentrations of cholesterol-containing lipoproteins and apolipoproteins.  

Methods and Results Nuclear magnetic resonance (NMR) spectroscopy was used to 

measure the cholesterol content of high density (HDL-C), very low-density (VLDL-C), 

intermediate-density (IDL-C), and low-density (LDL-C) lipoprotein fractions; apolipoproteins 

Apo-A1 and Apo-B; as well as total triglycerides (TG), remnant-cholesterol (Rem-chol) and 

total cholesterol (TC). The causal effects of these exposures were assessed against 33 

cardiovascular as well as non-cardiovascular outcomes using two-sample univariable and 

multivariable Mendelian randomization. We observed that most cholesterol containing 

lipoproteins and apolipoproteins affected coronary heart disease (CHD), cIMT, carotid 

plaque, CRP and blood pressure. Through MVMR we showed that many of these exposures 

acted independently of the more commonly measured blood lipids: HDL-C, LDL-C and TG. 

We furthermore found that HF risk was increased by higher concentrations of TG, VLDL-C, 

Rem-Chol and Apo-B, often independently of LDL-C, HDL-C or TG. Finally, a smaller subset 

of these exposures could be robustly mapped to non-CVD traits such as Alzheimer’s 

disease (HDL-C, LDL-C, IDL-C, Apo-B), type 2 diabetes (VLDL-C, IDL-C, LDL-C), and 

inflammatory bowel disease (LDL-C, IDL-C).  

Conclusion The cholesterol content of a wide range of lipoprotein and apolipoproteins 

affected measures of atherosclerosis and CHD, implicating subfractions beyond LDL-C. 

Many of the observed effects acted independently of LDL-C, HDL-C, and TG, supporting the 

potential for additional, non-LDL-C, avenues to disease prevention. 

Keywords: lipoproteins, apolipoproteins, cholesterol, triglycerides, Mendelian 

randomization, human genetics 
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Introduction 

Circulating concentrations of cholesterol-containing lipoproteins have been linked to risk of 

atherosclerotic cardiovascular disease (CVD)1, in particular coronary heart disease (CHD). 

Certain circulating lipids have also been implicated in other late life disorders such as 

dementia2, type 2 diabetes (T2DM)3, and Crohn’s disease (CD)4.  

 

The major blood lipid components, free cholesterol, cholesteryl-esters, and triglycerides are 

transported in the core of membrane bound lipoprotein particles. Large lipoprotein particles 

are triglyceride-rich and encompass chylomicrons derived from dietary fat, and very-low 

density lipoproteins synthesised in the liver. These particles carry a single apolipoprotein B 

(Apo-B) on the surface (Apo-B 48 for chylomicrons and Apo-B 100 otherwise), and are 

progressively depleted of triglycerides, through the action of lipoprotein lipase, becoming 

smaller, denser, and proportionately richer in cholesterol. Lipoproteins, are involved in the 

process of transporting cholesterol to peripheral tissues (endogenous transport), and are 

classified according to density gradient centrifugation as (VLDL) very-low-density-, (IDL) 

intermediate-density- and (LDL) low-density-lipoproteins. Reverse cholesterol transport, from 

tissues to liver, is mediated by high-density lipoprotein (HDL) particles that are synthesised 

and released from the liver in nascent form, and which possess membrane-bound 

apolipoprotein A1 (Apo-A1). 

 

Evidence from non-randomized (i.e., observations) studies, monogenic disorders (FH)5, and 

drug trials of LDL-C lowering drugs6,7 have convincingly shown that higher concentrations of 

LDL-C increase CHD risk. While non-randomized studies have provide similar evidence8,9 of 

a CHD association by HDL-C and total triglycerides (TG, the aggregated across all 

lipoprotein particles) concentrations, the lack of successful drugs targeting these blood lipids 

casts doubt on their potential causal role in CHD. For example, the protective CHD effect of 

the recently marketed ANGPTL3-inhibitor evinacumab was attributed to its LDL-C reducing 

ability, despite evinacumab showing strong decreasing TG and HDL-C increasing effects10.  
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In fact most lipid lower drugs, including statins and PCSK9 inhibitors, affect multiple lipid 

fractions11–13. This highlights an inferential challenge, where an exposure may affect disease 

through multiple independent pathways its (marginal) effect reflects the sum of all pathways 

and is referred to as the “total effect”. To consider the potentially distinct causal effect of 

each pathway, mediation analyses can be used to decompose a total effect in multiple, 

pathway specific, effects; for example into CHD effects attributable to LDL-C, HDL-C and 

TG.   

 

Recently, low-cost, high-throughput nuclear magnetic resonance (NMR) spectroscopy allows 

for accurate, and detailed quantification of cholesterol containing lipoprotein and 

apolipoprotein concentrations14. This makes it feasible to investigate the associations of 

VLDL-C and IDL-C14, as well as remnant cholesterol (Rem-Chol = TC minus HDL-C and 

LDL-C). Cholesterol-containing lipoproteins and apolipoproteins are however involved in the 

same lipid-metabolism. As such it becomes relevant to consider to what extend the various 

cholesterol containing lipoproteins and apolipoproteins “directly effect” disease, or whether 

some of their effects are mediated by the more routinely measured blood lipids: LDL-C, 

HDL-C, and TG. Identification of direct effects (independent of LDL-C, HDL-C, and TG) is 

important because these provide evidence for additional avenues for disease prevention; 

see figure 1 for an illustrative example.  

