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Abstract
Failure to appropriately account for unmeasured confounding may lead to
erroneous conclusions. Quantitative bias analysis (QBA) can be used to quantify
the potential impact of unmeasured confounding or how much unmeasured
confounding would be needed to change a study’s conclusions. Currently, QBA
methods are not routinely implemented, partly due to a lack of knowledge about
accessible software. We review the latest developments in QBA software between
2011 to 2021 and compare five different programs applicable when fitting a linear
regression: treatSens, causalsens, sensemakr, EValue, and konfound. We illustrate
application of these programs to two datasets and provide code to assist analysts
in future use of these software programs. Our review found 21 programs with most
created post 2016. All are implementations of a deterministic QBA, and the majority
are available in the free statistical software environment R. Many programs include
features such as benchmarking and graphical displays of the QBA results to aid
interpretation. Out of the five programs we compared, sensemakr performs the
most detailed QBA and includes a benchmarking feature for multiple unmeasured
confounders. The diversity of QBA methods presents challenges to the widespread
uptake of QBA among applied researchers. Provision of detailed QBA guidelines
would be beneficial.
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1 Introduction
The main aim of many epidemiology studies is to estimate the causal effect
of an exposure on an outcome (here onward, shortened to exposure effect). In
observational studies participants are not randomised to exposure (or treatment) groups.
Consequently, factors that affect the outcome are typically unevenly distributed among
the exposure groups, and a direct comparison between the exposure groups will likely
be biased due to confounding. Standard adjustment methods (such as standardization,
inverse probability weighting, regression adjustment, g-estimation, stratification and
matching) assume the adjustment model is correct and a sufficient set of confounders
has been measured without error1. Failure to appropriately account for unmeasured or
poorly measured confounders in analyses may lead to invalid inference2–4.

There are several approaches to assess causality which depend on assumptions other
than “no unmeasured confounding” (e.g., self-controlled study designs, prior event rate
ratio, instrumental variable analysis, negative controls, perturbation variable analysis,
and methods that use confounder data collected on a study sub-sample5). When none
of these approaches are applicable (e.g., study lacks an appropriate instrument or
sub-sample data on the unmeasured confounders) then the analyst must assess the
sensitivity of the study’s conclusions to the assumption of no unmeasured confounding
using a quantitative bias analysis (QBA; also known as a sensitivity analysis). A QBA
can be used to quantify the potential impact of unmeasured confounding on an exposure
effect estimate or to quantify how much unmeasured confounding would be needed to
change a study’s conclusions.

Currently, QBA methods are not routinely implemented. A recent published in
2016 found that the use of QBA for unmeasured confounding had not increased in
the years 2010− 2012 compared to the 2004− 2007 period6. Lack of knowledge
about QBA, and of analyst-friendly methods and software have been identified as
barriers to the widespread implementation of a QBA7–9. In the past decade, there
have been several reviews of QBA methods2,5,9–17. Only two of these papers reviewed
software implementations of QBA methods: the supplementary of15 provided a brief
summary of software implementing Rosenbaum-style QBA methods18, and11 reviewed
software implementations before its publication in July 2014. Also, comparisons of
QBA methods have primarily been limited to analyses with a binary outcome10,19–26.

Our paper reviews available software implementing a QBA to address unmeasured
confounding caused by a study not collecting data on these confounders as opposed to
mismeasurement of measured confounders. We then describe, illustrate and compare
QBA software applicable when the analysis of interest is a linear regression. We
illustrate how to apply these methods using a real-data example from the Barry
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Caerphilly Growth (BCG) study27,28, and, in the Supplementary Materials, we also
provide code implementing these methods when applied to publicly-accessible data
from the 2015− 2016 National Health and Nutrition Examination Survey (NHANES)
study29.

2 Quantitative bias analysis for unmeasured confounding

We want to estimate the effect of an exposure (or treatment) X on an outcome Y .
The Y −X association is confounded by measured covariates C and unmeasured
confounders U . The naive estimate of the exposure effect, β̂X|C , assumes no
unmeasured confounding and is estimated by controlling for C only.

We can use a QBA to quantify the likely magnitude and direction of the bias, due to
unmeasured confounding, under different plausible assumptions about U (assuming no
other sources of bias). Generally, a QBA requires a model (known as a bias model) for
the observed data, Y,X and C, and unmeasured data, U . The bias model will include
one or more parameters (known as bias or sensitivity parameters) which cannot be
estimated from the observed data. Therefore, values for these bias parameters must
be prespecified before conducting the QBA. Typically, the bias parameters specify the
strength of the association between U and X given C, and between U and Y given X
and C 21. Information about the likely values of these bias parameters may be obtained
from external sources (such as external validation studies, published literature, or
expert opinion)8, and from benchmarking (also known as calibration) where strengths
of associations of measured covariates C with X and Y are used as benchmarks30 for
the bias parameters. We shall denote the bias parameters by φ and the bias-adjusted
estimate of the exposure effect assuming φ by β̂X|C,U(φ).

