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Abstract 

 

Purpose 

Cancer patients are concerned about treatment-related cognitive problems. We 

examined effects of antiestrogen hormonal therapy on brain imaging metrics in older 

women with breast cancer. 

 

Methods 

Women aged 60+ treated with hormonal therapy only and matched non-cancer controls 

(n=29/group) completed MRI and objective and self-reported cognitive assessment at 

pre-treatment/enrollment and 12 months later. Gray matter was examined using voxel-

based morphometry (VBM), FreeSurfer, and brain age calculations. Functional MRI 

(fMRI) assessed working memory-related activation. Analyses examined cross-sectional 

and longitudinal differences and tested associations between brain metrics, cognition, 

and days on hormonal therapy. 

 

Results 

The cancer group showed regional reductions over 12 months in frontal, temporal, and 

parietal gray matter on VBM, reduced FreeSurfer cortical thickness in prefrontal, 

parietal, and insular regions, and increased working memory-related fMRI activation in 

frontal, cingulate, and visual association cortex. Controls showed only reductions in 

fusiform gyrus on VBM and FreeSurfer temporal and parietal cortex thickness. Women 

with breast cancer showed higher estimated brain age and lower regional gray matter 

volume than controls at both timepoints. The cancer group showed a trend toward 
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decreased performance in attention, processing speed, and executive function over 

time. There were no significant associations between brain imaging metrics and 

cognition or days on hormonal therapy. 

 

Conclusion 

Older women with breast cancer showed brain changes in the first year of hormonal 

therapy. Increased brain activation during working memory processing may be a sign of 

functional compensation for treatment-related structural changes. This hypothesis 

should be tested in larger samples over longer time periods. 
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Introduction 

 

Breast cancer is the second most common cancer in US women, and over half of those 

diagnosed annually are ages 60 and older [1]. Seventy-five percent will be treated with 

5-10 years of antiestrogen hormonal therapy (HT) [2-4], which is effective at reducing 

breast cancer recurrence through downregulating the action of estrogen in the body [3]. 

Estrogen is closely linked with cognitive function, especially in older women [5], and 

HTs cross the blood-brain barrier [6, 7], raising questions about the potential for 

cognitive side effects of this common treatment modality [6-8]. 

 

Despite years of clinical use, the extent to which HT affects cognition remains unclear 

due to limited research, inconsistent results, and differences in study design [9-21]. 

Recent results from the TAILORx trial comparing chemotherapy plus HT to HT alone 

showed self-reported cognitive concerns in both groups [22], and others have described 

worse self-reported cognition in women with breast cancer taking HT than non-cancer 

controls, despite little difference on cognitive testing [23]. We have also reported greater 

cognitive and other symptom burden in women with breast cancer on HT than non-

cancer controls, and found that perceived cognitive difficulties are a risk factor for 

discontinuing HT [24, 25]. 

 

While extensively used to examine structural and functional brain changes after breast 

cancer chemotherapy [26-30], neuroimaging has not been widely applied to examine 

the impact of HT. Lower hippocampal volume and resting hippocampal-prefrontal 
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functional connectivity have been reported in women with breast cancer taking 

tamoxifen [31, 32], and Hurria and colleagues found metabolic changes on FDG-PET in 

post-menopausal women with breast cancer taking an aromatase inhibitor, notably in 

regions relevant to aging [33]. HT exposure intersects with known changes to the brain 

and cognitive function associated with aging and menopause that are being actively 

investigated using neuroimaging. Therefore, better understanding of HT effects on the 

brain is clinically relevant for older women with breast cancer. 

 

This single-site study examined a subset of the larger Thinking and Living with Cancer 

(TLC) prospective cohort [34, 35] who underwent neuroimaging. We used structural and 

functional MRI metrics to compare older women with breast cancer from pre-HT 

baseline to 12-month follow-up with matched non-cancer controls. We tested whether 

older women with breast cancer on HT exhibited different patterns of change in brain 

structure and function in the first year of therapy relative to controls, and explored if 

changes were related to self-reported and objective cognitive outcomes. Given the 

small number of participants available from this single-site sample, these analyses are 

intended to be hypothesis-generating to guide future research. 

 

Participants and Methods 

 

The TLC Study is a national multicenter prospective cohort study (NCT03451383); 

overall study methods have been detailed previously [34, 35]. All data for this report 

were gathered between 2016-2020 at Indiana University (IU), the only TLC site 
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conducting neuroimaging. Written informed consent was obtained from all participants 

according to the Declaration of Helsinki under a protocol approved by the IU Institutional 

Review Board. 

 

Participants  

Women with breast cancer are eligible for the TLC study if they have a new diagnosis of 

primary non-metastatic breast cancer. Those with a history of other cancers (except 

non-melanoma skin cancer) are excluded if active treatment was <5 years or included 

systemic therapy. All participants (cancer and non-cancer control groups) are women 

aged >60 years; exclusion criteria include neurological or major psychiatric disorders or 

sensory impairment precluding assessment. All TLC participants at IU are offered the 

opportunity to participate in MRI scanning, and screened for MRI safety/claustrophobia 

if interested. For this study of effects of HT, we included women with breast cancer 

treated with adjuvant HT but not chemotherapy who had MRI data at both pre-HT 

baseline and 12-month follow-up (n=29). Two additional women with breast cancer who 

took HT for <2 months and one who was prescribed raloxifene primarily for osteoporosis 

were excluded from analysis. We selected 29 controls with baseline and 12-month 

follow-up data who best matched the cancer group for age and education as a 

comparison group. 