 

Genome-wide association studies (GWAS)15 of NMR quantified lipoprotein subfractions have 

identified genetic variants that can be used to undertake Mendelian randomisation (MR) 

analyses to help ascertain their causal relevance for common disorders. By leveraging 

genetic variants associated with the exposure(s) of interest, and in the absence of (residual) 

horizontal pleiotropy, MR protects against bias due to confounding16 and reverse causation, 

biases which may befall non-randomized studies. Multivariable MR (MVMR) incorporates 

additional information on variants effect on multiple exposures increasing the plausibility of 
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the no-horizontal pleiotropy assumption, and identifies direct effects of the considered 

exposures17–19.  

 

Here we use genetic associations on NMR-measured metabolites and apply two-sample MR 

to determine the causal relevance of the cholesterol content on different lipoprotein 

subfractions (including Rem-Chol), as well as Apo-A1 and Apo-B, on a range of 

cardiovascular (CVD) outcomes, disease biomarkers, measures of organ or systems 

function as well as late-in-life non-CVD conditions. MVMR is subsequently performed to 

ascertain whether causal effects might be independent of the routinely measured blood 

lipids LDL-C, HDL-C, and TG. While NMR spectroscopy provides a detailed sub-

classification by particle size, clinical practice, and most interventions, are guided by effects 

of the total cholesterol content of distinct lipoprotein, hence in the following we will focus on 

identifying the likely causal effects of these exposures.  

 

Methods 

 

Available NMR data 

To evaluate the consequences of elevated concentration of circulating cholesterol-containing 

lipoproteins and apolipoproteins, we sourced genetic associations from meta-analyses of 

Kettunen15 et al., and UCLEB20 (n=33,029) utilizing NMR-based measurements made using 

the Nightingale platform on VLDL-C, IDL-C, LDL-C, HDL-C, Rem-Chol, TC, TG, Apo-A1, 

and Apo-B. Independent replication data on LDL-C, HDL-C, and TG, were available from the 

Global Lipids genetics Consortium(GLGC21, n=188,577) based on clinical chemistry 

measures. While the UK biobank (UKB) has NMR measurement available for a large sample 

of participants, it is also a major contributor to the outcome data described in the data 

availability section. In the presence of sample overlap, weak-instruments may result anti-

conservative behaviour (due to an inflated type 1 error rate). We therefore used the relatively 
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smaller UCLEB-Kettunen data, which more closely follows the two-sample paradigm, 

guarding against the aforementioned type 1 error inflation22.  

 

Selection of genetic instruments for lipoproteins and apolipoproteins 

Genetic instruments were selected from throughout the genome using a p-value � 10
�� 

threshold (i.e., F-statistic > 24) and a minor allele frequency (MAF) of at least 0.01. Variants 

were clumped to a linkage disequilibrium (LD) R-squared threshold of 0.10 based on a 

random sample of 5,000 unrelated UKB participants of European ancestry.  

 

Following Schmidt et al. 202041, we repeated the Apo-B and Apo-A1 genome-wide MR 

analyses, additionally applying a cis-MR approach, which is often more robust to possible 

horizontal pleiotropy. For cis-MR analysis, variants were selected from within a 50kbp 

window surrounding APOB (ENSG00000084674) and APOA1 (ENSG00000118137). Given 

the lower number of candidate instruments in a cis region (compared to a genome-wide 

MR), we increased our p-value threshold to 10�� (F-statistic > 15).  

 

Statistical analyses  

To determine the interdependence between the various exposures, pairwise Spearman’s 

correlation coefficients were calculated between the genetic effect estimates of cholesterol-

containing lipoproteins and apolipoproteins and compared to the correlation coefficient of 

their actual blood concentrations using an 14,834 individual participant sample contributed 

by UCLEB.  

 

MR analyses were conducted following the two-sample paradigm, ensuring that any bias 

due to (conditional) weak-instruments is attenuated towards the null. Residual LD was 

modelled through generalised least squares (GLS)42,43 implementations of the inverse 

variance weighted (IVW) and MR-Egger estimators. Here the univariable MR methods 

provide total effect estimates, and multivariable MR (MVMR) implementations of IVW and 
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MR-Egger (both implemented as GLS) were used to estimate direct effects, independent 

from combinations of LDL-C, HDL-C and TG. Additionally, addressing the growing interest in 

Apo-B as a fundamental cause of atherosclerosis, we explored a MVMR model with Apo-B 

conditioned on HDL-C and TG, excluding LDL-C due to its high correlation (0.90) with Apo-B 

(Figure S1).  

 

To minimize the potential influence of horizontal pleiotropy we excluded variants with large 

leverage or outlier statistics41,44 and used the Q-statistic to identify possible remaining 

violations44,45. A model selection framework45 was applied to select the most appropriate 

estimator (IVW or MR-Egger) for each specific exposure – outcome relationship, where the 

Egger correction is unbiased even in the extreme setting where 100% of the selected 

variants affect disease through horizontal pleiotropy but has markedly less power.  

