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Abstract 

Drugs of abuse impact cortico-striatal dopaminergic targets and their morphology across 
substance types in common and unique ways. While the dorsal striatum drives addiction severity 
across drug classes, opiates impact ventromedial prefrontal cortex (vmPFC) and nucleus 
accumbens (NAcc) neuroplasticity in preclinical models, and psychostimulants alter inhibitory 
control, rooted in cortical regions such as the inferior frontal gyrus (IFG). We hypothesized 
parallel gray matter volume (GMV) changes in individuals with cocaine or heroin use disorder 
(CUD/HUD): decreased GMV of vmPFC/NAcc in HUD and IFG in CUD, and putamen GMV to 
be associated with addiction severity. We quantified GMV in age/sex/IQ-matched individuals 
with CUD (n=20; 5 women), HUD (n=20; 6 women), and healthy controls (HC; n=20; 5 
women), further replicated in an extended sample (combined n=96). Overall, addicted 
individuals had smaller vmPFC volumes than HC (p<0.05-corrected), driven by HUD (p<0.05-
corrected; similar NAcc reduction). Right IFG reductions were specifically evident in CUD vs. 
HUD (p<0.05-corrected). Posterior putamen volume increased as a function of craving in CUD 
vs. HUD (p<0.05-corrected). These results indicate compression of dopamine-innervated regions 
(in the vmPFC and NAcc) across cocaine- or heroin-addicted individuals, more severely in the 
latter. For the first time we demonstrate IFG compression specifically in CUD. This group also 
showed a unique association between craving and increased putamen volume, together indicating 
a signature of enhanced cue-sensitivity and habit formation. Results suggest common and 
substance-specific morphometry volumetric changes in human psychostimulant or opiate 
addiction, with implications for fine-tuning biomarker and treatment identification by primary 
drug of abuse. 
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Introduction 

Psychostimulants and opiates are among two of the most treatment-resistant drugs of abuse (1), 

together contributing to over 100,000 deaths in the United States annually (2). Drugs of abuse 

converge in their dopamine receptor-targeted mechanisms of action (3), as associated with the 

morphology of the mesocorticolimbic regions that dopamine innervates (4). Drugs of abuse also 

demonstrate distinct neurobehavioral signatures (5), together suggesting both common and 

unique effects on behavior and brain volume. For example, volumetric decreases, exacerbated 

with addiction severity (e.g., years of use), have been reported in drug-addicted individuals for 

the ventromedial prefrontal cortex (vmPFC) (6–9). These vmPFC volumetric decreases 

potentially contribute to deficits in this region’s core functions, namely salience/value processing 

(10), extinction learning (11), and goal-directed control (12), a cognitive and emotional pattern  

contributing to the drug addiction phenomenology (13,14). . In an opposite direction but still 

common to drug-addicted individuals (i.e., spanning different drug classes), volumetric increases 

have been reported for the dorsal striatum (15) that regulates habit formation (16,17), potentially 

related to its dopaminergically-mediated role in cue sensitivity and  craving (18).  

On the other hand, chronic self-administration of heroin, but not cocaine (19), in rats contributes 

to decreased dendritic spine density in the vmPFC/orbitofrontal cortex (OFC) (20,21) and 

impaired extinction learning (e.g., persistent drug seeking despite unavailability of the drug) 

(22), suggesting an especially robust impact of heroin on the vmPFC. The nucleus accumbens 

(NAcc), a motivational hub with core roles in perceived salience (23,24), reward anticipation 

(25), and drug craving (23), has also been a major focus of investigation in these studies. 

Similarly to the direction of impact on the vmPFC/OFC, chronic opiate self-administration in 

rats is associated with decreased measures of neuroplasticity (dendritic branching and spine 
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density) in the medium spiny neurons of the NAcc (21), a result in line with NAcc gray matter 

volume (GMV) reductions in human heroin addiction (26). In contrast, escalation to cocaine but 

not heroin self-administration is more likely in rats that are high in trait impulsivity (27,28). 

Similarly in humans, impulsivity and inhibitory control deficits, regulated by cortical regions 

including the inferior frontal gyrus (IFG) (29–31), may be more closely aligned with the 

symptom profile of cocaine addiction (5,32). Consistent with this suggestion, a study of 169 

male polysubstance users (cocaine: ≥1 gram/week; alcohol: ≥21 drinks/week for heavy, 1-21 

drinks/week for light drinkers; marijuana: ≥1 joint/week; tobacco: >1 cigarette/day) revealed 

decreased IFG volumes as a function of monthly cocaine use when controlling for the use of the 

other substances, although this study did not account for opiate use (33). 