 

Data Collection 

Assessments were completed at baseline (post-surgery, pre-radiation and/or HT) and 

12-month follow-up, and included a survey capturing demographic, health history, and 
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symptom information, neuropsychological testing, and neuroimaging. Clinical 

information was abstracted from medical records of women with breast cancer.  

 

Cognitive Measures 

Objective cognitive assessment included domain-specific z-scores for attention, 

processing speed, and executive functioning (APE) and verbal learning and memory 

(LM). The APE domain consisted of the Digits Forward and Digits Backward subtests 

from the Neuropsychological Assessment Battery (NAB), Trail Making Tests A and B, 

the Controlled Oral Word Association Test, and the Digit Symbol subtest from the 

Wechsler Adult Intelligence Scale-III [36-39]. The LM domain consisted of the Logical 

Memory I and II subtests from the Wechsler Memory Scale-III and the Immediate 

Recall, Short Delayed Recall, and Long Delayed Recall scores from the NAB List 

Learning Test [38, 40]. Raw neuropsychological test scores were standardized to the 

baseline mean and standard deviation of the overall TLC control group, stratified by age 

and education, which were used to calculate the APE and LM domain scores.  

 

Self-reported cognition was assessed using the Perceived Cognitive Impairments (PCI) 

score from the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-

Cog) [41]. 

 

Psychosocial and Clinical Measures 

We used several psychosocial and clinical measures to characterize the study sample. 

Baseline verbal intellect was estimated using the Wide Range Achievement Test-4 
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Word Reading subtest [42]. Depressive and anxiety symptoms were assessed with the 

Center for Epidemiologic Studies-Depression Scale (CES-D) and the State-Trait Anxiety 

Inventory (STAI) State subscale [43, 44]. Past use of menopausal hormone 

replacement therapy, age at menopause, and days on HT were based on self-report 

and data from the medical record. 

  

MRI scan acquisition 

All scans were acquired on the same Siemens Prisma 3T scanner using a 64-channel 

head and neck coil. A T1-weighted three-dimensional magnetization prepared rapid 

gradient echo (MPRAGE) volume was used for voxel-based morphometry (VBM), 

FreeSurfer, and brain age calculations. A gradient-echo, echo-planar sequence was 

used for fMRI (see Online Resource 1 for sequence parameters).  

 

Working Memory fMRI Task 

A visual-verbal n-back task was used to elicit brain activation during working memory 

processing, as in our previous studies [45-60] and as recommended by the International 

Cognition and Cancer Task Force [61] (see Online Resource 1 for details).  

 

Neuroimaging Preprocessing and Analysis 

Voxel-Based Morphometry (VBM) 

VBM was used to examine gray matter volume across the whole brain. T1-weighted 

images were processed using the standard longitudinal pipeline in Computational 

Anatomy Toolbox for SPM12 (CAT12.6). Statistical models were generated using a 
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flexible factorial design to examine within- and between-group longitudinal changes, 

including group-by-time interactions, and a full factorial design to examine between-

group cross-sectional differences (see Online Resource 1 for details). Overall 

significance was set at family-wise error (FWE) correction p=0.05. Clusters were 

considered significant at cluster-level puncorrected<0.05. Participant mean values for 

clusters showing significantly reduced gray matter volume from baseline to follow-up 

were extracted using MATLAB for correlational analyses. 

 

FreeSurfer 

Cortical and volumetric segmentation was performed on T1-weighted images using the 

longitudinal FreeSurfer 6.0.0 pipeline [62]. A within-subject template image was created 

and used for skull stripping, Talairach transforms, and atlas registration prior to 

segmentation. For data reduction purposes, selected regional values were summed 

bilaterally to create prefrontal, temporal, parietal, basal ganglia, thalamus, limbic, and 

insular volumes and prefrontal, temporal, and parietal thicknesses (Online Resource 2). 

Participant mean values for regions showing significantly reduced gray matter thickness 

from baseline to follow-up were used for correlational analyses.  

 

Brain Age 

Predicted brain age values were generated with brainageR (version 1.0, 

https://github.com/james-cole/brainageR/releases/tag/1.0), which uses SPM12 and 

KernLab in R [63]. T1-weighted follow-up scans were registered to the baseline scan for 

each participant and then segmented. Predicted brain age was calculated using 
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machine-learning Gaussian Process Regression (GPR) based on a training dataset of 

2001 healthy individuals [64-66].  

 

Task-Based fMRI 

Preprocessing steps are detailed in Online Resource 1. Analyses focused on the most 

challenging working memory load condition (2-back>0-back). Statistical models were 

generated using a flexible factorial design to examine within- and between-group 

longitudinal changes, including group-by-time interactions, and a full factorial design to 

examine between-group cross-sectional differences. Overall cluster-level significance 

was set at p=0.001. Clusters were considered significant at cluster-level puncorrected<0.05. 

Participant mean values for clusters showing significantly increased activation from 

baseline to follow-up were extracted using MATLAB for correlational analyses. 

