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27 Abstract

28

29 Background: Physical exercise may support brain health and cognition over the course of typical aging. The 

30 goal of this nonrandomized clinical trial was to examine the effect of an acute bout of aerobic exercise on 

31 brain blood flow and blood neurotrophic factors associated with exercise response and brain function in older 

32 adults with and without possession of the APOE4 allele, a genetic risk factor for developing Alzheimer's. We 

33 hypothesized that older adult APOE4 carriers would have lower cerebral blood flow regulation and would 

34 demonstrate blunted neurotrophic response to exercise compared to noncarriers.

35 Methods: Sixty-two older adults (73±5 years old, 41 female) consented to this prospectively enrolling clinical 

36 trial, utilizing a single arm, single visit, experimental design, with post-hoc assessment of difference in 

37 outcomes based on APOE4 carriership. All participants completed a single 15-minute bout of moderate-

38 intensity aerobic exercise. The primary outcome measure was change in cortical gray matter cerebral blood 

39 flow in cortical gray matter measured by magnetic resonance imaging (MRI) arterial spin labeling (ASL), 

40 defined as the total perfusion (area under the curve, AUC) following exercise. Secondary outcomes were 

41 changes in blood neurotrophin concentrations of insulin-like growth factor-1 (IGF-1), vascular endothelial 

42 growth factor (VEGF), and brain derived neurotrophic factor (BDNF). 

43 Results: Genotyping failed in one individual (n=23 APOE4 carriers and n=38 APOE4 non-carriers) and two 

44 participants could not complete primary outcome testing. Cerebral blood flow AUC increased immediately 

45 following exercise, regardless of APOE4 carrier status. In an exploratory regional analyses, we found that 

46 cerebral blood flow increased in hippocampal brain regions, while showing no change in cerebellar brain 

47 regions across both groups. Among high interindividual variability, there were no significant changes in any of 

48 the 3 neurotrophic factors for either group immediately following exercise. 

49 Conclusions: Our findings show that both APOE4 carriers and non-carriers show similar effects of exercise-

50 induced increases in cerebral blood flow and neurotrophic response to acute aerobic exercise. Our results 

51 provide further evidence that acute exercise-induced increases in cerebral blood flow may be regional 

52 specific, and that exercise-induced neurotrophin release may show a differential effect in the aging 

53 cardiovascular system. Results from this study build upon previous research in younger adults by providing 
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54 an initial characterization of the acute brain blood flow and neurotrophin responses to a bout of exercise in 

55 older adults with and without this known risk allele for cardiovascular disease and Alzheimer’s disease.

56

57 Trials registration: Dementia Risk and Dynamic Response to Exercise (DYNAMIC); Identifier: 

58 NCT04009629

59

60 Funding: This study was funded by grants from the national institutes of health R21 AG061548, P30 

61 AG072973 and P30 AG035982, and the Leo and Anne Albert Charitable Trust. The Hoglund Biomedical 

62 Imaging Center is supported by a generous gift from Forrest and Sally Hoglund and funding from the National 

63 Institutes of Health including S10 RR29577, and UL1 TR002366. 
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64 Introduction

65 Many diseases of the brain and cardiovascular system share common risk factors such as hypertension, 

66 hypercholesterolemia, and genetics.(1-4) High comorbidity of cognitive decline and cardiovascular disease 

67 has focused much research on the role of cardio- and cerebrovascular health in reducing dementia risk.(5, 6) 

68 Aerobic exercise – characterized as sustained, rhythmic physical activity using large muscle groups -- is a 

69 well-known cardiovascular intervention(7) that shows positive effects on brain health,(8), including improved 

70 cognitive outcomes,(9-13) greater brain volume and cortical thickness,(14-16) and lower risk of dementia.(17, 

71 18) Randomized control trials (RCTs) involving aerobic exercise have consistently demonstrated benefits to 

72 cognition and structural brain integrity, including increased volume of the whole brain and the hippocampus, a 

73 critical neural substrate for memory formation and retention that is commonly compromised with aging.(9, 12, 

74 19-21) Increased cerebral blood flow (CBF) and exposure to blood-based trophic and hormonal factors may 

75 be key factors amongst many potential mechanisms by which aerobic exercise exerts neuroprotective and 

76 therapeutic effects on brain health.  While the positive effects of aerobic exercise on brain health are well 

77 established, the acute response of CBF to a bout of aerobic exercise by older adults remains insufficiently 

78 characterized.(22-25) This is important as any benefits of exercise will necessarily result from the cumulative 

79 effects of brief acute bouts of exercise.