Complementing the mostly preclinical efforts, several meta-analyses of GMV studies in human 

addiction similarly allow the comparison between different drugs classes (6,7,9,34,35). These 

meta-analyses support shared vmPFC reductions across substances (6,7,9) and suggest several 

substance-specific patterns [e.g., alcohol-specific reductions in the NAcc (6), and cocaine-

specific (relative to methamphetamine) reductions in the superior frontal gyrus (34)]. However, 

to the best of our knowledge, only two studies to date have directly assessed the overlapping and 

distinct neuroanatomical underpinnings related to psychostimulant and opiate use as they 

manifest in gray matter (36,37). In one study, group comparisons revealed GMV reductions in 

parietal and precentral/postcentral gyrus in 28 individuals with a history of heroin abuse, and in 

hippocampus, posterior cingulate cortex, and cerebellum in 14 individuals with a history of 

cocaine abuse (36). In the other study, compared to a group of 21 individuals with polysubstance 

use disorder that included cocaine and alcohol use, a group of 27 individuals with opioid use 

disorder (not specific to heroin) had cortical thinning in the posterior superior frontal gyrus and 
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temporo-parietal junction (37). Notably, opposite to expectations from the preclinical literature, 

in these studies the vmPFC, NAcc, IFG or dorsal striatum were not implicated. 

Here, to investigate the common and distinct cortico-striatal GMV patterns related to opiate or 

stimulant addiction, we used voxel-based morphometry (VBM) of T1-weighted magnetic 

resonance imaging (MRI) in demographically matched groups of individuals with cocaine or 

heroin use disorder (CUD/HUD) and healthy controls (HC), with an internal replication of 

analyses in an extended sample. We aimed to address the following hypotheses: 1) compared to 

HC, drug-addicted individuals would exhibit reduced GMV in the vmPFC, with this reduction 

most pronounced in HUD, 2) the HUD group would show reduced GMV in the NAcc, 3) the 

IFG would be smaller in CUD compared to HUD, and 4) the common and/or unique 

neuroanatomical patterns in the CUD and HUD would be further supported by potentially 

distinct associations with addiction severity measures including craving, a measure of cue 

sensitivity and habitual associations; here, we speculated a role for the dorsal striatum. 
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Methods 

Participants 

Three age-, sex-, education- and IQ-matched groups of 20 individuals with HUD (40.9±10 years, 

6 women), 20 individuals with CUD (42.8±7 years, 5 women), and 20 HC (41.4±9 years, 5 

women), comprised our main sample of 60 participants. An additional 12 participants per group 

yielded a larger total sample (n=96) for internal replication purposes (see Table 1 for details on 

both samples). Subjects with CUD were recruited by advertisements and flyers (in local 

newspapers, bulletin boards, and online) as well as from educational talks provided to groups of 

staff and patients at collaborating substance abuse prevention and treatment institutes in the New 

York metropolitan area. HC were recruited from the same communities for matching purposes. 

Individuals with HUD were recruited from a single inpatient drug addiction rehabilitation facility 

(Samaritan Daytop Village, NY). The Icahn School of Medicine at Mount Sinai’s institutional 

review board approved study procedures, and all participants provided written informed consent.  

Participants underwent a series of clinical and neuropsychological assessments delivered by 

trained research staff under a clinical psychologist’s supervision. These assessments included the 

Mini International Neuropsychiatric Interview (38) (for the HUD) or the Structured Clinical 

Interview for DSM-IV or DMS-5 Axis I and II Disorders (39) (for the CUD and HC); the 

Addiction Severity Index (40), a semi-structured interview that assesses history and severity of 

substance use problems for all individuals with substance use disorder (SUD); the Cocaine 

Selective Severity Assessment (41) or Short Opiate Withdrawal Scale (42) to evaluate 

abstinence/withdrawal symptomology related to cocaine or heroin, respectively (range-corrected 

to a common scale for group comparisons in withdrawal); the Severity of Dependence scale for 

all SUD participants (43); and the Cocaine Craving Questionnaire (44) or the Heroin Craving 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.27.22271574doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.27.22271574
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Questionnaire (range-corrected to a common scale for group comparisons in craving) (45). 

Participants underwent a brief physical examination including urine drug toxicology, breath 

carbon monoxide and alcohol measurements, and review of medical history.  