 

Other Statistical Analyses 

T-tests and chi-square tests were used for between-group comparisons of 

demographic, cognitive, psychosocial, and clinical variables, self-reported and objective 

cognition, and FreeSurfer and brain age variables, as well as between-group 

differences in change over time. For FreeSurfer volume variables, analyses controlled 

for baseline total intracranial volume. Within-group longitudinal comparisons used 

paired t-tests. In the cancer group, Pearson’s correlations examined relationships 

between change in neuroimaging variables, change in self-reported and objective 

cognitive outcomes, and days on HT. Analyses used SAS Version 9.4.b, and p<0.05 

was considered statistically significant. 
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Given the minimal previous neuroimaging literature examining HT effects, we conducted 

three types of comparisons to best understand the data and generate hypotheses for 

future, larger studies. First, cross-sectional comparisons were conducted at each 

timepoint. It is important to examine baseline neuroimaging metrics in this older sample 

given pre-treatment neuroimaging differences found between younger women with 

breast cancer and controls [47, 67-70]. Cross-sectional differences at 12-month follow-

up are also important for hypothesis generation, as our available sample size might limit 

power to detect differences in longitudinal change metrics. Second, within-group 

longitudinal change was examined to identify metrics showing significant alterations 

over 12 months. Third, we examined between-group differences in change over time 

(i.e., group-by-time interactions), to directly compare change in the cancer and control 

groups. 

 

Results 

 

Sample Characteristics 

Groups were generally comparable at baseline (Table 1). The cancer group showed 

higher depressive symptoms (p<0.01) and a trend toward higher anxiety symptoms at 

baseline (p=0.06). Mean symptom levels were well below clinically meaningful 

thresholds [71, 72], however, and there were no significant between-group differences 

in change over time for depressive or anxiety symptoms (ps>0.30), so these variables 

were not included as covariates in analyses.  
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Objective and Self-Reported Cognitive Functioning 

Self-reported and objective cognitive function did not differ between groups at baseline 

(Table 2). At follow-up the breast cancer group showed a trend toward lower 

performance than controls in APE (p=0.07). Between-group comparison of change 

scores showed a trend level difference (p=0.09) for this scale, with controls showing 

significantly improved performance over time (p=0.03), consistent with practice effects, 

while women with breast cancer showed no change. There were no other significant 

findings for self-reported or objective cognition. 

 

Whole-Brain Voxel-Based Morphometry 

Women with breast cancer showed significantly lower gray matter volume than controls 

in a right frontal cluster (BA6) at both baseline and follow-up (Figure 1, Table 3). The 

cancer group showed significantly reduced gray matter volume over time in left temporal 

(BA38) and parietal (BA40) and bilateral frontal regions (BA10, BA44, and BA47) 

(Figure 2A, Table 3). Controls showed a single cluster of significant gray matter volume 

reduction in the right fusiform gyrus (BA37) (Figure 2B, Table 3). There were no regions 

at either timepoint in which gray matter volume was significantly greater in women with 

breast cancer than controls, and no regions of increased volume over time in either 

group. No clusters were significant in group-by-time interactions. 

 

FreeSurfer Regional Analyses 
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Women with breast cancer showed significantly lower volume than controls at both 

baseline and follow-up in prefrontal and temporal cortex (ps=0.02-0.008, Table 2). 

There was a trend for lower basal ganglia volume in the cancer group at both timepoints 

(ps=0.05-0.06). Insular volume showed a trend for lower volume in the cancer group at 

baseline, with increased significance at follow-up (ps=0.06 and 0.045, respectively). 

There were no significant within-group longitudinal changes in regional FreeSurfer 

volumes, nor between-group differences in change over time.  

 

Women with breast cancer showed significant reduction over time in prefrontal, parietal, 

and insular cortex thickness (ps<0.05), as well as a trend toward lower insular cortex 

thickness relative to controls at follow-up (p=0.07). Controls showed reductions over 

time in temporal and parietal cortex thickness (ps=0.03-0.004). There were no 

significant between-group differences for cortical thickness at baseline or change over 

time. 

 

Brain Age 

Estimated brain age for controls was ~five years younger than chronological age on 

average, while estimates for women with breast cancer were comparable to 

chronological age; these significant group differences were observed at both baseline 

and follow-up (p=0.03, Table 2). There was no significant between-group difference in 

change in estimated brain age over time.  

 

Working Memory fMRI 
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There were no significant between-group differences in task-related activation at 

baseline, but at follow-up women with breast cancer showed significantly greater 

working memory-related activation than controls in right dorsolateral prefrontal (BA9) 

and dorsal posterior cingulate cortex (BA31) (Figure 3, Table 4). The cancer group 

showed significantly increased activation over time in right frontal (BA6, BA44, BA47) 

and visual association (BA19) and left frontal (BA6, BA9) and cingulate (BA23, BA32) 

cortex (Figure 4, Table 4). There were no regions in which women with breast cancer 

showed significantly decreased activation or in which controls showed significant 

change over time. No clusters were significant in group-by-time interactions. 

 

Relationships of Brain Changes to Cognition and Time on Treatment 

There were no significant correlations between change in VBM gray matter volume, 

FreeSurfer thickness, or working memory-related activation in women with breast 

cancer and change in APE, LM, FACT-Cog PCI, or 2-back accuracy or reaction time (all 

ps>0.05). There were also no significant correlations between these variables and days 

on HT (all ps>0.05).  