A QBA is often conducted as a tipping point analysis, where the analyst identifies
the values of φ that correspond to a change in the study conclusions (known as the
“tipping point”). A tipping point analysis may be applied to the point estimate or
confidence interval (CI) of the exposure effect; for example, to identify the values
of φ corresponding to a null effect, or the values of φ corresponding to a statistically
insignificant effect of a non-null point estimate. If the values of φ at the tipping point(s)
are considered unlikely then the study conclusions are said to be robust to unmeasured
confounding.

There are two broad classes of QBA methods: deterministic and probabilistic7. A
deterministic QBA specifies a range of values for each bias parameter of φ and then
calculates β̂X|C,U(φ) for all combinations of the prespecified values of φ. Typically,
the results are displayed as a plot or table of β̂X|C,U(φ) against different values of φ.
Unlike a deterministic QBA, a probabilistic QBA uses a prior probability distribution
for φ to explicitly model the analyst’s assumptions about which combinations of φ are
most likely to occur and to incorporate their uncertainty about φ7,22. Averaging over
this probability distribution generates a distribution of estimates of β̂X|C,U(φ) which is
summarised to give a point estimate (i.e., the most likely β̂X|C,U(φ) under the QBA’s
assumptions) and an interval estimate (i.e., defined to contain the true exposure effect
with a prespecified probability) which accounts for uncertainty due to the unmeasured
confounding and sampling variability7.
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3 Overview of available software
The aim of the literature review was to give a brief overview of publicly available
software implementations of QBA, described in articles published between 1st January
2011 and 31st December 2021 (inclusive). We defined ”software” to be either a web
tool with a user-interface or software code that (i) was not specific to a particular
data example (i.e., we excluded examples of code from empirical analyses), (ii) was
freely available to download, and (iii) was accompanied by documentation detailing
the software’s features.

Our literature search was conducted in three stages. In stage 1, we used Web of
Science to identify papers that mentioned “quantitative bias analysis” and “unmeasured
confounding” (or their synonyms) in either the title, abstract or as keywords (see
Supplementary Box 1 for our search strategy). In stage 2, the abstracts were reviewed
by two independent reviewers to determine if they were eligible for data extraction with
any disagreements resolved by consensus. Eligible abstracts were published articles
that either introduced a new QBA method or software implementation, compared
or reviewed existing QBA methodology, or gave a tutorial on QBA. Examples of
ineligible abstracts were meeting abstracts, commentaries, articles where a QBA was
not conducted but mentioned as further work, and articles solely focused on answering
applied questions (and so included limited information on the statistical methodology
used). In stage 3, we extracted from the full text information about the analysis of
interest, the QBA method, and the software used to implement the QBA.

After excluding duplicates, our Web of Science search identified 780 papers
(flowchart of the review shown in Supplementary Figure S1). We excluded 24 meeting
abstracts and editorials, 379 articles that did not conduct a QBA to unmeasured
confounding, and 239 articles on applied analyses. Of the remaining 138, 29 articles
referred to 21 publicly available software implementations of a QBA.

Table 1 summarises the key features of the 21 software programs in ascending
date-order of creation. All 21 programs implement a deterministic QBA, with only
8 programs publicly available before 2017, and 17 implemented in the free software
environment R31. Seven programs implement a QBA applicable for a matched
observational study, five for a mediation analysis, and nine for a standard regression
analysis. Five of the seven programs for a matched analysis (sensitivityCaseControl,
sensitivitymw, sensitivitymv, sensitivityfull and submax) implement the same QBA
method18,32 but for different types of matched observational studies. For example,
sensitivitymw is applicable to matched sets with one exposed subject and a
fixed number of unexposed subjects, and sensitivitymv to matched sets with one
exposed subject and a variable number of unexposed subjects. Also, submax and
sensitivityCaseControl exploit effect modification and different definitions of a case
of disease, respectively, to further evaluate sensitivity to unmeasured confounding.
Among the programs for mediation analysis, MediationSensitivityAnalysis evaluates
sensitivity to unmeasured confounding of the mediator-outcome relationship only,
while the remaining programs can also evaluate sensitivity to unmeasured confounding
of the exposure-mediator and exposure-outcome relationships.
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Most programs require the outcome (of the analysis of interest) to be either binary
or continuous. However, program survsens implements a QBA specifically for a Cox
proportional hazards regression analysis and is applicable for survival outcomes with
or without competing risks. All programs can be applied to a binary exposure and
seven programs are also applicable to a continuous or categorical exposure. Also,
all programs allow the analysis of interest to adjust for measured covariates C of
any variable type and generally assume that U represents the part of the unmeasured
confounder(s) that is independent of C. Nine programs use the measured covariates to
calculate benchmark values for the bias parameters.