 

Multivariable methods, such as MVMR, may falter when considering (conditionally) 

multicollinear variables – whose inclusion leads to numerically unstable models with 

noticeably lower precision46, and can result in conditionally weak-instrument settings47. For 

example, the strong correlation between LDL-C and Apo-B (Figure S1) is anticipated to 

destabilize a model that includes both. While there are MR methods specifically designed to 

address such highly correlated data they assume a complete absence of horizontal 

pleiotropy, which is unlikely to hold47,48 and computationally prohibitive47. We therefore 

decided to identify and downweigh evidence likely affected by multicollinearity. First, we 

included estimates of precision (the multiplicative inverse of the standard error) as well as 

conditional F-statistics, where any substantial change is indicative of model instability and 

weak-instrument settings. Second, erroneous results were identified by gradually extending 

the MVMR models to first consider the influence of each single covariate (genetic 

instruments with LDL-C, HDL-C, or TG only), before fitting a “fully conditional” MVMR model 

including all three blood lipids. When LDL-C, HDL-C, or TG was the exposure of interest, we 

only corrected for the remaining two covariates; for example, LDL-C was only considered 



 

9 

 

conditional on HDL-C and TG. After filtering on significance (at an alpha of 0.05), MR 

estimates potentially affected by instability were removed by focussing on exposure-

outcome relationships with 60% or higher directional concordance (i.e., significant, and 

directionally concordant in 3 out of 5 models). The five models constituted estimates of i) the 

total effect (from the univariable MR models), and direct effects adjusting for ii) LDL-C, iii) 

HDL-C, or iv) TG, and v) all three exposures jointly. When LDL-C, HDL-C, or TG was the 

exposure of interest, adjustments were made for the two remaining exposures only. 

 

Prioritization analyses  

Under the null-hypothesis the p-values of a group of tests follow an uniform distribution 

between zero and one49. Hence to explore the influence of multiplicity, we performed 

“overall” null-hypothesis tests. Here, p-values were grouped by exposure or outcome, and 

the empirical p-value distribution was tested against the uniform distribution expected under 

the null-hypothesis using Kolmogorov-Smirnov “KS”-tests49. Significant KS-tests indicate that 

results do not follow the uniform distribution expected under the null, and therefore were 

unlikely driven by multiple testing. KS-tests were compared against an alpha of 0.05 divided 

by 9 when considering the exposure-specific tests, or by 33 when conducting outcome-

specific testing, and ranked on their deviation from the uniform distribution.  

 

Furthermore, we independently replicated total effect estimates for LDL-C, HDL-C and TG 

using GLGC data where lipid concentration was measured using clinical chemistry. Apo-B 

and Apo-A1 from a genome-wide analysis were analytically replicated using a cis-MR 

approach based on the UCLEB-Kettunen data.  

 

Software 

Analyses were conducted using Python v3.7.4 (for GNU Linux), Pandas v0.25, 

Numpy v1.1550, Seaborn v0.11.5, R v4.0.351 (for GNU Linux), ggforesplot52, and Cytoscape 

v3.8.2 (for GNU Linux). 
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Results were presented as mean difference (MD, for continuous traits) or odds ratio (OR, for 

binary traits) with 95% confidence interval (95%CI) for increasing blood lipid or lipoprotein 

concentration, scaled to one standard deviation (Table S1).  

 

Results 

 

Phenotypic and genetic correlation 

Aside from an inverse correlation of HDL-C and ApoA1 with TG and VLDL-C concentration, 

the remaining exposures were positively correlated (Figure S1). Particularly strong 

correlations were noted between HDL-C and Apo-A1 (correlation coefficient: 0.9); among 

TC, LDL-C, IDL-C and Apo-B (0.8 to 0.9); between TG and VLDL-C (0.8), and TG with Apo-

B, and Rem-Chol (both 0.70). The correlation between the genetic effect estimates followed 

a similar pattern, albeit with a slightly weaker magnitude, and with VLDL-C and Rem-Chol 

predominantly correlated among themselves (Figure S1). Please see the supplementary 

results for a description of the participant characteristics contributing to the sourced NMR 

data. 

 

Univariable MR effects of cholesterol-containing lipoproteins on disease incidence and 

biomarkers 

We used univariable IVW MR or MR-Egger (in the presence of directional horizontal 

pleiotropy) to estimate the total effect of individual cholesterol-containing lipoproteins with 

risk factors and disease endpoints (Figure 2, and Tables S2-14 ). 

 

Higher concentrations of LDL-C, TC, TG, VLDL-C, IDL-C, and Rem-Chol, were associated 

with higher CHD risk (OR range: 1.29 to 1.79 per SD), while higher HDL-C cocentration 

decreased CHD risk; OR 0.75 (95%CI 0.70; 0.80). Heat failure (HF) risk increased with 

higher concentrations of TG, OR 1.12 (95%CI 1.08; 1.17), VLDL-C, 1.10 (95%CI 1.06; 1.15) 
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and Rem-Chol, OR 1.11 (95%CI 1.06; 1.16), additionally atrial fibrillation (AF) risk increased 

with TG OR 1.16 (95%CI 1.06; 1.27). The risk of any stroke and ischemic stroke increased 

with higher concentrations of TC, IDL-C, and Rem-Chol. Higher HDL-C was associated with 

lower risk of any stroke (Figure 2). Elevated cholesterol-containing lipoproteins were 

associated with imaging measures of carotid artery atherosclerosis: LDL-C, TC, IDL-C, and 

Rem-Chol increased cIMT as well as carotid plaque, with the latter trait also affected by 

higher TG and VLDL-C (Figure 2).   