 

Discussion 

 

This is the first MRI study examining effects of the first 12 months of HT in older women 

with breast cancer. We used multiple structural and functional neuroimaging metrics 

and compared results to a demographically matched non-cancer control group. Women 

with breast cancer showed reductions in gray matter volume and cortical thickness over 
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time that were not seen in controls. Brain age was higher in the cancer group than 

controls before therapy, an effect which persisted over time. While there were no 

significant associations between brain imaging metrics and cognition, women with 

breast cancer showed increased activation during working memory processing that was 

not seen in controls. Finally, in this first year of HT, there was no significant relationship 

between time on treatment and brain metrics. These results support the need for future 

examination of the role of HT in cancer-related cognitive decline over longer time 

periods.  

 

Our findings in this small sample reveal a pattern of structural brain changes in the first 

year of HT. The few prior neuroimaging studies [31-33] of HT effects focused on single 

imaging modalities, single brain regions, or on women prescribed only tamoxifen or AIs; 

the one prior longitudinal study had only a six-month assessment interval. Given these 

limitations in comparability, it is noteworthy that the previous work also found regional 

gray matter reductions, as well as alterations in resting functional connectivity and 

cerebral metabolism related to HT. Our findings encourage the use of multiple, 

complementary imaging analytic methods and modalities in future work to increase 

sensitivity to detect differences in grey matter volume and thickness and brain 

activation.  

 

Our finding that women with breast cancer had a higher estimated brain age and lower 

frontal and temporal gray matter volume than controls before systemic treatment is 

consistent with literature showing pre-treatment structural differences [67-70]. Such 
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results are thought to reflect a potential contribution of other factors (e.g., other medical 

comorbidities, including cancer risk factors or disease processes, surgery or anesthesia 

exposure [73]) to brain function and cognition in individuals with cancer.  

 

The observed neuroimaging changes were not directly associated with cognitive 

functioning or time on HT, raising several questions for future research. It may be that 

the first year of therapy is too limited an observation period (i.e., restricted range of 

length of time on HT). It is also possible that cumulative HT effects may take longer to 

manifest in detectable cognitive changes, or that the influence of HT is more complex 

than a function of additive exposure time. Notably, our results also suggest that 

functional compensatory mechanisms could be sustaining cognitive performance in the 

cancer group, despite the observed reductions in gray matter volume and thickness. We 

saw increased working memory-related brain activation in women with breast cancer 

over time, and greater activation in the cancer group than controls at follow-up. Given 

comparable task performance between groups, this may represent a compensatory 

response to maintain cognitive function, as has been hypothesized in other studies of 

women with breast cancer [45-47, 74, 75]. It will be important to examine larger, more 

heterogeneous samples and to follow women over a longer time period, given the 

potential for years of HT exposure. If increased brain activation is compensatory, this 

may suggest vulnerability for future cognitive changes when compensatory mechanisms 

and/or the benefits of higher baseline cognitive reserve are exhausted. HT exposure 

over the recommended 5-10 years has the potential to interact with other risks for 

cognitive decline (e.g., medical comorbidities, cognitive aging, dementia). Furthermore, 
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while we only examined women who did not receive chemotherapy, HT and 

chemotherapy effects may be additive, especially as similar frontal and temporal 

regions appear vulnerable to effects of both types of treatment [26-30].  

 

Much of the research studying cognitive effects of HT has focused on tamoxifen [8, 20, 

21]. However, as in our study, post-menopausal women with breast cancer are most 

often prescribed aromatase inhibitors, which downregulate estrogen synthesis in the 

body and brain. Different classes of HT may have varying effects, but there were too 

few women on tamoxifen (only 28% of our sample) to compare regimen types. Future 

studies in broader age groups may be able to test hypotheses based on modes of 

action of different classes of HT. Overall, however, our findings suggest brain changes 

following HT exposure. These results are consistent with literature showing links 

between menopause, estrogen function, and changes in cognition and brain structure 

and function [76-80], as well as studies examining the potential for estrogen 

replacement therapy to protect the brain from cognitive decline and dementia [81, 82]. A 

prior fMRI study found greater working memory-related prefrontal activity in post-

menopausal compared to pre- or peri-menopausal women [83], parallel to our finding 

that post-menopausal women with breast cancer on HT showed greater activation 

relative to controls. In a study of >500 post-menopausal women, younger brain age was 

associated with higher levels of circulating estrogen in APOE ε4 noncarriers, but the 

opposite pattern was seen in APOE ε4 carriers [84]. Since HTs cross the blood-brain 

barrier, their effects on brain estrogen levels are one biologically plausible explanation 
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for brain changes and cognitive problems among women with breast cancer receiving 

HT.  