All individuals with CUD and HUD met criteria for SUD with cocaine or heroin as the primary 

drug of choice, respectively. Other comorbidities included alcohol use disorder (CUD original 

sample n=7, extended n=11; HUD original n=2, extended n=3), marijuana use disorder (CUD 

original n=2, extended n=7; HUD original n=1, extended n=1), sedative use disorder (CUD 

extended n=1; HUD original n=3, extended n=4), phencyclidine use disorder (CUD extended 

n=1), meth/amphetamine use disorder (CUD extended n=1; HUD original n=1, extended n=2), 

major depressive disorder (HUD original n=2, extended n=3), post-traumatic stress disorder 

(CUD original n=1, extended n=1), and specific phobias (CUD original n=1, extended n=2). All 

SUD comorbidities were in partial or sustained remission at the time of study. Within the CUD 

sample, four participants in the original and eight in the extended sample also met criteria for 

HUD, and within the HUD, five participants in the original and eight in the extended sample also 

met criteria for CUD; however, these individuals’ primary drug of abuse was identified to be 

congruent with their assignment to their respective groups. Among the CUD group, urine screen 

results confirmed the presence of cocaine in 10 participants in the original and 14 participants in 

the extended samples. All participants in the HUD group were under medication assisted 

treatment, with urine toxicology positive for: methadone (original n=18; extended n=26), 

buprenorphine (original n=1; extended n=5), and methadone and buprenorphine (original n=1, 

extended n=1). Mean methadone doses were 103.8 ± 63.3 mg (original sample, 2 missing) or 

99.4 ± 56.4 mg (extended, 2 missing); buprenorphine 12 mg (original, 1 missing) or 14.7 ± 8.3 

mg (extended, 3 missing). The route of drug administration included smoking (CUD original 
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n=15, extended n=22; HUD original n=3, extended n=3), intranasal (CUD original n=4, extended 

n=8; HUD original n=6, extended n=11), intravenous (CUD extended n=1; HUD original n=11, 

extended n=17), oral (HUD extended n=1), and smoking and intranasal (original CUD n=1, 

extended CUD n=1). 

Exclusion criteria were: 1) present or past history of DSM-IV or DSM-5 diagnoses of psychotic 

disorder (e.g., schizophrenia) or neurodevelopmental disorder (e.g., autism); 2) history of head 

trauma with loss of consciousness (> 30 min); 3) history of neurological disorders including 

seizures; 4) current use of any medication (with the exception of medication assisted treatment in 

the HUD) that may affect neurological functions; 5) current evident infection and/or medical 

illness including cardiovascular disease (e.g., high blood pressure), as well as metabolic, 

endocrinological, oncological or autoimmune diseases, and infectious diseases common in 

individuals with SUD including Hepatitis B and C or HIV/AIDS for the HUD group; 6) MRI 

contraindications including any metallic implants, pacemaker device, or pregnancy. We did not 

exclude SUD subjects for history of other drug addiction (e.g., alcohol, marijuana, 

stimulants/opiates) or other psychiatric disorders at high co-morbidity with drug addiction (e.g., 

depression, post-traumatic stress disorder); and 7) HC participants were excluded for a positive 

breathalyzer test for alcohol or positive urine screen for any psychoactive drugs. 

MRI data acquisition 

MRI scans were acquired using a Siemens 3.0 Tesla Skyra (Siemens Healthcare, Erlangen, 

Germany) with a 32-channel head coil. T1-weighted anatomical image acquisition parameters 

were as follows: 3D MPRAGE sequence with 256 × 256 × 179 mm3 FOV, 0.8 mm isotropic 

resolution, TR/TE/TI=2400/2.07/1000 ms, 8° flip angle with binomial (1, −1) fat saturation, 240 
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Hz/pixel bandwidth, 7.6 ms echo spacing, and in-plane acceleration (GRAPPA) factor of 2, with 

a total acquisition time of approximately 7 min.  

Voxel-based morphometry 

We followed the optimized VBM approach as documented by Good et al. (46) using FSL-VBM 

(47,48). First, raw DICOM images were converted to the NIFTI format via dcm2niix (49) and 

adapted to Brain Imaging Data Structure (BIDS) standards to enhance portability and 

reproducibility (50). Structural images were skull-stripped using FSL’s brain extraction tools and 

segmented into gray matter, white matter, and cerebrospinal fluid using FSL’s fast. FSL’s sienax 

was used to calculate normalized total brain volume (TBV). Next, all skull-stripped images were 

nonlinearly registered to the standard gray matter ICBM-152 template and averaged to yield an 

unbiased (inclusive of all participants, equally representing each group) study-specific, isotropic 

2 mm template. Individual gray matter images were re-registered to this study specific template, 

modulated to account for registration-related warping, and spatially smoothed using a Gaussian 

kernel (7 mm full-width at half maximum).  