 

Higher concentration of VLDL-C was associated with increased T2DM risk (OR 1.04 95%CI 

1.01; 1.08), while higher IDL-C decreased the risk of T2DM (Figure 2). A one SD higher 

LDL-C, IDL-C, and Rem-Chol concentration was associated with lower c-reactive protein 

(CRP) concentration, while higher HDL-C, TG, and VLDL-C were associated with higher 

CRP concentration. Systolic and/or diastolic blood pressure (SBP, DBP) increased with 

higher concentrations of LDL-C, TG, TC, VLDL-C, IDL-C, and Rem-Chol, while higher 

concentrations of HDL-C decreased SBP and DBP (MD range in mmHg: -0.57 to 1.70; 

Figure 2).  

 

Higher LDL-C concentration was associated with increased the risk of inflammatory bowel 

disease (IBD, OR 1.15 95%CI 1.07; 1.22), ulcerative colitis (UC, OR 1.37 95%CI 1.15; 1.63), 

and CD (OR 1.10 95%CI 1.00; 1.20). Higher IDL-C and TC had a similar risk increasing 

effect on IBD and UC. An SD higher HDL-C decreased Alzheimer’s disease risk (AD, OR 

0.98, 95%CI 0.97; 0.99), while AD risk increased with higher concentrations of VLDL-C (OR 

1.02, 95%CI 1.00; 1.03) and ILD-C (OR 1.06, 95%CI 1.04; 1.08). Higher LDL-C 

concentrations decreased risk of lung cancer (OR 0.76, 95%CI 0.69; 0.84) and melanoma 

(OR 0.92, 95%CI 0.86; 0.99), with the latter also decreased through higher IDL-C. The risk 

of incident rectal cancer and/or colon cancer were increased by higher concentrations of 

LDL-C, VLDL-C, IDL-C and Rem-Chol (Figure 2). Finally, we did not observe strong 

lipoprotein associations with kidney traits, or the smaller stroke sub-types such as 



 

12 

 

cardioembolic stroke. Please see the supplementary results for independent replication of 

the univariable “total effects” for LDL-C, HDL-C, and TG concentration.  

 

Univariable MR of Apo-B and Apo-A1 concentration 

Higher Apo-B concentration was positively associated with the risk of CHD, (ischemic) 

stroke, CD, AD, and furthermore increased cIMT, carotid plaque and SBP. Conversely, 

increased Apo-B concentration was associated with lower HbA1c concentration as well as 

with pancreatic cancer and arthritis risk (Figure 2). Higher ApoA-1 concentration decreases 

the risk of CHD, T2DM, carotid plaque, and DBP, while increasing CRP concentrations 

(Figure 2). Please see the supplementary results for a technical replication using cis 

instruments for Apo-A1 and Apo-B. 

 

Multivariable MR to identify effects independent of LDL-C, HDL-C and TG  

Leveraging NMR data, we applied multivariable MR (MVMR) to investigate whether the 

above-described causal effect acted independent of the more commonly measured lipids 

LDL-C, HDL-C, and TG. To do so, for each cholesterol-containing lipoprotein subfraction 

considered, we derived three MVMR models conditioning on LDL-C, HDL-C or TG, and a 

fourth model jointly conditioning on all three (Figure S2-S6).  

 

Prioritization on significance and directional concordance (see Methods, Figure 3) resulted in 

the following frequency-ranked list of outcomes with strong support for an independent 

causal role of cholesterol-containing lipoproteins or/and apolipoproteins: CHD, CRP, SBP, 

carotid plaque, cIMT, HF, AD, T2DM, HbA1c, IBD, lung cancer, estimated glomerular 

filtration rate (eGFR), DBP, rectal cancer, CD, UC, glucose concentration, pancreatic 

cancer, melanoma, primary biliary cirrhosis (PBL) and large artery stroke. Specifically, we 

observed that higher LDL-C, HDL-C, and TG increased CHD risk independently of one 

another (Figure 4): OR 1.43 (95%CI 1.34; 1.52) per SD LDL-C, OR 0.76 (95%CI 0.70; 0.80) 
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per HDL-C, and OR 1.15 (95%CI 1.04; 1.28) per SD TG. We also observed effects 

independent of LDL-C, HDL-C and TG for TC, VLDL-C, IDL-C, Rem-Chol, Apo-B, and Apo-

A1. Similarly, CRP was independently affected by LDL-C -0.24 mg/L (95%CI -0.29; -0.19), 

HDL-C 0.20 mg/L (95%CI 0.14; 0.26) and TG 0.32 mg/L (95%CI 0.25; 0.38), with VLDL-C 

and Apo-B being associated with higher, and IDL-C and Apo-A1 with lower CRP 

concentration (Figure 4, Tables S2-10). We also found independent effects for LDL-C, IDL-

C, VLDL-C, Rem-Chol, TC, and Apo-B on carotid plaque and cIMT. Furthermore, we found 

evidence to support independent HF risk increasing effects of VLDL-C OR 1.10 (95%CI 

1.02; 1.19), Rem-Chol, Apo-B and TG OR 1.06 (95%CI 1.00; 1.12) (Figure 3 and 5). SBP 

decreased with higher concentrations of LDL-C, HDL-C, TG, VLDL-C, IDL-C and Rem-Chol 

(Figures 3 and 5), and AD risk was associated with higher concentration of LDL-C, IDL-C, 

and Apo-B, while higher HDL-C decreased AD risk: OR 0.97 (95%CI 0.96; 0.98). We also 

found evidence to support an independent role for VLDL-C increasing T2DM risk OR 1.11 

(95%CI 1.04; 1.20), while higher LDL-C (OR 0.90 95%CI 0.88; 0.93) and IDL-C (OR 0.85 

95%CI 0.74; 0.97) decreased T2DM risk; Figure 3 and Tables S2-10.  