 

This study used a comprehensive battery of MRI and cognitive metrics to generate 

clinically relevant hypotheses to fill gaps in knowledge about unanswered questions 

regarding effects of HT. Given the preliminary nature of our observations, there are 

several limitations that should be considered in evaluating the results and planning 

future studies. The sample size is small, which may have limited our ability to detect 

significant differences between groups or over time; however, our early data will be 

useful to inform power estimates for future studies. Clinical guidelines recommend that 

women diagnosed with hormone receptor positive breast cancers receive HT, so there 

were only four women with breast cancer in our neuroimaging study cohort who did not 

receive systemic treatment. Thus, we could not evaluate the effects of cancer itself over 

time separately from therapy. Participants were largely white; it is especially critical to 

study relationships between HT, cognition, and brain structure and function in 

minoritized individuals and samples from diverse backgrounds, who may have unique 

patterns of effects and contributing factors. Our sample was well-educated and likely 

representative of high cognitive reserve; it will be important to examine women with 

varying levels of cognitive reserve to discern potential differences in effects. The 

protocol also did not include testing of FSH/LH levels to explore effects of estrogen 

status. Finally, since this is an observational study, treatment type and adherence were 

subject to individual differences and introduced exposure variability. One opportunity to 
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accelerate knowledge would be to add neuroimaging and cognitive assessments to 

randomized HT trials.  

 

Overall, we found a clinically relevant pattern of structural and functional brain changes 

in post-menopausal women with breast cancer on HT that was not seen in non-cancer 

controls. HT is prescribed for the majority of women with breast cancer and is effective 

for preventing cancer recurrence. If confirmed, however, our results suggest there may 

be potential side effects from downregulating estrogen function in the brain among post-

menopausal women. It will be important to replicate and extend our findings to longer-

term outcomes in larger samples. Such studies will also be useful to determine which 

factors place women at greatest risk for brain changes on HT (e.g., APOE ε4 genotype 

[85] or comorbidities), since any adverse brain effects can have a broad impact on 

quality of life and health care costs among the growing population of older breast cancer 

survivors. 
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Figure Captions 

 

Fig. 1 Voxel-based morphometry (VBM): Lower gray matter volume in older women with 

breast cancer treated with hormonal therapy relative to non-cancer controls at A) pre-

treatment baseline and B) 12-month follow-up (Overall FWE-corrected p<0.05, cluster-

level puncorrected<0.05) 

 

Fig. 2 Voxel-based morphometry (VBM): Reduced gray matter volume from baseline to 

12-month follow-up in A) Older women with breast cancer treated with hormonal therapy 

and B) Non-cancer controls (Overall FWE-corrected p<0.05, cluster-level 

puncorrected<0.05) 

 

Fig. 3 Greater working memory-related functional MRI activation (2-Back>0-Back) in 

older women with breast cancer treated with hormonal therapy relative to non-cancer 

controls at 12-month follow-up (Overall p<0.001, cluster-level puncorrected<0.05) 

 

Fig. 4 Increased working memory-related functional MRI activation (2-Back>0-Back) 

from baseline to 12-month follow-up in older women with breast cancer treated with 

hormonal therapy (Overall p<0.001, cluster-level puncorrected<0.05) 
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Table 1. Sample Characteristics 
 Women with Breast 

Cancer Treated with 
Hormonal Therapy (n=29) 

Non-Cancer Controls 
(n=29) 

p 

Age at baseline (years) 67.7 (4.8) 66.8 (3.9) 0.44 
Education (years) 15.8 (2.0) 15.6 (1.8) 0.63 
WRAT-4 Word Reading standard score at baseline 111.0 (17.0) 108.4 (13.8) 0.54 
CES-D total score at baselinea 
(0-60; Higher=More depressive symptoms)  

9.9 (8.0) 3.8 (5.7) <0.01 

STAI-State score at baselineb 
(20-80; Higher=More anxiety) 

30.9 (9.3) 26.8 (6.7) 0.06 

Race (% White, Non-Hispanic) 100.0 96.6 0.31 
Age at menopause (years) 48.2 (6.0) 50.0 (5.4) 0.24 
Ever taken hormone replacement therapy (%) 58.6 51.7 0.60 
Interval between baseline and 12-month follow-up (days) 375.9 (24.3) 378.2 (26.5) 0.74 
AJCC cancer stage (n, %)    
   0 (DCIS) 8, 27.6   
   I 17, 58.6   
   II 4, 13.8   
Hormonal Therapy initially takenc    
   Anastrozole 20   
   Tamoxifen 8   
   Letrozole 1   
Cumulative days taken Hormonal Therapy at follow-upd 306.7 (75.9)  

range 111-399 
  

Values are mean (SD) unless otherwise indicated 
aA score of >16 suggests clinically significant symptoms67 

bA score of >55 suggests clinically significant symptoms68 

c3 women changed from anastrozole to letrozole, 1 changed from anastrozole to exemestane, and 1 changed from 
anastrozole to tamoxifen, all due to physical side effects 
d6 women were off hormonal therapy for periods of time ranging from 23-122 days between baseline and 12-month 
follow-up, including 3 who discontinued treatment 23-36 days prior to 12-month follow-up 
AJCC=American Joint Committee on Cancer; CES-D=Center for Epidemiologic Studies Depression Scale; 
DCIS=Ductal Carcinoma In Situ; STAI-State=State-Trait Anxiety Inventory State Scale; WRAT=Wide Range 
Achievement Test 
p<0.1 p<0.01
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FACT-Cog=Functional Assessment of Cancer Therapy-Cognitive Function Scale; FS=FreeSurfer; PCI=Perceived Cognitive Impairments p<0.1 p<0.01