To address our a priori hypotheses, we employed the general linear model approach using our 

original sample (n=60). We included group (HC, CUD, and HUD), age, and total brain volume 

(TBV) as regressors in the model to produce age- and TBV-corrected linear contrasts comparing 

HC to both SUD groups (an “SUD” map encompassing both CUD and HUD), HC to CUD and 

HUD separately, and the CUD and HUD groups to each other. We accounted for the potential 

contribution of other explanatory variables on our results by first comparing HC, CUD, and 

HUD groups on demographic and neuropsychological measures using one-way ANOVAs (and 

pairwise comparisons where appropriate) for continuous and chi-square tests (or Fisher’s exact 

tests where appropriate) for categorical variables, corrected for familywise error (α=.05/8=.006 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.27.22271574doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.27.22271574
http://creativecommons.org/licenses/by-nd/4.0/


 

 

for the eight comparisons between HC, CUD, and HUD; α=.05/6 for the six comparisons 

between CUD and HUD). Then, variables showing significant group differences were entered 

into VBM correlations to detect potential relationships with GMV across all participants. Those 

with significant group differences and GMV correlations were used as controlled variables in 

VBM analyses to correct for their potential contribution to the group differences in GMV.   

For SUD group comparisons in drug use-related patterns as a function of GMV, we used separate 

models for each regressor (the use variables that did not differ by group: days since last use, 

lifetime use in years, craving, withdrawal, Table 1) to avoid multicollinearity, and compared the 

slopes of the correlations between CUD and HUD groups to derive CUD- and HUD-specific 

correlation maps (corrected for familywise error, p<.05/4=.012). For completeness, we also 

inspected severity of dependence in VBM analyses independently from the above. We did not 

examine past month use, as only four out of the 32 individuals with HUD in the extended sample 

reported non-zero values. To look for potential group similarities, we also tested correlations 

between these drug use measures with GMV using the whole-brain analyses in the combined 

SUD group (both samples).   

Because parametric methods rely on a Gaussian distribution assumption that is difficult to 

achieve due to the inherent noise in MRI data (51), unlike prior inspections of GMV differences 

between CUD and HUD (36), we used permutation-based non-parametric statistical tests using 

FSL’s randomise to compute all contrasts. We applied 5,000 permutations per test and threshold 

free cluster enhancement (corrected to p<.05 for primary group differences and p<.012 for the 

four drug use variable models) to detect significant clusters (52). We repeated these VBM 

analyses using our larger replication sample (n=96), reporting small volume corrected results 

within an a priori selected cortico-striatal anatomical mask. This combined mask encompassed 
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the vmPFC (inclusive of frontal medial, frontal orbital, and subcallosal cortices), striatum 

(inclusive of NAcc, caudate, putamen), and IFG (inclusive of pars opercularis and triangularis 

subregions), derived from the Harvard-Oxford Cortical/Subcortical Atlas with a 50% 

probabilistic threshold applied to each region.  
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Results 

Participants 

Groups were comparable in age, sex, education, verbal and non-verbal IQ in both the original 

and extended samples (p≥.121; see Table 1). Group differences were evident in race in both 

samples (driven by fewer Black and more White participants in the HUD group compared to the 

other groups) and self-reported depression in the extended sample (driven by higher scores in 

HUD compared to HC). However, race and depression did not display a significant relationship 

with GMV across the original or the replication samples (all ps≥.159), and thus were not 

included as controlled variables in testing our main hypotheses. The three groups further differed 

in cigarette smoking status (fewest current smokers in the HC group); however, there were no 

significant differences in smoking status between HUD and CUD groups [original: Fisher’s exact 

test p=.106; extended: Fisher’s exact test p=.011, FWE-corrected]. Finally, past month use was 

by definition lower in the inpatient HUD than CUD in both the original (at a trend level) and 

extended samples. However, despite trends for lower lifetime use in the HUD than CUD group, 

the former group showed significantly higher severity of dependence in both samples. 

SUD compared to HC 

Compared to HC, the SUD group showed significantly lower GMV in the vmPFC (p=.039; 

Table 2), as also reflected by a trend in the replication sample (p=.059).  

CUD compared to HC 

There were no significant results when comparing the CUD group to the HC group in either the 

main whole-brain or the small volume corrected replication VBM analyses. 
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HUD compared to HC 

Compared to the HC, the HUD group showed significantly lower GMV in the vmPFC (p=.013), 

left NAcc (p=.045), bilateral OFC (left: p=.042, right: p=.049), and pons (p=.004) (Figures 1-2, 

Table 2). The replication analysis also revealed significant GMV reductions in the HUD group 

compared to HC in the vmPFC (p=.006) and the left NAcc (p=.037; Figures 1-2, Table 2), with 

trends in the right OFC (p=.091) and caudate (p=.082). Note that the pons was not a region of a 

priori interest, and was not included in our replication mask for small volume correction. While 

the original sample did not reveal significantly higher GMV in HUD compared to HC, the small 

volume corrected replication indicated higher left IFG GMV in HUD (p=.010). 