80 High genetic risk for Alzheimer’s disease (AD) may influence the relationship between cardiovascular 

81 and brain health. In rodents, circulating apolipoprotein is an integral to maintaining cerebrovascular integrity 

82 and mediates exercise benefits on the cerebrovasculature.(26, 27)  In humans, Apolipoprotein E (APOE) is 

83 highly expressed by astrocytes and microglia in the central nervous system, and its effects in the brain are 

84 isoform-dependent. Individuals wo carry the high AD-risk APOE4 isoform, a strong genetic risk factor for AD, 

85 shows weaker anti-inflammatory properties than APOE3.(28) This lower capacity to suppress brain 

86 neuroinflammatory responses has been postulated to result in poor vascular function in older adults 

87 carriers,(29) and likely explains the higher risk for both dementia and cardiovascular disease.(2-4) Prior 

88 studies have also suggested that APOE4 is associated with atypical neurovascular coupling mechanisms, a 

89 leaky blood–brain barrier, angiopathy, and disrupted nutrient transport.(30) APOE4 carriers who are 

90 cognitively normal generally have lower resting CBF, especially in regions associated with Alzheimer’s 

91 disease (AD).(31, 32) 
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92 There are compelling reasons to consider CBF as a key mediator of brain health. Reduced CBF and 

93 cerebrovascular dysfunction has been found to precede neurodegeneration.(32-38) Reasons for the decline 

94 in cerebral blood flow over the course of aging and age-related disease are unclear but may include 

95 diminished heart function,(39) atherosclerosis risk,(3, 40) and declining vessel morphology and health.(27, 

96 41-43) Given that brain tissue is highly dependent on blood supply, requiring up to 25% of total resting 

97 oxygen consumption, the damaging effects of reduced blood supply to brain neural tissue(44) can 

98 accumulate over time. Impairments in cerebral blood flow can promote ischemic microlesions,(45) and alter 

99 blood-brain barrier trafficking of beta-amyloid,(46) slowing beta-amyloid clearance, and promoting its 

100 accumulation in the brain. 

101 To further characterize potential intermediary mechanisms between exercise and brain health we 

102 designed the present study to assess the immediate CBF response to a single bout of acute exercise. 

103 Assessing acute exercise has the benefit of providing information on the immediate changes are related to 

104 component parts of a habitual exercise program. Our driving premise was that CBF would be a biomarker of 

105 cerebrovascular change. Specifically, we hypothesized that APOE4 carriers would have lower CBF response 

106 immediately following exercise. As ancillary outcomes we also assessed vascular endothelial growth factor 

107 (VEGF), insulin-like growth factor 1 (IGF1), and brain derived neurotrophic factor (BDNF), since they have 

108 been postulated as possible neuroprotective and therapeutic mediators of exercise effects on the brain.(21, 

109 47)

110

111 Methods

112

113 The study was designed as a single arm, single visit, experimental study, with post-hoc assessment of 

114 difference based on APOE4 carriership. No randomization was used in this study. The protocol was approved 

115 by the University of Kansas Medical Center Institutional Review Board. All participants provided written 

116 informed consent consistent with the Declaration of Helsinki. This study was registered as a clinical trial 

117 (ClinicalTrials.gov, NCT04009629) following National Institutes of Health guidance.

118 Sixty-two English speaking adults, aged 65-85, were enrolled in the study between October 25, 2019 

119 and October 28, 2021. To our knowledge, there have been no peer-reviewed reports of genotype-based CBF 
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120 differences in response to acute exercise. Thus, we conservatively chose an estimated effect size (d=0.85) 

121 based on feasibility and prior cross-sectional data.(31, 48) We calculated that enrolling a total of 60 

122 participants would provide ~90% power with a Type 1 error rate of 5% to detect APOE4-related differences in 

123 CBF.

124 Exclusion criteria were musculoskeletal or cardiopulmonary restrictions from a physician; 

125 contraindications to MRI; anti-coagulant use; previous diagnosis of a cognitive disorder or a neurological or 

126 psychiatric condition that could result in cognitive impairment; high exercise risk classification by American 

127 College of Sports Medicine criteria unless cleared by a physician. Figure 1 provides a CONSORT-style 

128 diagram of enrollment. All testing was performed at the University of Kanas Medical Center. Participants were 

129 compensated $100 for their time.