 

Further prioritization: assessing the overall null-hypothesis   

Under the null-hypothesis the p-values of a group of tests follow a standard continuous 

uniform distribution between zero and one49. Hence to assess to what extend the described 

results were driven by multiple testing we use Kolmogorov-Smirnov tests (KS-tests) to 

compare empirical p-values distributions against a uniform distribution (Figure 6). 

Additionally, KS-tests naturally rank results by their joint evidence against a null-hypothesis 

of no-effect, providing a further prioritization metric.  

 

Grouping p-values by exposure indicated that none of our results could readily be explained 

by multiple testing alone and ranked IDL-C as the relatively most influential cholesterol-

containing lipoprotein, with HDL-C providing relatively less evidence against the overall null-

hypothesis. Aggregating results by outcome resulted in similar ranking obtained by simply 
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counting the number of exposures affecting a single trait (Figure 3; i.e., the indegree of a 

digraph), indicating cholesterol-containing lipoprotein and apolipoproteins particularly affect 

CHD, CRP, Carotid plaque, cIMT, SBP, HF, T2DM, and AD (Figure 6). Additionally, this 

analysis revealed there was little evidence to support involvement of cholesterol-containing 

lipoprotein and apolipoprotein concentrations with CKD, ischemic and small vessel stroke, 

PBL, and Arthritis.  

 

Discussion 

We used Mendelian randomization (MR) to catalogue, and prioritize, the biomedical 

consequences of elevated concentrations of cholesterol-containing lipoproteins beyond LDL-

C, HDL-C, and total triglycerides (TG), including remnant cholesterol, IDL-C and VLDL-C, as 

well as apolipoproteins A1 and B. Major findings include that CHD is affected by all of the 

major cholesterol-rich lipoproteins including HDL-C, IDL-C, VLDL-C, Rem-Chol as well as 

apolipoproteins A1 and B, and TG. Similar ubiquitous effects were observed for cIMT, and 

carotid plaque, suggesting the observed CHD effects are partially mediated through 

atherosclerosis. Additionally, we found strong evidence linking higher concentrations of TG, 

VLDL-C, Apo-B, and Rem-Chol to increased HF risk. Cholesterol-containing lipoproteins, 

apolipoproteins, as well triglycerides also affected non-CVD traits such as T2DM, CRP, IBD, 

and AD. Multivariable MR was used to confirm many of these associations act independently 

of the three widely measured lipid subfractions: LDL-C, HDL-C, and TG. 

 

There has been considerable debate on higher HDL-C potentially reducing CHD risk. With 

an imprecise OR estimate of 0.93 per SD (95% CI 0·68;1·26) by Voight et al53 often cited as 

definitively proving that HDL-C does not affect CHD risk. We note however that our estimate 

OR 0.75 per SD (95%CI 0.70; 0.80) falls almost completely within the 95%CI provided by 

Voight et al. Hence our results, suggesting a protective CHD effect of higher HDL-C 

concentration, are fully supported by previous findings. The major difference here is the 

added precision offered by the available larger sample size data (12K CHD cases by Voight 
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et al. vs 60K in the current paper). More recently MVMR conditioning on HDL-C, Apo-A1 and 

Apo-B, failed to show an independent HDL-C effect on CHD, with suggestions that the 

univariable protective CHD effect of HDL-C (OR 0.80, 95%CI 0.77; 0.89) was attributable to 

Apo-B54. Based on the understanding of lipid metabolism however, it seems unlikely that 

HDL-C asserts its CHD effect through Apo-B. Similarly, the absence of a strong correlation 

between Apo-B and HDL-C does not suggest there is any clear potential for horizontal 

pleiotropy that might be explained by Apo-B (Figure S1). Instead, the lack of significant HDL-

C after conditioning on Apo-B and Apo-A1, likely reflects model instability due to including 

both HDL-C and Apo-A1. Using independent data and a stepwise analysis, we confirmed the 

presence of such model instability, observing a decrease in precision when including HDL-C 

and Apo-A1, and a flipped effect direction erroneously suggesting that higher Apo-A1 

(conditional on HDL-C) increases CHD risk. Through the previously described heuristic 

approach, we discounted such clearly problematic models, and looked for consistency in a 

majority vote of at least 3 significant and directionally concordant models (Figure 4), 

resulting in the above mentioned protective effect of HDL-C on CHD.  

 

Our analysis supports the proposition by Ference, Kastelijn and Catapano55 that Apo-B 

might play a central role in lipid lowering therapies intended to decrease CHD risk. Apo-B 

(specifically Apo-B 100) is carried by VLDL, IDL and LDL particles and as such provides a 

summary measure of these lipoproteins. Our finding that Apo-B, VLDL-C, IDL-C, LDL-C and 

Rem-Chol (a summary of IDL-C and VLDL-C) all increase CHD risk suggests that possibly 

the entire endogenous pathway is relevant for CHD. This is further supported by our 

observation that higher concentrations of these same subfractions increase carotid plaque 

risk and cIMT. Given that Apo-B is carried on top of the major endogenous lipoproteins and 

does not naturally occur in isolation off these lipoporteins56, the effects of Apo-B conditional 

on LDL-C may be less relevant. We therefore repeated our MVMR analyses conditioning 

exclusively on Apo-B, TG and HDL-C (Table S13), confirming independent CHD effects of 

both Apo-B and HDL-C: OR 1.81 (95%CI 1.64; 1.99), OR 0.80 (95%CI 0.74; 0.86). 