Table 2. Self-Reported and Objective Cognition, FreeSurfer, and Brain Age Results 
     p Values 
  

Mean (SD) 
Cross-Sectional 

Breast Cancer vs. 
Non-Cancer Controls 

Within-Group Change 
(12-Month Follow-Up 

Minus Baseline) 

Between-Group 
Difference in 

Change over Time 
 Breast Cancer Non-Cancer Controls      
 Baseline 12-Month 

Follow-Up 
Baseline 12-Month 

Follow-Up 
Baseline 12-Month 

Follow-Up 
Breast 
Cancer 

Non-Cancer 
Controls 

Breast Cancer vs. 
Non-Cancer 

Controls 
Self-Reported and  
Objective Cognition 

         

FACT-Cog PCI Score (0-72; 
Higher=Better Functioning) 

58.03 (10.94) 56.92 (11.31) 59.62 (9.74) 60.87 (9.62) 0.56 0.16 0.43 0.16 0.16 

Attention, Processing Speed, 
and Executive Functioning 
Domain z score  

0.07 (0.53) 0.07 (0.50) 0.19 (0.59) 0.34 (0.61) 0.41 0.07 0.99 0.03 0.09 

Learning and Memory Domain 
z score  

0.15 (0.77) 0.20 (0.95) 0.13 (0.72) 0.27 (0.90) 0.95 0.78 0.65 0.35 0.63 

2-Back Performance Accuracy  61.82 (27.92) 60.84 (24.92) 72.27 (19.09) 65.17 (29.32) 0.10 0.55 0.97 0.13 0.31 
2-Back Task Reaction Time  0.93 (0.25) 0.94 (0.17) 0.92 (0.23) 0.90 (0.24) 0.84 0.45 0.42 0.63 0.36 
FreeSurfer (FS) and Brain Age          
FS Prefrontal Cortex Volume 127704.34 

(9655.10) 
126399.52 
(9094.32) 

132664.28 
(8933.55) 

131714.90 
(8859.55) 

0.02 0.009 0.46 0.61 0.41 

FS Temporal Cortex Volume 99452.34 
(8143.60) 

98554.34 
(7816.24) 

104277.21 
(8812.70) 

103433.45 
(8973.40) 

0.008 0.008 0.58 0.60 0.84 

FS Parietal Cortex Volume 92385.79 
(8520.61) 

91606.90 
(8491.53) 

94738.45 
(8354.18) 

94183.90 
(8313.07) 

0.24 0.19 0.64 0.72 0.45 

FS Basal Ganglia Volume 18923.73 
(1891.33) 

18826.83 
(1822.76) 

19902.33 
(1837.02) 

19784.19 
(1870.97) 

0.05 0.06 0.84 0.80 0.76 

FS Thalamus Volume 12552.45 
(1193.89) 

12395.37 
(1152.71) 

12692.10 
(1197.39) 

12606.98 
(1252.21) 

0.74 0.54 0.55 0.71 0.19 

FS Limbic Cortex Volume 11884.23 
(1120.03) 

11761.01 
(1131.91) 

11918.12 
(979.69) 

11828.49 
(992.80) 

0.96 0.86 0.65 0.73 0.40 

FS Insula Cortex Volume 13237.31 
(996.89) 

13095.76 
(1007.07) 

13703.72 
(1072.25) 

13593.07 
(1096.37) 

0.06 0.045 0.50 0.63 0.65 

FS Prefrontal Cortex Thickness 55.77 (1.53) 55.50 (1.57) 56.16 (1.18) 55.99 (1.13) 0.28 0.17 0.02 0.16 0.50 
FS Temporal Cortex Thickness 52.47 (1.56) 52.32 (1.75) 52.72 (1.42) 52.51 (1.41) 0.54 0.64 0.24 0.03 0.75 
FS Parietal Cortex Thickness 24.03 (0.79) 23.91 (0.84) 24.21 (0.63) 24.09 (0.62) 0.34 0.35 0.02 0.004 0.98 
FS Insula Cortex Thickness 5.81 (0.21) 5.77 (0.23) 5.88 (0.19) 5.87 (0.19) 0.18 0.07 0.04 0.74 0.17 
Estimated Brain Age (years) 65.61 (7.19) 66.71 (7.73) 60.87 (9.11) 61.91 (9.10) 0.03 0.03 0.004 0.004 0.90 
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Table 3. Voxel-Based Morphometry (VBM) Results (Overall FWE-corrected p<0.05, cluster-level puncorrected<0.05) 

MNI Coordinates k Cluster-Level 
puncorrected 

Z Region Description 

Pre-Treatment Baseline: Non-Cancer Controls>Women with Breast Cancer Treated with Hormonal Therapy (Figure 1A) 

24 2 52 160 0.008 6.74 Right premotor/supplementary motor cortex (BA6) 

12-Month Follow-Up: Non-Cancer Controls> Women with Breast Cancer Treated with Hormonal Therapy (Figure 1B) 

24 2 52 164 0.008 6.72 Right premotor/supplementary motor cortex (BA6) 

Pre-Treatment Baseline>12-Month Follow-Up: Women with Breast Cancer Treated with Hormonal Therapy (Figure 2A) 