130

131 Figure 1 Caption

132 Figure 1. CONSORT Enrollment Flow

133

134 We have previously described our protocol for the present study and detailed method for measuring 

135 CBF before and after a single, 15-minute acute bout of moderate intensity aerobic exercise on a cycle 

136 ergometer. Intensity was titrated to 45-55% of heart rate reserve, based on age-predicted heart rate 

137 maximum.(49) The full trial protocol is described in White et al (2021).  

138 The primary outcome was cortical gray matter cerebral blood flow (CBF) response, quantified by area 

139 under the curve post-exercise. Neurotrophic factor concentration change from pre- to post-exercise and 

140 regional CBF response were identified as an ancillary outcome of interest a priori. There were no changes to 

141 trial primary outcome after the trial commenced. 

142 For CBF measurement, participant underwent two 3D GRASE pseudo-continuous arterial spin 

143 labeling (pCASL) sequences,(50-53) yielding 11 minutes and 36 seconds of pre-exercise CBF data. All 

144 pCASL sequences were collected with the same with background suppressed 3D GRASE protocol (TE/TR = 

145 22.4/4300 ms, FOV = 300 × 300 × 120 mm3, matrix = 96 × 66 × 48, Post-labeling delay = 2s, 4-segmented 

146 acquisition without partial Fourier transform reconstruction, readout duration = 23.1 ms, total scan time 5:48, 

147 2 M0 images). The two pre-exercise pCASL sequences were followed by a T1-weighted, 3D magnetization 
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148 prepared rapid gradient echo (MPRAGE) structural scan (TR/TE = 2300/2.95 ms, inversion time (TI) = 900 

149 ms, flip angle = 9 deg, FOV = 253 × 270 mm, matrix = 240 × 256 voxels, voxel in-plane resolution = 1.05 × 1.05 

150 mm2, slice thickness = 1.2 mm, 176 sagittal slices, in-plane acceleration factor = 2, acquisition time = 5:09). 

151 Blood pressure was monitored during the MRI via a continuous blood pressure monitoring cuff (Caretaker 4, 

152 Caretaker Medical N.A. caretakermedical.net). 

153 Following the MRI, in an adjacent room, a flexible intravenous catheter was placed, and 10 mL of 

154 blood was collected in tubes containing ethylenediaminetetraacetic acid, and a separate 3mL sample in acid 

155 citrate dextrose for genotyping. Participants then sat on a cycle ergometer and, after a 5-minute warm-up, 

156 exercised for 15 minutes at a moderate intensity, 45-55% of heart rate reserve, on a cycle ergometer. Cycle 

157 resistance was titrated for the entire 15 minutes to maintain intensity. During a cooldown period, an additional 

158 10mL of blood was drawn. Then participants were then escorted back to the MRI immediately for 4 

159 consecutive pCASL sequences, identical to the pre-exercise sequences. Finally, an additional 10mL of blood 

160 was drawn. 

161

162 Neuroimage Processing 

163 CBF was calculated using a process adapted from the Laboratory of Functional MRI Technology CBF 

164 Preprocess and Quantify packages for CBF calculation (loft-lab.org, ver. February 2019). We created 

165 individualized gray matter regions of interest (whole brain, hippocampus, and cerebellum as a reference 

166 region) for each participant using the Statistical Parametric Mapping CAT12 (neuro.uni-jena.de/cat, r1059 

167 2016-10-28) package for anatomical segmentation.(54) We motion corrected labeled and control pCASL 

168 images separately for each sequence, realigning each image to the first peer image following M0 image 

169 acquisition. CBF was calculated with surround subtraction of each label/control pair without biopolar 

170 gradients(55) producing a timeseries of 9 subtraction images. This was done for each pCASL sequence, or 

171 18 pre-exercise and 36 post-exercise CBF estimates. CBF area under the curve (AUC), our primary outcome 

172 measure, was calculated as the sum of the mean CBF estimate in each region of interest times over the 

173 duration of acquisition (mL*100g tissue-1).