 

16 

 

 

Rem-Chol provides a summary measure of the cholesterol content on IDL and VLDL 

particles which have been proposed as additional atherogenic lipid fractions57. We now 

provide empirical proof showing that conditional on LDL-C (as well as HDL-C and TG) Rem-

Chol, and it’s constituents VLDL-C and IDL-C independently increases the risk of CHD, HF, 

ischemic strokes and cIMT and carotid plaque. These findings suggest that that IDL-C and 

VLDL-C may provide additional, LDL-C independent, therapeutic avenues.  

 

In general, we showed that many of the cholesterol-containing lipoproteins acted 

independently of TG, suggesting that these effects are at least partially cholesterol 

mediated. By specifically conditioning on TG, that is the total triglyceride content aggregated 

across all lipid particles, we attempted to account for all sources of triglyceride at the cost of 

implicitly assuming a shared effect direction irrespective of the lipoprotein triglyceride carrier. 

This may not always hold, and further studies could consider TG effects per subfraction. 

Nevertheless, the joint consideration of TG provides valuable insights, finding that 

conditional on LDL-C and HDL-C higher concentrations of TG increase the risk of CHD, HF, 

PBL, CD, as well as increasing CRP concentration, SBP, carotid plaque and cIMT (Figure 

3). Importantly, the observation that higher TG concentration increased CHD risk 

independently of LDL-C suggests that the ANGPTL3-inhibitor evinacumab may decrease 

CHD risk jointly through lowering TG and LDL-C, instead of exclusively through LDL-C58.  

 

While the considered cholesterol-containing lipoprotein and apolipoproteins had a 

predominant cardiac and atherosclerotic fingerprint, we found that specific subfractions 

affected non-CVD diseases. For example, higher LDL-C concentrations decreased T2DM 

risk, and CRP concentrations, while increasing risk of AD, UC, IBD, and SBP. IDL-C showed 

comparable effect, also affecting SBP, CRPAD, T2DM, and IBD in the same direction. 

Higher VLDL-C concentration increased CRP, and T2DM risk. HDL-C (and to a lesser extent 

Apo-A1) typically acted in opposite direction of the endogenous pathway blood lipids, with 
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higher concentrations protecting against CHD, AD, decreasing SBP and DBP, and 

increasing CRP concentrations as well as T2DM risk. We observed some suggestion that 

LDL-C, IDL-C and VLDL-C might be related to cancer incidence, with for example both LDL-

C and VLDL-C increasing rectal cancer risk (OR 1.21 95%CI 1.08; 1.35 for LDL-C and OR 

1.34, 95%CI 1.15; 1.56 for VLDL-C); Figures 2-3.   

 

Randomized controlled trials of statins, which primarily affect LDL-C, are known to reduce 

cIMT59. Our results now suggest this favourable effect might be (partially) mediated through 

lipid fraction perturbation, and possibly shared by other lipid related drug targets. Recently 

we showed that lower plasma concentrations of CETP and PCSK9, both lipid related drug 

targets, are associated with decreases of cIMT, supporting the lipid mediation proposition11. 

The observed CRP decreasing effect of higher LDL-C seems at odds with previous finding 

that statins (targeting HMGCR) and ezetimibe (targeting NCP1L1) reduce LDL-C as well as 

CRP60,61. If instead we consider the entire endogenous pathway, we find that higher 

concentration of Apo-B and VLDL-C increase CRP levels (Figure 4) matching the reported 

drug compound effect direction, where statins and to a lesser extent, ezetimibe are known to 

decrease Apo-B and VLDL-C. We and others11,62–65 have previously reported that the lipid 

drug targets HMGCR (statins), NCP1L1 (for ezetimibe) and PCSK9 increase T2DM risk. In 

the current study we found robust evidence that is likely mediated by changes in LDL-C, and 

IDL-C, where IDL-C acts independently of LDL-C.  

 

This study has employed MR to determine two types of effects 1) the total effect which 

consists of a direct and indirect effect (where both, or either could be zero), and 2) the direct 

effect accounting for any potential mediation by LDL-C, HDL-C, and TG (Figure 1). Both the 

total and direct effects are valid causal effects, and the absence of a direct effect should not 

be interpreted as disqualifying any observed total effect, or vice versa. We specifically 

utilized MVMR to explore to what extent the observed effect acted independently from the 

thoroughly studied exposures LDL-C, TG, or HDL-C. It is important to highlight that our 
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genetics instruments were selected on F-statistic > 24 which protects against weak 

instrument bias. Because MVMR performs a conditional analysis it becomes relevant to also 

consider conditional F-statistics (Supplementary Table 15), which suggest that MVMR 

models jointly accounting for LDL-C, HDL-C, and TG, were especially vulnerable conditional 

weak-instruments. Our analysis was designed to ensure that any weak-instrument bias 

would act towards a null effect, resulting in conservative findings. Specifically, analyses were 

conducted in a two-sample setting, and MVMR-Egger was employed to protect against any 

potential horizontal pleiotropy not captured by MVMR. While this minimizes the false-positive 

rate, this also implies (even more than usual) that we should not overinterpret non-significant 

findings as proof of a null-effect66. 