The bias parameters represent the strength of the relationships between U and the
exposure, outcome, or mediator. Programs treatSens, Umediation, mediationsens, and
survsens also allow the analyst to vary the parameters of the marginal distribution of U
(e.g., for binary U the probability Pr(U = 1)). Otherwise, these marginal parameters
are set to a default value (e.g., Pr(U = 1) = 0.5).

Almost all programs report the values of the bias parameters at prespecified tipping
points. Also, most programs output the bias-adjusted results (e.g., point estimate, CI
or P-value for the exposure effect) at prespecified values of the bias parameter(s)
(exceptions include isa, gsa, konfound, and R and Stata implementations of EValue).
Note that, programs uMediation and ui summarise the bias-adjusted results using
uncertainty intervals, which incorporates uncertainty about the values of the bias
parameters and sampling variability. Fifteen programs generate a graphical plot of their
QBA results.

Two programs also implement a QBA to other sources of bias: MediationSensitivty-
Analysis can assess sensitivity to measurement error of the mediatior, outcome and
measured covariates, and Evalue can assess sensitivity to differential misclassification
of an outcome or exposure and to sample selection bias. Furthermore, both programs
can simultaneously assess sensitivity to multiple sources of bias.

4. Quantitative bias analysis methods for linear regression

We describe and illustrate the following programs from Table 1 applicable for an
unmatched analysis, where the exposure is binary and the exposure effect is estimated
by a linear regression model: treatSens44,45, causalsens38, sensemakr 70, EValue48, and
konfound 58. For reasons of brevity, we excluded programs isa and gsa as they are
similar to the more recently published treatSens.

All five programs are implemented as an R package39,46,49,59,64,71,72, and
sensemakr 64, EValue49,50 and konfound 58,73 are also available as a Stata command and
web tool. Individual participant data is required for treatSens and causalsens, EValue
only requires summary data from the naive analysis, and sensemakr and konfound
can be applied to individual participant and summary data. Additionally, treatSens,
causalsens, and sensemakr require prespecified values for φ which can be set by the
analyst or set using the program’s default values. Note that all five methods can be
applied when β̂X|C is not null, irrespective of whether β̂X|C is statistically significant
or not, and when β̂X|C is null. However, for treatSens the tipping point for the point
estimate is fixed at the null, and so this feature can only be used when β̂X|C is not null.
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Below is a summary of the five programs with further details in the Supplementary
Materials.

4.1 treatSens
Program treatSens implements a simulation-based QBA44 which is similar to multiple
imputation for missing data74. For a prespecified value of φ, treatSens simulates U
multiple times from the conditional distribution U |Y,X,C given by the bias model.
For each set of simulated values of U , the exposure effect is estimated from a linear
regression of Y given X,C and the simulated U , and then Rubin’s rules74 are used to
combine the multiple sets of results into a single estimate for β̂X|C,U(φ) and its standard
error.

The bias model consists of three sub-models: the analysis model (i.e., linear
regression of Y given X,C and U ), the treatment model (e.g., linear or probit
regression regression of X on C and U for continuous or binary X , respectively), and
a marginal model for U (standard normal or Bernoulli distribution for continuous or
binary U , respectively). It has two bias parameters φ = (ζY , ζZ): ζY is the coefficient
for U from the analysis model Y |X,C,U and ζZ is the coefficient of U from the
treatment model X|C,U . To allow for bias in both directions (i.e., increased exposure
effect, and reduced or reversed exposure effect), positive and negative values are
specified for ζZ . The remaining coefficients of the treatment and analysis models are
estimated from the observed data. The coefficients of measured covariates C (from the
regressions of Y on X and C, and X on C) are used as benchmark values for ζY and
ζZ , respectively44. All continuous variables are standardised to facilitate comparison
between these benchmark values and the bias parameters.

Program treatSens outputs a contour plot of the bias-adjusted estimates, β̂X|C,U(φ),
for different combinations of ζY and ζZ , indicating the values of ζY and ζZ that
correspond to tipping points for the point estimate (fixed at the null) and statistical
significance (analyst can set the significance level; default is 5%). Additional outputs
include tables of: (1) combination values of ζY and ζZ at the tipping points, (2)

β̂X|C,U(φ) and corresponding standard errors for prespecified values of ζY and ζZ

and each set of simulated U , and (3) benchmark values for ζY and ζZ .

4.2 causalsens
Program causalsens generates a modified outcome, Y adjφ , which is adjusted for the bias
due to unmeasured confounding for a prespecified value of φ38. The naive analysis is
then refitted using Y adjφ instead of Y and the resulting exposure effect estimate and CI
are the bias-adjusted results.