CUD compared to HUD 

The direct contrast between CUD and HUD indicated that the former group showed significantly 

lower right IFG GMV (p=.029) (Figure 3, Table 2). This effect persisted in the replication 

analysis (right: p=.005).  

The CUD>HUD contrast revealed significantly higher pons GMV in CUD (p=.033). We did not 

test this effect in the replication analysis. However, a trend was evident in the vmPFC GMV 

(CUD>HUD, p=.074).  

Whole-brain GMV and addiction severity correlations 

Whole-brain GMV correlations with the drug use variables revealed that the higher the posterior 

putamen GMV, the higher the craving in the CUD compared to the HUD group (Figure 4, 

α=.012; 111 voxels, peak MNI coordinates 34, -8, 8, p=.011). This correlation was supported 

(α=.012) in the replication analysis (19 voxels, peak MNI coordinates 32, -8, 8, p=.039, small 

volume corrected). No other drug use variable correlated significantly with GMV using the 
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whole-brain analyses in CUD or HUD or the combined SUD groups, in the original or extended 

samples.   
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Discussion 

Although GMV reductions in individuals with SUD have been commonly documented (53), 

research directly interrogating the common and distinct patterns in human CUD and HUD has 

been limited, largely highlighting posterior (temporo-parietal and cerebellar) volumetric 

differences between these different drug types (36,37). Here, using demographically well-

matched groups of CUD, HUD, and HC, we identified cortico-striatal similarities and differences 

in GMV changes (from HC) between these drug classes and internally replicated our results in an 

extended sample of participants. First, we replicated the previously reported reductions in 

vmPFC GMV in addicted individuals in our original sample, showing a similar trend in the 

replication sample, as driven by the HUD group. Second, the HUD group also showed lower 

NAcc GMV, discernable when compared to the HC group. Third, when directly compared to the 

HUD group, the CUD group showed significantly lower right IFG GMV and, fourth, this direct 

contrast also revealed a unique (positive) correlation in the CUD group between drug craving 

and the posterior putamen. 

In both SUD groups, and driven by the HUD, lower vmPFC GMV compared to HC replicates 

similar findings in addicted individuals across substance types as reported by studies using meta-

/mega-analyses (6,7), and those focused on stimulants (34,54–59) and opiates (35,60,61) 

independently. Drug use may play a causal role in structural vmPFC degradation (53) as 

suggested by decreased vmPFC volume following randomization to chronic cocaine self-

administration in non-human primates (62), and this region’s volumetric recovery with 

abstinence from cocaine (as associated with recovery of relevant neuropsychological functions 

including decision-making) in humans (63). Alternatively, alterations in vmPFC gray matter may 

be a biomarker of addiction vulnerability, as lower vmPFC/OFC cortical thickness predicts 
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increased adolescent drug experimentation (number of drugs tried) in individuals exposed to 

maternal cigarette smoking during gestation (64). The HUD group also showed NAcc decreases, 

a result that extends prior efforts in humans (26) and is consistent with evidence of decreased 

NAcc neuroplasticity following chronic opiate self-administration in rodents (21). Lack of such 

an effect in the CUD is consistent with the mixed prior evidence in chronic psychostimulant use 

(65), with studies showing both higher (66) and lower NAcc volume compared to HC (67). 

Several mechanisms may underlie these drug associated volumetric reductions in both the 

vmPFC and NAcc encompassing reduced tonic dopamine neurotransmission mediated by striatal 

medium spiny neurons that serve as a dopaminergic input nexus from the PFC (68,69). Indeed, 

dopamine receptor D2/3 availability (measured via PET with [18F] Fallypride and [11C] 

Raclopride) is reduced in human drug addiction (70,71)] as associated with decreased gray 

matter (evaluated with VBM) in the medial PFC and NAcc (4). Other mechanisms affecting the 

PFC, and especially the vmPFC/anterior PFC, include cerebral glucose metabolism reductions 

following chronic psychostimulant use as documented using 2-[14C] Deoxyglucose in non-

human primates (72,73) and [18F] Fluorodeoxyglucose in humans (74–76). The severity of deficit 

in the HUD group is possibly also driven by cellular downregulation [measured by the 

phosphorylation of protein kinases such as the ERK and MAPK that play a role in neuronal 

growth (77) and are activated by neurotrophic factors (78)], as suggested by post-mortem 

evaluations of PFC cytoarchitecture in opiate-addicted individuals (heroin or methadone) (79). 