-51 14 -10 138 0.001 5.80 Left temporal pole (BA38) 
44 20 -12 141 0.001 5.29 Right pars orbitalis (BA47) 

-52 12 30 47 0.033 5.24 Left inferior frontal gyrus (BA44) 

0 51 15 55 0.023 5.02 Right anterior prefrontal cortex (BA10) 

-45 -40 51 39 0.049 4.92 Left supramarginal gyrus (BA40) 

Baseline>12-Month Follow-Up: Non-Cancer Controls (Figure 2B) 

64 -45 -18 43 0.040 5.14 Right fusiform gyrus (BA37) 

BA=Brodmann Area; FWE=Family-Wise Error; k=cluster extent size (number of voxels); MNI=Montreal Neurological 
Institute
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Table 4. Working Memory-Related Functional MRI (fMRI) Results (overall p<0.001, cluster-level puncorrected<0.05) 

MNI Coordinates k Cluster-Level 
puncorrected 

Z Region Description 

12-Month Follow-Up: Women with Breast Cancer Treated with Hormonal Therapy>Non-Cancer Controls (Figure 3)

22 42 32 107 0.025 4.33 Right dorsolateral prefrontal cortex (BA9) 
6 -42 48 106 0.025 4.20 Right dorsal posterior cingulate cortex (BA31) 

44 30 18 80 0.048 3.55 Right dorsolateral prefrontal cortex (BA9) 

12-Month Follow-Up>Pre-Treatment Baseline: Women with Breast Cancer Treated with Hormonal Therapy (Figure 4)

-40 0 44 118 0.015 4.77 Left premotor/supplementary motor cortex (BA6) 
52 14 10 453 <0.001 4.62 Right inferior frontal gyrus (BA44) 

-8 30 26 164 0.005 4.61 Left dorsal anterior cingulate cortex (BA32) 

38 4 26 113 0.016 4.35 Right premotor/supplementary motor cortex (BA6) 

-2 -36 36 92 0.028 4.05 Left ventral posterior cingulate cortex (BA23) 

40 42 -2 93 0.027 3.93 Right pars orbitalis (BA47) 

34 -76 18 78 0.040 3.79 Right visual association cortex (BA19) 

-36 32 26 87 0.032 3.67 Left dorsolateral prefrontal cortex (BA9) 

BA=Brodmann Area; k=cluster extent size (number of voxels); MNI=Montreal Neurological Institute 
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Online Resource 1 Supplementary Methodological Information 

 

Scan Parameters 

MPRAGE: repetition time (TR)=2300ms, echo time (TE)=2.95ms, flip angle (FA)=9°, 

field of view (FOV)=270x253mm, 256x240 matrix, 176 1.2mm-thick contiguous sagittal 

slices, voxel size 1.1x1.1x1.2mm, scan time 5:12 

fMRI: TR=1200 ms, TE=29ms, FA=65°, FOV=220x220mm, 88x88 matrix, number of 

excitations (NEX)=1, multi-band=3, 54 interleaved 2.5mm-thick contiguous axial slices, 

voxel size 2.5x2.5x2.5mm, scan time 6:10 

A 3D fluid-attenuated inversion recovery (FLAIR) sequence was also acquired, and 

reviewed along with the MPRAGE by a board-certified neuroradiologist to rule out 

incidental pathology. Image quality was assessed during scan acquisition and at 

multiple preprocessing steps (e.g., accuracy of skull stripping, alignment of individual 

images to templates). 

 

Working Memory fMRI Task 

During scanning, participants saw a string of consonant letters (except L, W, and Y) 

presented one every three seconds. Task conditions were 0-, 1-, and 2-back, in a 

blocked design. For each consonant, participants used a button press device to signify 

whether the current letter was a match (i.e., was the same as the designated target or 

the letter presented 1- or 2-back in the sequence) or a nonmatch. Each condition was 

presented in 27-second epochs preceded by three seconds of instruction (e.g., “the 

match is one back”). The three experimental conditions were each presented three 
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times in pseudorandom order for a total of nine task blocks. Participants rehearsed a 

practice version of the task before scanning to ensure that they understood the 

demands of the task. Stimuli were presented through an MRI-compatible projection 

system and programmed in Presentation, which recorded response accuracy and 

reaction times. 

 

Voxel-Based Morphometry (VBM) Preprocessing 

VBM was used to examine gray matter volume across the whole brain using the 

standard longitudinal pipeline in Computational Anatomy Toolbox for SPM12 (CAT12.6). 

T1-weighted follow-up scans were registered to the baseline scan for each participant. 

Scans were then registered to the Montreal Neurological Institute (MNI) T1-weighted 

template and segmented into gray matter, white matter, and cerebrospinal fluid 

compartments using the MNI T1-weighted template and corresponding tissue probability 

maps. Gray matter maps were then spatially normalized to MNI space, resampled to 

1.5mm isotropic voxels, and smoothed using an isotropic Gaussian spatial filter 

(FHWM=8mm) to reduce residual inter-individual variability. The smoothed, normalized 

gray matter maps were subjected to statistical parametric mapping on a voxel-by-voxel 

basis using the general linear model as implemented in SPM12 using total intracranial 

volume (generated by CAT12.6) as a covariate. The SPM prior probability gray matter 

template was used to restrict the statistical comparisons to the gray matter 

compartment. Statistical models were generated using a flexible factorial design to 

examine within- and between-group longitudinal changes, including group-by-time 

interactions (factors: 1) subject, baseline and follow-up scans for each participant, 2) 
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group, two independent levels, breast cancer and control, 3) time, two non-independent 

levels, baseline and follow-up), and a full factorial design to examine between-group 

cross-sectional differences (factors: 1) group, two independent levels, breast cancer 

and control, 2) time, two non-independent levels, baseline and follow-up). 