The QBA of causalsens is based on the potential outcomes framework75. Program
causalsens requires a binary X , and so there are two potential outcomes per subject:
Y (0) when not exposed and Y (1) when exposed. The bias model consists of a
treatment model and a “confounding function”76,77. The treatment model is a logistic
regression used to estimate the probability of being in the exposed group given C.
The confounding function quantifies the average difference in potential outcomes Y (0)
(or Y (1)) between those in the exposed and unexposed groups, with any nonzero
difference attributed to unmeasured confounding. It is parameterised by a single
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bias parameter, φ = (R2
α): R2

α denotes the proportion of unexplained variance in the
potential outcomes that is explained by U and is set to positive and negative values
to allow U to move the point estimate towards and away from the null. Program
causalsens supplies two choices for the confounding function, named the “one-sided
function” and the “alignment function”, and also allows the analyst to specify their
own function. The one-sided function assumes the true exposure effect is identical in
the exposed and unexposed groups. SettingR2

α > 0 implies that the mean of Y (1) (and
Y (0)) is higher for the exposed group than the unexposed group, leading β̂X|C to be
positively biased; and vice versa for R2

α < 0. (See the Supplementary Materials for
details of the alignment function.)

Program causalsens outputs a line plot and a table of β̂X|C,U(φ) and corresponding
95% CI for different values of R2

α. Additionally, causalsens reports benchmarks for
R2
α based on the partial R2 values for each covariate in C.

4.3 sensemakr
Program sensemakr uses formulae to estimate β̂X|C,U(φ) and its t-value for prespecified
values of φ. Additionally, sensemakr reports summary measures, called “robustness
values”, which quantify the minimum amount of unmeasured confounding needed to
change a study’s conclusions, conditional on C 63.

The bias model of sensemakr expresses the absolute difference between the naive
and bias-adjusted estimates, ∆̂φ = |β̂X|C − β̂X|C,U(φ)|, and the standard error of
β̂X|C,U(φ) as functions of estimated quantities from the naive analysis and φ =
(R2

X∼U |C , R
2
Y∼U |X,C). Bias parameter R2

X∼U |C is the proportion of the variance of
X , not explained by C, that is explained by U , and R2

Y∼U |X,C is the proportion of the
variance of Y , not explained by X and C, that is explained by U . Considering both
directions of effect of U , β̂X|C,U(φ) = β̂X|C ± ∆̂φ, and the corresponding t-value for

a null hypothesis is β̂X|C,U(φ)

se(β̂X|C,U(φ))
.

The robustness value for the point estimate (or t-value) represents the minimum
value of R2

X∼U |C and R2
Y∼U |X,C , when R2

X∼U |C = R2
Y∼U |X,C , such that β̂X|C,U(φ)

(or its t-value) equals its prespecified tipping point value; for example, the null (or the
5% critical t-value). A robustness value close to 1 indicates that strong unmeasured
confounding would be needed to change the study conclusions, whilst a value close to
0 indicates that very weak unmeasured confounding could change the conclusions.

Program sensemakr calculates upper bounds (called “benchmark bounds”) for
R2
X∼U |C and R2

Y∼U |X,C using C 63,70. The benchmark bounds based on covariate
Cj represent the maximum values for R2

X∼U |C and R2
Y∼U |X,C if U was k times

(k = 1, 2, 3, . . .) as strong as Cj (in terms of strengths of relationships with X and
Y )63. Additionally, sensemakr can calculate benchmark bounds based on a group of
measured covariates.

Program sensemakr outputs robustness values for the point estimate and t-value,
and contour plots of β̂X|C,U(φ) and corresponding t-value for prespecified values of φ,
indicating the combinations of R2

X∼U |C and R2
Y∼U |X,C that correspond to a tipping

point for the point estimate or t-value. Also, sensemakr outputs a table of benchmark
bounds and values of β̂X|C,U(φ) and corresponding CI when R2

X∼U |C and R2
Y∼U |X,C
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equals these benchmark bounds. Note that, only the R package and Stata command can
calculate benchmark bounds based on more than one measured covariate.

4.4 EValue

Program EValue reports a summary measure, called an E-value, which quantifies the
minimum amount of unmeasured confounding needed to change a study’s conclusions,
conditional on the measured covariates48. The E-value is defined on the risk ratio
scale and is a function of estimated quantities from the naive analysis and two bias
parameters φ = (RRXU , RRUY ). For binary X and a single, binary U , RRXU
represents the risk ratio for the effect of X on U conditional on C and RRUY
represents the maximum risk ratio for the effect of U on Y after adjustment
for C among the exposed and unexposed78. (See Ding and VanderWeele78 for a
definition of RRXU and RRUY when U denotes a single or multiple unmeasured
confounders of type continuous, categorical or mixed.) For effect measures other
than the risk ratio, the naive results are first converted to the risk ratio scale before
calculating the E-value48. For example, for standardised mean difference, β̂stdX|C , and
corresponding standard error, SEβ̂std