Interestingly, ERK phosphorylation in the NAcc is also decreased following chronic (but not 

acute) morphine administration (80). Results in humans in vivo are consistent with these 

suggestions as documented by decreased measures of neuronal integrity in mostly medial PFC 

gray matter assessed with magnetic resonance spectroscopy (via N-acetyl compounds and 
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myoinositol) in chronic users of heroin (81) and cocaine (82). Taken together, these results of 

reduced mesocorticolimbic integrity especially in individuals with HUD need to be explored vis-

à-vis functional measures of salience/value processing, extinction learning, and goal-directed 

control. 

The volumetric right IFG compression in the CUD compared to the HUD group in our study 

agrees with extensive evidence for lower IFG GMV in chronic stimulant users compared to HC 

(34,57,86,87). Given the well-established role of the right IFG in impulsivity and inhibitory 

control (29–31,88), and the heightened impulsivity characterizing psychostimulant use disorder 

[cocaine (5,32,57) and methamphetamine (87)], these results suggest a potential correlate in 

CUD for deficits in impulse control. Accordingly, we also found a CUD-specific positive 

correlation between the posterior putamen GMV and drug craving. The posterior putamen is a 

node of the habit network (89,90), and activity in this region increases as a function of stimulus-

response training reflective of sensitivity to salient cues (17), which, in CUD, may be related to 

the drug cue-induced dorsal striatal dopamine release as associated with craving (18). Posterior 

putamen gray matter density negatively correlates with behavioral indices of goal-directed 

control, such that the higher its density, the worse (more habitual) the performance (91), as 

potentially mediated by reduced glutamate concentration and turnover in CUD (92). Taken 

together, the combined IFG and putamen GMV profiles in the current study suggest a unique 

marker towards an enhanced propensity to develop impulsive drug-seeking behaviors 

specifically in the CUD.  

There were several null and/or unexpected results in this study. First, although previously 

reported (53,54), we did not find a significant relationship between decreased vmPFC/OFC 

GMV and longer duration of drug (including cocaine) use. Second, contrary to prior evidence 
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(35), the HUD in the extended (but not original) sample exhibited higher left IFG GMV than HC.  

Third, while putamen GMV is generally reported to be increased in drug addiction (15) 

[although decreases in this region were also reported in chronic opioid users (93)] we did not 

observe putamen GMV differences between our groups. Future efforts to resolve these 

discrepancies may benefit from larger samples that should also be more closely matched in drug 

use patterns such as recent use frequency and dependence severity. Furthermore, considering that 

abstinence from drug use has been associated with cortico-striatal recovery in addicted 

individuals (94), the longitudinal inspection of treatment-related effects is needed. Relatedly, 

since tobacco use has been linked to decreases in PFC GMV (33,95), accounting for smoking-

related patterns in more balanced samples (e.g., including more HC participants who smoke 

cigarettes) is warranted. Sex-specific IFG GMV compression has been documented in cocaine-

addicted individuals such that cocaine-addicted women exhibit lower IFG [and insula (96)] 

GMV than non-addicted women (97), warranting a closer inspection of potential sex differences 

and hormonal effects in substance-specific neural morphology. The CUD and HUD groups 

further differed in race; however, race did not yield a significant relationship with GMV in our 

results, in line with the lack of race-related gray matter concentration patterns in CUD (55). 

Finally, while we report key differences in the vmPFC, NAcc, IFG, and putamen morphology, 

behavioral measures (e.g., of drug cue reactivity and its extinction, value based decision-making, 

reward prediction error, impulsivity, and habit formation) would be needed to link these 

anatomical results to function. 

To the best of our knowledge, this is the first demonstration of both unique and overlapping 

prefrontal cortico-striatal gray matter morphology changes in human cocaine and heroin 

addiction, providing insight into the brain-related variability accompanying the use of these 
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different drug classes. Specifically, we demonstrate vmPFC GMV compression across both CUD 

and HUD combined (with a more severe pattern in the latter) in addition to NAcc decreases in 

HUD, and IFG reductions in CUD. Together with the IFG compression, the unique relationship 

between increased cocaine craving and increased posterior putamen GMV underscores a 

potential biomarker in CUD, suggestive of a disease profile that may be conducive to cue-

triggered habits/impulsive behaviors. In general, these results extend patterns observed in rodent 

models of chronic drug self-administration to addiction in humans, alluding to the cross-species 

conservation of cortico-striatal alterations with the chronic use of psychostimulants and opiates. 

These results call for closer examination of differences between drug classes in functions 

supported by these brain regions inclusive of select behaviors, cognitions and emotions and 

functional network organizations. Importantly, these findings underscore the importance of 

treating the human addiction experience as a multifaceted disease that takes into account the 

primary drug of abuse and warrants tailored interventions. 
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Legends for tables and figures 

Table 1. Sample profile.  