174

175 Blood Specimen Processing 
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176 Immediately after each blood collection timepoint, plasma was centrifuged at 1500 relative centrifugal 

177 field (g) (2800 RPM) at 4°C for 10 minutes. Platelet-rich plasma was then centrifuged in four, 1.5mL aliquots 

178 at 1700g (4500 RPM) at 4°C for 15 minutes. The resulting platelet-poor plasma was separated from the pellet 

179 and snap frozen in liquid nitrogen until stored at -80°C at the end of the visit. Concentrations of IGF-1 (Alpco 

180 Diagnostics), VEGF (R&D Systems), and BNDF (R&D systems) were measured in plasma using enzyme 

181 linked immunosorbent assays. We then computed a change score between pre-exercise and immediate post-

182 exercise levels for each analyte. 

183 Whole blood was drawn and stored frozen at -80°C prior to genetic analyses using a Taqman single 

184 nucleotide polymorphism (SNP) allelic discrimination assay (ThermoFisher) to determine APOE genotype. 

185 Taqman probes were used to determine APOE4, APOE3, and APOE2 alleles to the two APOE-defining 

186 SNPs, rs429358 (C_3084793_20) and rs7412 (C_904973_10). Individuals were classified as APOE4 carrier 

187 in the presence of 1 or 2 APOE4 alleles (e.g. E3/E4, E4/E4), and remaining individuals were grouped as non-

188 carriers.

189

190 Statistical Analyses 

191 Demographic and intervention differences between APOE4 carriage groups were explored with Welch 

192 Two Sample t-test or Fisher’s Exact Test as appropriate. Our a priori planned analysis of the primary CBF 

193 outcome measure was a t-test comparison of CBF AUC between APOE4 carriage groups, and a t-test 

194 comparison of pre- to post-exercise change score between e4carriage groups in our secondary blood-based 

195 neurotrophic marker levels. We also tested an exploratory linear mixed effects model with a random intercept 

196 coefficient for each participant. P-values were obtained by likelihood ratio tests of the full model against the 

197 model without the interaction or factor in question. For our exploratory analyses, we compared change in the 

198 AUC of the 2 pre-exercise ASL sequences and the AUC of the final 2 post-exercise ASL sequences across 3 

199 regions of interest (cortex, cerebellum, hippocampus). Age and gender were explored as influential 

200 covariates. 

201 Data were captured using REDCap (9). The analyses for this project were performed using R (base 

202 and lme4 packages).(56, 57)

203
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204 Results

205

206 Participants 

207 A total of 112 individuals were assessed for study eligibility from October 2019 through October 2021. 

208 Reasons for exclusion are presented in Figure 1. Enrollment was expanded to 62 in August ’21 to increase 

209 representation of men and individuals identifying with a racial or ethnic minoritized community. Genotyping of 

210 one individual failed, and this person was excluded from analysis. One person withdrew during exercise due 

211 to an adverse event, one refused post-exercise MRI, and post-exercise blood collection failed on 2 

212 participants, leaving sample sizes of 59 and 58 for primary and secondary outcomes, respectively.

213 Self-reported racial and Hispanic/Latino ethnic identity of enrollees was recorded in compliance with 

214 National Institute of Health guidance, and approximately reflected the diversity of older adults in the Kansas 

215 City region in the 2020 census. We also identified rural residence (58) and calculated the Area Deprivation 

216 Index, a geospatial socio-economic disadvantage metric, related to health and dementia risk, to enrich 

217 characterization of our participants.(59) We found no evidence of significant differences between carriers and 

218 non-carriers in standard demographic measures (p>=0.3, Table 1).