X|C
, the approximate risk ratio for the point estimate

is exp {0.91× β̂stdX|C} and the approximate risk ratio for a limit of the 95% CI is

exp {0.91× β̂stdX|C ± 1.78× SEβ̂std
X|C
}48. Note that, the E-value is interpreted on the

risk ratio scale for all types of effect measures.
Here we describe the E-value when the tipping point of the point estimate is the null,

although it can also be set to a non-null value (see Supplementary Materials of48). A
separate E-value is calculated for the point estimate and CI limit closest to the null. The
E-value for the point estimate (or CI limit) represents the minimum value of RRXU
and RRUY , when RRXU = RRUY , such that β̂X|C,U(φ) is null or in the reverse
direction to that of β̂X|C (or the exposure effect is no longer statistically significant
after adjustment for C and U ). The E-value is a positive number ≥ 1 with higher
values indicating that greater levels of unmeasured confounding (i.e., stronger X − U
and Y − U associations) are required to change the study conclusions. When β̂X|C is
null (or its CI includes the null) the E-value for the point estimate (or CI limit) is 1,
indicating that no unmeasured confounding is required to change the study conclusions.
Importantly, the E-value is a measure of sensitivity to unmeasured confounding for a
worst-case scenario (i.e., bias parameters RRXU and RRUY are set to values which
maximize the bias due to unmeasured confounding)79.

The R package EValue, Stata command evalue, and web tool e-value calculator
can all be applied when the effect measure of interest is a risk ratio, risk difference,
standardised mean difference, odds ratio or hazard ratio for a rare outcome (i.e.,
prevalence < 15%), and odds ratio or hazard ratio for a common outcome (i.e.,
prevalence ≥ 15%). From here onward, we shall use EValue to represent all three
implementations. Program EValue outputs E-values for the point estimate and CI limit,
and a line plot of the values of RRUY and RRXU that correspond to prespecified
tipping points for the point estimate and CI limit. Note that, the program does
not supply benchmark values for RRUY and RRXU . For comparison purposes,
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VanderWeele and Ding48 suggest omitting each measured covariate in turn and
recalculating the E-value.

4.5 konfound
Program konfound assesses sensitivity to a change in the statistical (in)significance
status of β̂X|C 58. This includes the scenario where U explains away all of the statistical
significance of β̂X|C (i.e., β̂X|C is statistically significant but β̂X|C,U(φ) is statistically
insignificant) and the converse scenario where U restores the statistical significance of
β̂X|C (i.e., β̂X|C is statistically insignificant but β̂X|C,U(φ) is statistically significant).
Program konfound refers to the first scenario as U “invalidating inference” and the
second as U “sustaining inference”. By default, the significance level is 5% and the
null hypothesis is “no exposure effect”, both of which can be changed by the analyst.

Program konfound reports two summary measures that quantify the minimum level
of unmeasured confounding necessary to change conclusions on statistical significance:
percent bias and impact threshold. Percent bias is a measure of the minimum percentage
of β̂X|C that would need to be explained away by U in order for unmeasured
confounding to invalidate inference80,81. The formula for the percent bias is a function
of estimated quantities from the naive analysis and the value of β̂X|C,U(φ) when its P-
value is exactly κ% (for statistical significance defined at the κ% level). The impact
threshold is also derived from estimated quantities of the naive analysis plus two
bias parameters φ = (rX∼U |C , rY∼U |C): rX∼U |C and rY∼U |C represent the partial
correlation between U andX and between U and Y (conditional on C), respectively82.
The impact threshold is the product rX∼U |C × rY∼U |C when rX∼U |C and rY∼U |C
are equal and set to their minimum value such that statistical inference is invalidated
or sustained. Note that, the percent bias measure is always positive but the impact
threshold measure can be positive or negative depending on the direction of the
correlation between U and X and Y . For both measures, larger absolute values
indicate greater robustness to unmeasured confounding. Program konfound calculates
the impact threshold and percent bias when Y is a continuous outcome and the naive
analysis is a linear regression.

The software outputs the percent bias (depicted by a bar graph called a “threshold
plot”) and the impact threshold (depicted by a causal-type diagram called a “correlation
plot”; generated by the R package and online tool). Only the Stata command provides
benchmark values for rX∼U |C and rY∼U |C , which are the partial correlation of each
measured covariate Cj withX and with Y , respectively, given the remaining measured
covariates.

5 Illustrative example
We applied the five QBA methods of Section 4 to data from the BCG and NHANES
studies. For both examples, the naive analysis was the linear regression Y |X,C
with binary exposure X . We used measured variables to represent the unmeasured
confounders U . So, in effect our analyses examined the effect of not including
certain confounders and we assumed that after adjustment for U and C there was
no unmeasured confounding. In the BCG example, U was a single confounder and
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adjustment for U did not change the study conclusions. See the Supplementary
Materials for the NHANES example where U represents multiple confounders.

For treatSens we used Probit regression for its treatment model because X was
binary, and for causalsens we used the one-sided confounding function because we
assumed the exposure effect was the same in both exposure groups.

Using C, we calculated benchmark E-values and, for the other four programs,
we calculated benchmark values for φ and the bias-adjusted results when φ was
set to (multiples of) the benchmark values corresponding to the “strongest measured
covariate” (i.e., the covariate that had the strongest associations with X and Y ).