 

Given the high phenotypic and genetic correlation (Figure S1) among the considered 

exposures, and the multiple nested models (one total effect and four multivariable direct 

effect models), straightforward control of the family-wise error or of the false discovery rate49 

would be overly conservative and likely greatly inflate type 2 error rates. Instead, we 

addressed multiple testing in several complementary ways. First, we leveraged independent 

validation data for LDL-C, HDL-C, and TG (from GLGC), showing general concordance. 

Furthermore, the apolipoprotein results were validated using cis acting instruments. While 

the Apo-A1 cis-MR results were limited by the availability of only 2 instruments, the Apo-B 

cis-MR generally agreed with the genome-wide MR results for Apo-B, supporting the 

robustness of our analytical approach - combining model selection techniques with removal 

of variant with relatively larger outlier or leverage statics. KS-test were used to assess 

overall null-hypothesis that results were false-positive, which we could strongly reject (Figure 

6). Furthermore, when considering multivariable results, we discounted directionally 

discordance results, more likely to be false positives.  

 

Due to the considerable correlation between lipid subfractions, we focussed on total 

cholesterol-content of each lipoprotein fraction instead of subdivisions by particle sizes. 
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Nevertheless, considerations of particle size are important when interpreting the results. For 

example, it is likely that the atherogenic VLDL-C affects are predominantly driven by the 

smaller VLDL-C particles that may penetrate endothelial tissue55. The CHD effect of HDL-C 

may similarly be size specific, with studies suggesting the large HDL-C particles are 

particularly protective against CHD occurrence67,68.  

 

In conclusion, we have catalogued and prioritized the phenotypic consequences of 

cholesterol-containing lipoprotein and apolipoprotein blood concentrations, finding that many 

of these exposures act independently of the commonly measured blood lipids: LDL-C, HDL-

C and TG. We found evidence that CHD and related traits, such as cIMT, carotid plaque, 

CRP, and blood pressure, are causally affected by most lipid fractions typically including 

LDL-C, HDL-C, VLDL-C, IDL-C, TG, and apolipoproteins B and A1. Furthermore, we found 

that higher concentrations of TG, VLDL-C, Rem-Chol and Apo-B increased HF risk. Our 

analyses additionally identified certain non-CVD traits that are more exclusively affected by 

smaller subset of exposures, such as Alzheimer’s disease (HDL-C, LDL-C, IDL-C, Apo-B), 

IBD (LDL-C, IDL-C), and T2DM (VLDL-C, IDL-C and LDL-C).  

 

Author’s contributions 

AFS and ADH, CF contributed to the idea and design of the study. AFS performed the 

analyses. AFS drafted the manuscript. All authors provided critical input on the analyses 

and the drafted manuscript.  

 

Conflict of interest statements  

AFS has received Servier funding for unrelated work. DAL has received support from Roche 

Diagnostics and Medtronic Ltd for research unrelated to that presented here. TRG receives 

funding from Biogen for unrelated research. DAL Has received support from Roche 

Diagnostics and Medtronic Ltd for research unrelated to this paper. The views expressed in 



 

20 

 

this article are the personal views of MGM and do not represent the views of her current 

employer, the European Medicines Agency. 

 

Funding and role of funding sources 

AFS is supported by British Heart Foundation (BHF) grant PG/18/5033837 and the UCL 

BHF Research Accelerator AA/18/6/34223. CF and AFS received additional support from 

the National Institute for Health Research University College London Hospitals Biomedical 

Research Centre. MGM is supported by a BHF Fellowship FS/17/70/33482. ADH and DAL 

(NF-0616-10102) are an NIHR Senior Investigators. The UCLEB Consortium is supported by 

a British Heart Foundation Programme Grant (RG/10/12/28456). DAL’s contribution to this 

research is supported by the Bristol BHD Accelerator Award (AA/18/7/34219), her BHF 

Chair (CH/F/20/90003) and the UK Medical Research Council (MC_UU_00011/1-6). MK is 

supported by the UK Medical Research Council (MRC MR/R024227/1), National Institute on 

Aging (NIA), US (R01AG056477), and the Wellcome Trust (221854/Z/20/Z). PC is supported 

by the Thailand Research Fund (MRG6280088). TRG receives funding from the UK Medical 

Research Council as part of the MRC Integrative Epidemiology Unit (MC_UU_00011/4). 

ADH receives support from the UK Medical Research (MC_UU_12019/1). NF received 

funding from the National Health Institutes (MD012765, DK117445). CG has reveived 

funding from the European Union’s Horizon 2020 research and innovation programme under 

the Marie Skłodowska-Curie grant agreement No 754490 – MINDED project. 

 

Guarantor  

Amand F Schmidt performed the here presented analyses, had full access to all the data in 

the study and takes responsibility for the integrity of the data and the accuracy of the data 

analysis.  

 

Acknowledgement:  



 

21 

 

This research has been conducted using the UK Biobank Resource under Application 

Number 12113. The authors are grateful to UK Biobank participants. UK Biobank was 

established by the Wellcome Trust medical charity, Medical Research Council, Department 

of Health, Scottish Government, and the Northwest Regional Development Agency. It has 

also had funding from the Welsh Assembly Government and the British Heart Foundation. 

 

Prior postings and presentations 

A pre-print version of this manuscript has been deposited at XXX.  

 

Data availability  

Summary genetic effect estimates for outcomes were extracted from publicly accessible 

GWAS on glucose and HbA1c, and C-reactive protein (all from the UKB (nealelab.is/uk-
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Figure legends 

 

Figure 1 Illustrating the difference between total, direct, and indirect effects, using a 

hypothetical diagram of intermediate-density lipoprotein cholesterol, low-density lipoprotein 

cholesterol and coronary heart disease. 