Cocaine and heroin craving and withdrawal measures were acquired using different 
questionnaires, thus cocaine craving and withdrawal responses in cocaine use disorder (CUD) 
and heroin craving and withdrawal responses in heroin use disorder (HUD) were range-corrected 
for between group comparisons. FWE-corrected significant differences (.05/8 variables 
comparing healthy control (HC), CUD, and HUD=p<.006; .05/6 comparing CUD and 
HUD=.008 denoted with asterisks. Missing data included three participants’ depression scores 
(original sample: 1 HC; replication sample: 1 HC and 1 HUD); one participant’s drug craving 
score (original sample: 1 HUD), and one participant’s severity of dependence score (replication 
sample: 1 CUD). Missing drug-related values were substituted with their respective measures’ 
mean scores across the entire substance use disorder (SUD) samples (mean drug craving=44.4; 
mean severity of dependence=8) to maintain group size and study-specific templates across 
analyses. HU: value differs from that of HUD participants. HC: value differs from that of HC 
participants. 

Table 2. Substance-general and specific gray matter volume differences. 

Clusters are corrected to p<.05 following permutation-based non-parametric hypothesis testing 
and threshold-free cluster enhancement. †: Clusters reflecting trends in replication analyses as 
identified by one-tailed t-tests. Voxel locations are presented in MNI space, sorted by y-axis 
coordinates (anterior to posterior).  

Figure 1. Ventromedial prefrontal cortex gray matter volume reductions in heroin use disorder. 

Heroin-addicted individuals in the original sample (n=60) exhibited significantly reduced 
ventromedial prefrontal cortex gray matter volume (left panel; whole-brain corrected to p<.05) 
compared to healthy control subjects. This effect showed a similar trend (p=.059) in the extended 
sample (n=96; right panel) within an a priori combined bilateral mask of the ventromedial 
prefrontal cortex, inferior frontal gyrus, and striatum denoted in white (small volume corrected to 
p<.05). Contrasts in both analyses were corrected for age and total brain volume. 

Figure 2. Nucleus accumbens gray matter volume reductions in heroin use disorder. 

Heroin-addicted individuals in the original sample (n=60) exhibited significantly reduced left 
nucleus accumbens gray matter volume (left panel; whole-brain corrected to p<.05) compared to 
healthy control participants. This effect was replicated in the extended sample (n=96; right panel) 
within an a priori combined bilateral mask of the ventromedial prefrontal cortex, inferior frontal 
gyrus, and striatum denoted in white (small volume corrected to p<.05). Contrasts in both 
analyses were corrected for age and total brain volume. 

Figure 3. Inferior frontal gyrus gray matter volume reductions in cocaine compared to heroin use 
disorder. 

Cocaine-addicted individuals in the original sample (n=60) exhibited significantly reduced right 
inferior frontal gray matter volume (left panel; whole-brain corrected to p<.05) compared to 
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heroin-addicted individuals. This effects was replicated in the extended sample (n=96; right 
panel) within an a priori combined bilateral mask of the ventromedial prefrontal cortex, inferior 
frontal gyrus, and striatum, denoted in white (small volume corrected to p<.05). Contrasts in 
both analyses were corrected for age and total brain volume. 

Figure 4. Increased posterior putamen volume as a function of drug craving in cocaine compared 
to heroin use disorder. 

Posterior putamen volume was more positively correlated with cocaine craving in cocaine-
addicted individuals compared to heroin craving in heroin-addicted individuals in our original 
sample (n=60; left panel; whole-brain corrected to p<.012 for multiple comparisons). This effect 
was supported in the extended sample (n=96; right panel) within an a priori combined bilateral 
mask of the ventromedial prefrontal cortex, inferior frontal gyrus, and striatum denoted in white 
(small volume corrected, p=.039). Contrasts in both analyses were corrected for age and total 
brain volume. 
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Table 1. Sample profile. 