As this is an illustrative example of applying a QBA to unmeasured confounding, we
have ignored other potential sources of bias (such as missing data) and only considered
a small number of measured covariates. We restricted our analyses to participants with
complete data on Y,X,C and U .

5.1 Description of the BCG Study

The BCG study is a follow-up of a dietary intervention randomized controlled trial
of pregnant women and their offspring27,28. Data were collected on the offspring
(gestational age, sex, and 14 weight and height measures at birth, 6 weeks, 3, 6, 9 and
12 months, and thereafter at 6-monthly intervals until aged 5 years) and their parents
(anthropometric measures, health behaviours and socioeconomic characteristics).
When aged 25, these offspring were invited to participate in a follow-up study in which
standard anthropometric measures were recorded. We refer to the offspring, later young
adults in the follow-up study, as the study participants.

Our analysis was a linear regression of adult body mass index (BMI) at age 25
on being overweight at age 5 years (BMI ≥ 17.44 kg/m2 83). Measured covariates
C were participant’s sex, gestational age, birth weight, and parents’ height and
weight measurements. The strongest measured covariate was maternal weight. The
unmeasured confounder U was a measure of childhood socioeconomic position (SEP)
(paternal occupational social class based on the UK registrar general classification84)
with U = 1 for professional or managerial occupations, and U = 0 otherwise. Based
on the 542 participants with complete data on all variables, β̂X|C was 2.21 kg/m2

(95% CI 1.30, 3.11 kg/m2) and the fully adjusted estimate (i.e., adjusted for C and
U ) was 2.19 kg/m2 (95% CI 1.29, 3.09 kg/m2). Also, the coefficient of U from the
linear regression Y |X,C,U was −0.66 kg/m2 (95% CI −1.57, 0.25 kg/m2) and the
coefficient of U from the logistic regressionX|C,U was−0.23 (95% CI−0.85, 0.35).
Statistical significance was defined at the 5% level.

Note that, on a computer with 2.7 Ghz the run-time of treatSens (with the default
setting of single-threading46) was 10 minutes while the other programs generated their
results instantaneously. We begin with a description of the outputted results and then
compare the results across the five programs. In the Supplementary Materials we report
on a small survey we conducted to obtain feedback on how the five QBA programs
compare with respect to ease/difficultly of interpreting their QBA results.
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5.2 Results
treatSens
Program treatSens outputs a contour plot (Figure 1(a)) where each contour represents
the different combinations of φ = (ζY , ζZ) that result in the same bias-adjusted
estimate, β̂X|C,U(φ). For example, β̂X|C,U(φ) = 0.40 standard deviations of BMI
(SD-BMI; or equivalently β̂X|C,U(φ) = 1.81 kg/m2) when ζY = 0.23 and ζZ = 1.00,
and when ζY = 1.00 and ζZ = 0.24. (Note that, treatSens standardises all continuous
variables.) The black horizontal contour at ζY = 0 denotes the naive estimate of
0.49 SD-BMI (i.e., β̂X|C = 2.21 kg/m2), the red contour represents the combinations
of φ that would result in a null exposure estimate, and the blue contours bracket
statistically insignificant exposure estimates. The pluses and inverted triangles denote
the benchmark values of φ based on measured covariatesC: pluses represent covariates
positively associated with adult BMI, and the inverted triangles represent covariates
negatively associated with adult BMI with those negative associations rescaled by −1.
The red cross furthest away from the origin denotes the strongest measured covariate
(maternal weight).

causalsens
Program causalsens outputs a line plot (Figure 1(b)) where the black line represents the
bias-adjusted exposure estimates, the grey shaded area represents the corresponding
95% CIs, and the crosses denote the benchmark values for φ = (R2

α) with each
benchmark appearing twice to allow for both directions of effect. Values of R2

α > 0
implies that individuals in the unexposed group tended to be healthier (i.e., lower
adult BMI) than those in the exposed group even if everyone was of normal weight (or
overweight) at age 5; and the converse for R2

α < 0.

sensemakr
Program sensemakr outputs four contour plots: Figures 1(c) and (d) show the contour
plots for the exposure effect estimate and its t-value, respectively, generated under
the assumption that accounting for U moves the exposure effect estimate closer to
the null, and Supplementary Figures S2(a) and (b) show the same contour plots
generated under the converse assumption. The contours have a similar interpretation as
discussed for treatSens. For example, the red contour represents different combinations
of φ = (R2

X∼U |C , R
2
Y∼U |X,C) that result in a null exposure effect (Figure 1(c)) and

the critical t-value corresponding to 5% statistical significance (Figure 1(d)). The black
triangle denotes the naive estimate, β̂X|C , and the red diamonds denote once, twice and
thrice the benchmark bounds based on the strongest measured covariate.