219

220

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.22272187doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272187
http://creativecommons.org/licenses/by/4.0/


10

221

Table 1. Demographics 

Characteristic
Overall, 

N = 611

Non-carrier, 

N = 381

APOE4 Carrier, 

N = 231
p-value2

Age 72.8 (5.2) 73.3 (5.2) 72.1 (5.1) 0.4

Gender 0.3

Men 20 (33%) 10 (26%) 10 (43%)

Women 41 (67%) 28 (74%) 13 (57%)

Non-Binary 0 (0%) 0 (0%) 0 (0%)

Race >0.9

Asian 1 (1.6%) 1 (2.6%) 0 (0%)

Black or African 

American
6 (9.8%) 4 (11%) 2 (8.7%)

White 54 (89%) 33 (87%) 21 (91%)

Ethnicity >0.9

Non-Hispanic or Latino 59 (97%) 37 (97%) 22 (96%)

Hispanic or Latino 2 (3.3%) 1 (2.6%) 1 (4.3%)

Rural Residence >0.9

Sub/Urban Resident 58 (97%) 37 (97%) 21 (95%)

Rural Resident 2 (3.3%) 1 (2.6%) 1 (4.5%)

Formal Education (yrs) 18.8 (2.8) 18.8 (2.4) 18.7 (3.3) 0.9

Area Deprivation Index 

(National %)
35.0 (2.0-96.0) 34.5 (7.0-91.0) 36.0 (2.0-96.0) 0.8

1Mean (SD); n (%); Median (Minimum-Maximum)

2Welch Two Sample t-test; Fisher's exact test

222

223

224
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225

226 Primary Outcome 

227 In our pre-specified analysis, we found no evidence of an effect of APOE4 carriage on cortical gray 

228 matter post-exercise CBF AUC, see Table 2 (t = 1.4, p=0.16, 95%CI [-31.9 184.3]). Figure 2 shows CBF AUC 

229 for our pre-specified whole gray matter cortical CBF AUC and cerebellar reference region.

230

Table 2. Pre-specified primary and secondary outcomes

Overall, N = 59 Non-carrier, N = 381 APOE4 Carrier, N = 21

Whole Gray Matter CBF 

AUC
1,486.6 (188.5) 1,513.7 (174.4) 1,437.5 (206.9)

Change in BDNF (pg/mL) 110.1 (616.5) 207.8 (705.9) -65.6 (362.9)

Change in IGF1 (pg/mL) 4.5 (26.0) 5.7 (27.8) 2.3 (22.8)

Change in VEGF (pg/mL) 0.9 (10.9) 1.8 (11.1) -1.0 (10.6)

Area under cerebral blood flow curve (CBF AUC). Pre to post-exercise change in brain derived 

neurotrophic factor (BDNF), insulin-like Growth Factor 1 (IGF1) and vascular endothelial 

growth factor (VEGF). All values are presented as mean (sd).

231

232 Figure 2 caption

233 Figure 2. Cerebral Blood Flow Area Under the Curve Does not Differ After Exercise Based on APOE4 

234 Carriage

235

236 Figure 2 legend

237 Total cerebral blood flow following exercise is plotted for both the primary region of interest, cortical gray 

238 matter, and the cerebellar gray matter reference region. Black bars denote APOE4 carriers. Gray bars denote 

239 APOE4 non-carriers. Error bars are standard deviation.

240
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241 Secondary Outcomes

242 Change in our blood-based markers from pre- to post-exercise, were not significant in any of the 

243 neurotrophic factors we explored (Table 2). Pre- to Post-exercise change in VEGF and IGF1 change did not 

244 approach significance (p>0.34). Change in BDNF post-exercise was increased but did not reach significance 

245 (p=0.06). 

246

247 Exploratory Analyses

248 In our exploratory analyses, we first modeled a 3-way interaction of gray matter region (whole cortical, 

249 hippocampus, cerebellum), CBF AUC from baseline to post-exercise, and APOE4 carriage. Gender, but not 

250 age, was included as a covariate based on preliminary modelling of influential demographic factors. Including 

251 the 3-way interaction significantly improved the model fit compared to the reduced model without the 

252 interaction of region, APOE4 carriage and CBF AUC (X2 = 21.1, p = 0.004). The presence of the significant 3-

253 way interaction allowed us to perform post-hoc modeling on each region separately. We found that APOE4 

254 carriers had higher post-exercise CBF AUC in the hippocampus (X2 = 4.5, p = 0.03), but not in the whole 

255 cortical gray matter (X2 = 0.75, p = 0.39), and not the cerebellum (X2 = 0.62, p = 0.43; S1 Supplemental 

256 Figure). Across all regions, women had significantly higher CBF (p<0.001).

257

258 Adherence and Safety 

259 There was 1 adverse event, nausea, during exercise which resulted in termination of the visit and 

260 withdrawal of the participant (APOE4 carrier). One person elected not to complete the MRI post exercise 

261 (APOE4 carrier). All remaining participants were able to exercise within their identified target heart rate zone. 