 Original sample (N=60) Replication sample (N=96) 

 HC (n=20) CUD (n=20) HUD (n=20) p HC (n=32) CUD (n=32) HUD (n=32) p 

Age 41.4 (8.8) 42.8 (7.3) 40.9 (10.0) 0.766 41.1 (8.8) 43.4 (7.4) 40.2 (8.8) 0.304 

Sex (female/male) 5/15 5/15 6/14 0.918 6/26 6/26 7/25 0.936 

Race  

(Black/White/Other) 
14/3/3 HU 13/2/5 HU 3/12/5 <0.001* 22/6/4 HU 21/4/7 HU 3/22/7 <0.001* 

Education 12.7 (1.9) 12.3 (1.7) 12.4 (2.4) 0.862 12.9 (1.7) 12.3 (1.5) 12.2 (2.3) 0.269 

Nonverbal IQ 11.3 (2.2) 11.1 (2.6) 11.3 (2.1) 0.894 10.8 (2.3) 10.8 (2.6) 10.7 (2.7) 0.993 

Verbal IQ 97.5 (11.0) 94.6 (13.2) 92.0 (12.2) 0.372 99.4 (9.6) 94.4 (12.6) 94.0 (12.2) 0.121 

Depression 6.63 (8.1) 6.80 (6.3) 10.9 (11.1) 0.230 5.53 (7.0) HU 7.53 (7.4) 13.7 (12.3) 0.002* 

Cigarette smoker  

(Current/Past/Never) 
9/3/8 16/4/0 HC 20/0/0 HC <0.001* 9/7/16 25/6/1 HC 32/0/0 HC <0.001* 

Severity of Dependence -- 5.15 (4.9) 10.1 (4.0)   0.001*   -- 5.48 (5.1) 10.4 (3.6)  <0.001*  

Days since last use --  168 (565)  235 (303)    0.646   --  241 (545)  199 (258)    0.697   

Past month use -- 6.7 (9.1) 0.05 (0.2) 0.004* -- 5.62 (8.2) 0.22 (0.7) <0.001* 

Lifetime use in years -- 18.2 (7.6) 12.0 (8.3)   0.017   -- 16.5 (8.4) 11.0 (7.7)   0.009   

Drug craving -- 46.4 (27.4) 42.3 (18.6)   0.585   -- 43.8 (27.7) 42.8 (15.9)   0.873   

Withdrawal -- 4.87 (3.7) 3.35 (3.8)   0.206   -- 4.39 (3.2) 3.16 (3.4)   0.141   

Note: Cocaine and heroin craving and withdrawal measures were acquired using different questionnaires, thus cocaine craving and withdrawal 
responses in cocaine use disorder (CUD) and heroin craving and withdrawal responses in heroin use disorder (HUD) were range-corrected for 
between group comparisons. FWE-corrected significant differences (.05/8 variables comparing healthy control (HC), CUD, and HUD=p<.006; 
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.05/6 comparing CUD and HUD=p<.008) denoted with asterisks. Missing data included three participants’ depression scores [original sample: 
1 HC; replication sample: 1 HC and 1 HUD]; one participant’s drug craving score (original sample: 1 HUD), and one participant’s severity of 
dependence score (replication sample: 1 CUD). Missing drug-related values were substituted with their respective measures’ mean scores 
across the entire substance use disorder (SUD) samples (mean drug craving=44.4; mean severity of dependence=8) to maintain group size and 
study-specific templates across analyses. HU: value differs from that of HUD participants. HC: value differs from that of HC participants. 
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Table 2. Substance-general and specific gray matter volume differences. 

 Original sample (N=60) Replication sample (N=96) 

    MNI    MNI 

 Contrast Region Voxels p x y z Region Voxels p x y z 

HC>SUD Ventromedial PFC 102 .039 -4 36 -26 Ventromedial PFC † 38 .059 -4 30 -28 

SUD>HC No significant clusters No significant clusters 

HC>CUD No significant clusters No significant clusters 

CUD>HC No significant clusters No significant clusters 

HC>HUD Ventromedial PFC 325 .013 2 26 -24 Ventromedial PFC 167 .006 -4 28 -26 

 Nucleus accumbens 69 .045 -10 12 -10 Putamen/Nucleus accumbens 86 .037 -16 8 -12 

 Orbitofrontal cortex 3 .049 12 6 -22 Orbitofrontal cortex † 8 .091 14 8 -18 

 Orbitofrontal cortex 50 .042 -14 6 -24 Caudate † 22 .082 14 4 12 

 Pons 1,801 .004 12 -18 -38 -- -- -- -- -- -- 

HUD>HC No significant clusters Inferior frontal gyrus 166 .010 -56 16 16 

HUD>CUD Inferior frontal gyrus 129 .029 56 18 6 Inferior frontal gyrus 347 .005 56 18 8 

CUD>HUD Pons 257 .033 8 -14 -34 -- -- -- -- -- -- 

 -- -- -- -- -- -- Ventromedial PFC † 11 .074 -4 22 -26 

Clusters are corrected to p<.05 following permutation-based non-parametric hypothesis testing and threshold-free cluster enhancement. †: Clusters 
reflecting trends in replication analyses as identified by one-tailed t-tests. Voxel locations are presented in MNI space, sorted by y-axis coordinates 
(anterior to posterior).  
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