The robustness values for β̂X|C and its t-value were 18.76% and 11.56%,
respectively. Thus, U would need to explain at least 18.76% (or 11.56%) of the
residual variance of both childhood overweight and adult BMI for the exposure effect
adjusted for C and U to be null (or statistically insignificant).

EValue
The E-values for β̂X|C and its lower CI limit were 2.50 and 1.93, respectively. Thus, if
the associations between U and adult BMI and childhood overweight were at least 2.50
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(or 1.93), on the risk ratio scale, then the exposure effect adjusted for C and U may
be null or in the reverse direction (or strictly positive but statistically insignificant).
Supplementary Figure S3 shows the combinations of φ = (RRUY , RRXU ) that
correspond to a null bias-adjusted estimate (red contour) and a strictly positive but
statistically insignificant bias-adjusted estimate (black contour).

konfound
The percent bias was 59.11%, depicted in the bar-graph shown in Supplementary
Figure S4, and the impact threshold was 0.13 with bias parameters rX∼U |C =

rY∼U |C =
√

0.13, depicted in the causal diagram shown in Supplementary Figure S5.
Therefore, in order for the exposure effect to be statistically insignificant after
adjustment for C and U then (1) U would need to account for at least 59.11% of β̂X|C
(i.e., β̂X|C,U(φ) ≤ 0.90 kg/m2), and (2) the partial correlations of U with adult BMI
and child overweight must both exceed 0.36.
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Comparison of the results
Table 2 summarises the bias-adjusted results of each program in scenarios where the
associations between U and adult BMI and child overweight were half, once and twice
as strong as the corresponding associations with the strongest measured covariate (i.e.,
φ set to 0.5, 1 and 2 × benchmark values for maternal weight).
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Considering unmeasured confounding towards or away from the null, if U was
comparable to the strongest measured covariate (with respect to its associations
with adult BMI and child overweight) then treatSens and sensemakr report that
adjusting for C and U would give similar results to those of the naive analysis and
konfound indicates the exposure effect would remain statistically significant. Also,
sensemakr’s robustness values were substantially higher than the benchmark bounds
for R2

X∼U |C and R2
Y∼U |X,C even when these benchmarks were based on all of

C (Supplementary Table S1). Similarly, the benchmark E-values when omitting the
strongest measured covariate and U were comparable to the E-values when omitting U
only (Supplementary Table S2), indicating that the exposure effect adjusted for C and
U would remain above the null and statistically significant. Furthermore, treatSens,
sensemakr, and konfound indicate that U would need to be more than double the
strength of the strongest measured covariate in order to change the study conclusions
(i.e., a null or doubling of the exposure effect, or a statistically insignificant effect).
Conversely, causalsens suggests adjusting for U comparable to the strongest measured
covariate could result in an exposure effect close to the null or more than double the
naive estimate.

Provided the naive analysis included all of the important confounders then it seems
unlikely that the confounding effect of U , childhood SEP, could be more than twice as
strong as the strongest measured covariate, especially given that childhood SEP would
likely be correlated with at least some of the measured covariates. Therefore, under
these assumptions, treatSens, sensemakr, konfound, and EValue indicates robustness
of the BCG study conclusions to unmeasured confounding by childhood SEP which
was inline with the fully adjusted results. In contrast, causalsens suggested study
conclusions could differ if we were able to adjust for childhood SEP.

6 Discussion
We have conducted an up-to-date review of software implementations of QBA to
unmeasured confounding, and a detailed illustration of the latest software applicable
for a linear regression analysis of an unmatched study. All programs implement a
deterministic QBA, and most are available in the free software environment R. The
majority were developed in the latter half of the past decade and include programs
available when the naive analysis is a mediation analysis, meta-analysis and a survival
analysis. Many programs include features such as benchmarking and graphical displays
of the QBA results to aid interpretation. Our comparative example illustrated that even
QBA software applicable to the same naive analysis can implement distinct QBA
methods. All programs were straightforward to implement and instantly generated
the results except for treatSens which took about 10 minutes to run when applied
to a moderately-sized dataset. All programs provided information about the amount
of unmeasured confounding at the tipping points; however, treatSens, sensemakr and
causalsens also provided information on the bias-adjusted results for any specified level
of unmeasured confounding with minimal extra burden to the analyst.