 

N.b. IDL-C: intermediate-density lipoprotein cholesterol, LDL-C: low-density lipoprotein 

cholesterol, CHD: coronary heart disease, and common causes (confounders) represented 

by U.  

 

Figure 2 Mendelian randomization estimates of the total effects of a one SD increase in 

cholesterol-containing lipoprotein and apolipoprotein concentrations.  

 

N.b. Cells are coloured by effect direction multiplied by -log10(p-value), with the point 

estimate (the mean difference or log odds ratio) provided for results with p-values smaller 

than 0.05. The p-values were truncated at 10-16 for display purposes. NMR analyses are 

based on a 33,029 subject meta-analysis of Kettunen15 and UCLEB20. LDL-C: low-density 

lipoprotein cholesterol, HDL-C: high-density lipoprotein cholesterol, TG: triglycerides, VLDL-

C: very-low-density lipoprotein cholesterol, IDL-C: intermediate-density lipoprotein 

cholesterol, Rem-chol: remnant-cholesterol, TC: total cholesterol, Apo-B: apolipoprotein-B, 

Apo-A1: apoliprotein-A1. CHD: coronary heart disease, HF: heart failure, AF: atrial 

fibrillation, T2DM: type 2 diabetes mellitus, CKD: chronic kidney disease, IBD: inflammatory 

bowel disease, CD: Crohn’s disease, UC: ulcerative colitis, ALS: Amyotrofe Laterale 

Sclerose, MS: multiple sclerosis, PBL: primary biliary liver cirrhosis, DBP and SBP: diastolic 

and systolic blood pressure, CRP: c-reactive protein, HbA1c: glycated haemoglobin; BUN: 

blood urea nitrogen, eGFR: estimated glomerular filtration rate, cIMT: carotid artery intima 

media thickness.  
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Figure 3 A causal network of phenotypic consequences of higher cholesterol-containing 

lipoprotein and apolipoprotein blood concentration.  

 

N.b. Arcs belonging to the endogenous pathway (VLDL-C, IDL-C, LDL-C, and Apo-B) were 

coloured yellow, arcs for HDL-C and Apo-A1, belonging to the reverse cholesterol transport 

pathway were depicted in blue, TC and TG arcs were represented as black and green, 

respectively. The network represents highly supported pathways, where the MR effect was 

significant at an alpha of 0.05 and showed directionally concordant results in at least three 

of out five potential models (four for LDL-C, HDL-C, and TG): total effects, the direct effects 

conditional on LDL-C, on HDL-C, on TG, or all three blood lipids.  

 

Figure 4 Mendelian randomization effect estimates of a standard deviation change in 

cholesterol-containing lipoprotein and apolipoprotein concentration on coronary heart 

disease (CHD), c-reactive protein (CRP), carotid intima media thickness (cIMT), and carotid 

plaque. 

 

N.b. Prioritized results reflect associations depicted in the causal network of Figure 3, where 

3 out of 5 (or 4 for LDL-C, HDL-C, and TG) estimates were significant at an alpha of 0.05 

and directionally concordant. Total: the total lipid effect, Conditional effects either, represent 

the blood lipid effect of LDL-C, HDL-C or TG singularly, or off all three blood lipids in a single 

multivariable MR (fully adjusted) model. Fully adjusted models for LDL-C, HDL-C, or TG 

exposures only conditioned on two of the three blood lipids (e.g., the fully conditional model 

for LDL-C exposure only conditioned on HDL-C and TG). Estimates are provided as odds 

ratio (OR) or mean difference (MD) with 95% confidence intervals (95%CI).  

 



 

33 

 

Figure 5 Mendelian randomization effect estimates of a standard deviation change in 

cholesterol-containing lipoprotein and apolipoprotein concentration on heart failure (HF), 

systolic blood pressure (SBP), Alzheimer’s disease (AD), and type 2 diabetes (T2DM).   

 

N.b. Prioritized results reflect associations depicted in the causal network of Figure 3, where 

3 out of 5 (or 4 for LDL-C, HDL-C, and TG) estimates were significant at an alpha of 0.05 

and directionally concordant. Total: the total lipid effect, Conditional effects either, represent 

the blood lipid effect of LDL-C, HDL-C or TG singularly, or off all three blood lipids in a single 

multivariable MR (fully adjusted) model. Fully adjusted models for LDL-C, HDL-C, or TG 

exposures only conditioned on two of the three blood lipids (e.g., the fully conditional model 

for LDL-C exposure only conditioned on HDL-C and TG). Estimates are provided as odds 

ratio (OR) or mean difference (MD) with 95% confidence intervals (95%CI).  

 

Figure 6 Kolmogorov-Smirnov overall-null hypothesis tests.  

 

N.b. Kolmogorov-Smirnov goodness-off-fit tests were used to compare empirical p-value 

distribution against the continuous uniform p-value distribution expected when the strict null-

hypothesis holds. The top panel, grouped empirical p-values by exposure and explored 

whether their distribution agreed with the expected p-value distribution when all test would 

be false-positive. The bottom panel, grouped empirical p-values by outcome and explored 

whether their distribution agreed with the expected p-value distribution when all test would 

be false-positive. The horizontal lines represent the multiplicity corrected p-value threshold.  
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