262 There were no differences in the total power output in Watts, of the exercisers (p=0.38). APOE4 carriers had 

263 a mean power output of 741 (s.d. 304) and non-carriers had a mean power output of 664 (s.d. 347).

264

265
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266 Discussion

267 This is the first study to specifically assess cerebral blood flow (CBF) responses to exercise, 

268 comparing those with and without a common genetic Alzheimer’s risk factor, APOE4. Our pre-specified 

269 analyses found no differences in whole brain CBF post-exercise between APOE4 carriers and non-carriers. 

270 Likewise, changes in circulating neurotrophic factor levels immediately post-exercise were not different 

271 between carrier and noncarriers. The exploratory experimental approach of this study was designed to 

272 investigate the acute physiologic response to exercise, and not investigating exercise as a therapeutic 

273 intervention. As such, we explored the regional-specific changes in CBF in the hippocampus, given its 

274 differential benefit to exercise interventions and salience in cognitive change and dementia. In our exploratory 

275 analyses we found that APOE4 carriers display a greater increase in hippocampal region CBF in the acute 

276 response following exercise that were not present in whole brain or the cerebellar region, the latter serving as 

277 a reference region. These findings extend prior work showing similar hyperemic response in the 

278 hippocampus,(60) and provide initial evidence that APOE4 carriers demonstrate greater hyperemia within the 

279 hippocampus than their non-carrier peers immediately after an acute exercise bout. Further, the 

280 heterogeneity of immediate post-exercise neurotrophin response across all older adults in the present study 

281 identify an area of future exploration for future research investigating acute physiologic responses to aerobic 

282 exercise. These findings provide an individualized framework for acute physiologic responses to an acute 

283 bout of aerobic exercise. Our results support a precision-medicine approach for the characterization and 

284 targeting of physiologic substrates with exercise interventions to benefit brain health. 

285
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286 Effect of APOE4 Genotype on Acute Exercise-induced Cerebral Blood Flow

287 Prior reports of hippocampal blood flow change in acute response to exercise have been inconsistent, 

288 with both increases and decreases reported (60-63) Our findings are consistent with prior work demonstrating 

289 chronically increased cerebral blood flow in the hippocampi of young adults following an exercise 

290 intervention.(64)and further highlight the APOE4 genotype-by-hippocampal interactive effect that should be 

291 considered in aging populations. Though the present study is one of the first investigations of the immediate 

292 acute effects of aerobic exercise in older adults, Alfini et al reported that short periods (i.e. 10 days) of 

293 sedentary behavior have a powerful reversal effect for reducing hippocampal CBF in highly active older 

294 adults.(65) The present results build up on these previous findings, together suggesting that hippocampal 

295 brain structures in older adults of this known risk allele are highly sensitive to changes in physical activity 

296 behaviors. Importantly, our findings provide a foundation for an individualized framework and brain region-

297 specific analyses when studying the effects of exercise on cerebral blood flow. This may be a critical next 

298 step for linking cognitive maintenance to exercise effects, as prior work has failed to demonstrate a direct 

299 relationship between proxies of cerebral blood flow (transcranial Doppler) and cognition.(66)

300

301 Neurotrophin Factors Show No Change Immediately Following Acute Aerobic Exercise in Older 

302 Adults

303 In contrast to previous reports in neurotypical young adults, we observed no exercise-induced change 

304 in blood neurotrophin concentration in older adults in the present study, regardless of APOE4 carrier status. 