Out of the five programs we compared sensemakr performs the most detailed QBA.
It generates bias-adjusted results for prespecified levels of unmeasured confounding
(similarly to treatSens and causalsens), reports a summary measure at prespecified
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tipping points (similarly to EValue and konfound) and conducts a QBA in a worse-
case scenario of unmeasured confounding (similarly to EValue). However, in our
small panel study, three out of seven participants reported difficulties interpreting
the output of sensemakr. Program EValue implements a flexible QBA which can
be applied to a wide range of effect measures and makes minimal assumptions
about the unmeasured confounding (e.g., allows U to be a modifier of the X − Y
relationship). However, the downside of this flexibility is that the analyst may be
unaware of the additional assumptions required when converting their effect measure
to the risk ratio scale and it can be challenging to establish plausible values for its
bias parameters (either from external data or from benchmarking). Also, a notable
limitation of programs EValue and konfound is that they are restricted to establishing
robustness to unmeasured confounding (i.e., cannot provide results adjusted for likely
levels of unmeasured confounding) and konfound only considers sensitivity to changes
in statistical significance. The upside of the programs’ simplicity is that they require
only summary data and so can be easily applied to multiple published studies, with
the EValue extended to random-effects meta analyses51. Three strengths of treatSens
over the other programs are: (1) its imputation-style QBA method will be familiar to
many analysts, (2) its bias parameters (i.e., regression coefficients) are more likely to
be reported by published studies than the bias parameters of the other programs (e.g.,
partial R2 values), and (3) treatSens can also be applied when the analysis of interest
is a non-parametric model (Bayesian additive regression tree). A potential weakness of
treatSens is that it simulates U from a limited choice of joint distributions.

A limitation of our review is that we focused on software described in the
published literature. We recognise that additional software programs are available
such as other implementations of QBA methods discussed in this review (e.g.,
another implementation of the E-value85) and programs of other QBA methods (e.g.,
TippingSens86). Our illustrative example compared software programs applicable
when the analysis of interest is a linear regression since previous comparisons of
QBA methods have primarily focused on analyses of binary outcomes10,19–26. Of the
software we compared, programs konfound and EValue can be applied to a binary
outcome, with EValue also applicable when the exposure effect is a hazard ratio. Future
work could compare QBA methodology for analyses of other types of outcomes such
as survival and categorical outcomes.

Several programs in our review provided benchmark values to aid interpretation of
the QBA results. Note that, sensemakr can provide benchmark bounds for its bias
parameters based on a group of measured covariates which provides a useful aid
when considering multiple unmeasured confounders. Interestingly, participants of our
small panel study reported difficulties interpreting the E-value in the absence of any
benchmarks. One noted issue with benchmarking is that the benchmarks tend to be
based on the naive models, Y |X,C and X|C, and do not adjust for the omission of
U 30,63. See Cinelli and Hazelett for a discussion on why ignoring U can affect the
benchmark estimates even when U is assumed to be independent of C 63. Examples of
QBAs using benchmarking that accounts for the omission of U include sensemakr,30,
and87.

Examples of QBAs tend to focus on a single unmeasured confounder when in fact
many weaker unmeasured confounders can jointly change a study’s conclusions4.
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However, several QBA methods are generalisable to multiple unmeasured confounders
without burdening the analyst with additional bias parameters. For example, a
common assumption is that U represents a linear combination of multiple unmeasured
confounders, with the elementary scenario that U is a single unmeasured confounder.
A drawback of this appealing assumption is that the QBA tends to be conservative
for multiple unmeasured confounders63. Alternatively, a QBA method may leave the
functional form ofU unspecified and instead define its bias parameters as upper bounds
(such as the EValue where U is a categorical variable with categories representing all
possible combinations of the multiple unmeasured confounders and its bias parameters
RRXU and RRUY are the maximum risk ratios comparing any two categories of
U 78). A drawback of these upper bounds is that they correspond to extreme situations,
making it hard to locate appropriate benchmarks values or external information. To
address both drawbacks, a QBA could explicitly model each unmeasured confounder
separately whilst allowing for correlations between the confounders, although this
would then increase the number of bias parameters. If many unmeasured confounders
are suspected, then the analyst should question if a QBA is suitable since the accuracy
of a QBA generally relies on a study having measured key confounders. Importantly, a
QBA is not a replacement for a correctly designed and conducted study.

In our review, all software implementations were of deterministic QBA methods. In
general, deterministic QBA are tipping point analyses with statistical significance as
one of the tipping points. Given the call to move away from reliance on statistical
significance88, we recommend QBA methods that provide bias-adjusted results for
all specified values of the bias parameters to give a complete picture of the effect
of unmeasured confounding (such as treatSens, sensemakr and causalsens). However,
presenting and interpreting these results can be challenging, especially when there are
more than two bias parameters due to the large number of possible value combinations
(e.g., three parameters each with 10 possible values gives 1000 combinations). An
alternative is a probabilistic QBA which summarises the results as a point estimate
and accompanying interval estimate. The advantages of the probabilistic QBA are: (1)
the output is familiar to epidemiologists (i.e., similar to point estimate and 95% CI),
(2) the interval estimate accounts for all sources of uncertainty due to bias and random
sampling, and (3) less reliance on the statistical significance interpretation. Further
work is needed to provide software implementations of probabilistic QBAs.

In summary, there have been several new software implementations of QBAs,
most of which are available in R. And our comparative evaluation has illustrated
the wide diversity in the types of QBA method that can be applied to the same
substantive analysis of interest. Such diversity of QBA methods presents challenges
in the widespread uptake of QBA methods. Guidelines are needed on the appropriate
choice of QBA method, along with provision of software implementations in platforms
other than R.
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