 

Task-Based fMRI Preprocessing 

For each participant’s echo-planar fMRI series the susceptibility-induced field was 

estimated and corrected using reverse phase-encoded imaging pairs with FSL 6.0.0 

Topup [1]. Slice timing correction was performed with a slice order file using slicetimer 

in FSL. Corrected fMRI data were then processed with Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC version 3.15) using 

the following parameters: high pass filter cutoff=100s, MCFLIRT motion correction, and 

spatial smoothing FWHM=6mm. Auto classification and removal of ICA components 

were completed with FMRIB’s ICA-based Xnoiseifier (FIX) version 1.06 [2, 3] using an 

in-house generated independent training set of 23 protocol-specific, age-matched 

healthy controls. Filtered data were then coregistered and normalized to MNI 2x2x2mm3 

standard space and statistical parametric mapping on a voxel-by-voxel basis was 

conducted by using a general linear model approach using motion parameters as 

regressors in SPM12. Contrast images comparing task conditions were created for each 

participant for second-level multi-subject/between-group analyses. The SPM prior 

probability gray matter template was used to restrict the statistical comparisons to the 

gray matter compartment. Statistical models were generated using a flexible factorial 

design to examine within- and between-group longitudinal changes, including group-by-
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time interactions (factors: 1) subject, baseline and follow-up scans for each participant, 

2) group, two independent levels, breast cancer and control, 3) time, two non-

independent levels, baseline and follow-up), and a full factorial design to examine 

between-group cross-sectional differences (factors: 1) group, two independent levels, 

breast cancer and control, 2) time, two non-independent levels, baseline and follow-up).  
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Online Resource 2 FreeSurfer Region Groupings by FreeSurfer Variable Name 

Prefrontal Temporal Parietal Basal Ganglia Thalamus Limbic Insula 

Volume Volume Volume Volume Volume Volume Volume 

RtCaudmidfrontVol RtBanksstsVol RtInfparVol LtCaudate LtThalamus LtAccumb RtInsulaVol 

RtlatorbitofrontVol RtEntorhinalVol RtPrecuneusVol LtPutamen RtThalamus RtAccumb LtInsulaVol 

RtMedorbitofrontalVol RtFusiformVol RtSupparietalVol LtPallidum  LtHipp RtInsulaThick 

RtParsopercularisVol RtInfTempVol RtIstcing RtCaudate  LtAmyg LtInsulaThick 

RtParsorbitalisVol RtMidtempVol RtSupramargVol RtPutamen  RtHippo  
RtParstriangularisVol RtParahippoVol LtInfparVol RtPallidum  RtAmyg  
RtRostmidfrontVol RtSuptempVol LtPrecuneusVol     
RtSupfrontVol RtTemppoleVol LtSupparietalVol     
RtFrontalpoleVol RtTranstempVol LtIstcing     
RtCaudantcingVol LtBanksstsVol LtSupramargVol     
RtRostantcingVol LtEntorhinalVol 

LtCaudmidfrontVol LtFusiformVol 

LtlatorbitofrontVol LtInfTempVol      
LtMedorbitofrontalVol LtMidtempVol      
LtParsopercularisVol LtParahippoVol      
LtParsorbitalisVol LtSuptempVol      
LtParstriangularisVol LtTemppoleVol      
LtRostmidfrontVol LtTranstempVol      
LtSupfrontVol       
LtFrontalpoleVol       
LtCaudantcingVol       
LtRostantcingVol       

Thickness  Thickness Thickness         

RtCaudmidfrontThick RtBanksstsThick RtInfparThick     
RtlatorbitofrontThick RtEntorhinalThick RtPrecuneusThick     
RtMedorbitofrontalThick RtFusiformThick RtSupparietalThick     
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RtParsopercularisThick RtInfTempThick RtSupramargThick     
RtParsorbitalisThick RtMidtempThick RtIstcingThick     
RtParstriangularisThick RtParahippoThick LtInfparThick     
RtRostmidfrontThick RtSuptempThick LtPrecuneusThick     
RtSupfrontThick RtTemppoleThick LtSupparietalThick     
RtFrontalpoleThick RtTranstempThick LtSupramargThick     
RtCaudantcingThick LtBanksstsThick LtIstcingThick     
RtRostantcingThick LtEntorhinalThick      
LtCaudmidfrontThick LtFusiformThick      
LtlatorbitofrontThick LtInfTempThick      
LtMedorbitofrontalThick LtMidtempThick      
LtParsopercularisThick LtParahippoThick      
LtParsorbitalisThick LtSuptempThick      
LtParstriangularisThick LtTemppoleThick 

LtRostmidfrontThick LtTranstempThick 

LtSupfrontThick       
LtFrontalpoleThick       
LtCaudantcingThick       
LtRostantcingThick       
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