305 This finding was surprising given that previous studies in younger adults report robust increases in these 

306 neurotrophic factors, IGF1, VEGF, and BDNF among others.(20, 67-70) Exercise-induced increases in 

307 neurotrophic factors have been associated with neurogenesis and angiogenesis in rodent models and are 

308 thought to explain brain health and cognitive benefits of exercise interventions.(64, 71, 72) However, in 

309 almost all cases, CBF and neurotrophins in human studies have been measured following an extended 

310 period of rest, without a challenging stimulus. Given that benefits would necessarily result from discrete, 

311 repeated exposures to an exercise intervention, measuring during inactivity potentially obscures important 

312 dynamic adaptations or capacities. Indeed, a challenging stimulus such as acute bout of aerobic exercise 

313 may be necessary to sufficiently study local and systemic effects on the brain.(73, 74) . Methodological 
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314 differences may also contribute to these differences. We chose to focus on platelet poor plasma, as 

315 neurotrophins are released from platelets following freeze-thaw cycles.(75) We believed this approach would 

316 give a more accurate representation on circulating, rather than stored, biomarker concentrations. Future work 

317 should consider that these biomarkers may have a delayed increase after exercise stimulus onset. Because 

318 APOE4 has been shown to influence release of BDNF and interact with VEGF, additional investigation is 

319 warranted.(76-78) Further, given there was no increase in neurotrophins between groups immediately 

320 following exercise, the greater change in hippocampal CBF immediately following exercise in older adult 

321 APOE4 carriers thus appears to be mechanistically driven by different factors than that observed in younger 

322 adults. Future investigations may test whether other physiologic factors (e.g. blood lactate) that may drive 

323 cerebral perfusion responses, and may further explain the specificity of such responses in hippocampal brain 

324 regions.

325

326 Limitations 

327 This study has several limitations. First, we did not identify CBF change in our pre-specified primary 

328 outcome. At the time of inception, National Institute of Health guidance classified all exercise experimental 

329 designs as clinical trials. Following CONSORT guidance, we declared a priori outcomes of interest despite 

330 relative uncertainty in how to quantify our time-course data. Thus, we feel justified in presenting and 

331 emphasizing our alternative analysis results. But the effect size of APOE4-related differences in our pre-

332 specified primary outcome was insufficient to reject the null hypothesis. Second, our groups are unbalanced. 

333 Though we made significant efforts to over-represent APOE4 carriers(49), our final sample approximates the 

334 distribution of the E4 in the US population. Given the advantage of high spatial resolution and sensitivity to 

335 cerebral perfusion changes, the present study utilized a MR imaging method to quantify cerebral blood flow. 

336 This method limits our ability to interpret CBF changes during the exercise bout that may have influenced 

337 immediate post-exercise CBF changes. As we have previously reported, the recovery time course for CBF 

338 appears to be relatively independent of blood pressure changes.(49) However, future work should emphasize 

339 accurate measurement of blood pressure, respiratory rate, and heart rate during the exercise bout to test the 

340 effect of blood pressure changes on CBF.

341
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342

343 Conclusion

344 We conducted the first comparison of the effect of a common Alzheimer’s risk gene, APOE4, on post-

345 exercise cerebral blood flow and common neurotrophic changes following moderate intensity aerobic 

346 exercise. Our method of characterizing cerebral blood flow recovery may provide new avenues for MRI 

347 quantification of perfusion change. By using this method, we extended prior work showing that the 

348 hippocampus experiences great post-exercise blood flow increases in older adult APOE4 carriers. 

349 Investigation of the key mechanisms by which aerobic exercise supports cognition and brain health will 

350 continue to have important implications for future work by optimizing prescribed exercise interventions and 

351 specifying appropriate outcomes of interest. 

352

353
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556 Supplemental Captions

557

558 S1 Figure. Regional Blood Flow Area Under Curve Pre- and Post-Exercise

559

560 The figure shows total cerebral blood flow (mL/100g tissue) in three regions of interest. Pre- and post-

561 exercise time frames are equivalent, ~12 minutes of arterial spin labeling data collection.  The hippocampus 

562 demonstrated an increase in post-exercise cerebral blood flow over pre-exercise in APOE4 carriers only. 

563 Light gray bars denote APOE4 non-carriers.  Dark gray / black bars denote APOE4 carriers. Error bars are 

564 standard deviation.
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