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Abstract 26 

Background: Understanding the host genetic architecture and viral immunity contributes to the 27 

development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. 28 

Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the 29 

detrimental progression of COVID-19. However, the effects of host genetic factors on immune 30 

responses for severe COVID-19 remain largely unknown.  31 

Methods: We constructed a powerful computational framework to characterize the host genetics-32 

influenced immune cell subpopulations for severe COVID-19 by integrating GWAS summary 33 

statistics (N = 969,689 samples) with four independent scRNA-seq datasets (N = 606,534 cells).  34 

Results: We found that 34 risk genes were significantly associated with severe COVID-19, and the 35 

number of highly-expressed genetics-risk genes increased with the severity of COVID-19. Three 36 

cell-subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were 37 

significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk 38 

genes of CCR1, CXCR6, and ABO were specifically expressed in these three cell types, respectively. 39 

CCR1+CD16+monocytes and ABO+ megakaryocytes with significant up-regulated genes including 40 

S100A12, S100A8, S100A9, and IFITM1 confer higher risk to the cytokine storms among severe 41 

patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality of multiple 42 

immunologic features, including elevation of proliferation, migration, and chemotaxis. Moreover, 43 

we observed a prominent increase in cell-cell interactions of both CCR1+ CD16+monocytes and 44 

CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs 45 

and lung tissues, and elevated interactions with epithelial cells could contribute to enhance the 46 

resident to lung airway for against COVID-19 infection. 47 

Conclusions: We uncover a major genetics-modulated immunological shift between mild and 48 

severe infection, including an increase in up-regulated genetic-risk genes, excessive secreted 49 

inflammatory cytokines, and functional immune cell subsets contributing high risk to severity, 50 
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which provides novel insights in parsing the host genetics-influenced immune cells for severe 51 

COVID-19. 52 

Keywords: Single cell sequencing, GWAS, immune cells, inflammatory storm, COVID-19 53 

 54 

Background 55 

The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory 56 

syndrome coronavirus 2 (SARS-CoV-2), has widely and severely jeopardized the health and 57 

economy systems of most countries worldwide. As of July 21th, 2021, there were more than 192.2 58 

million confirmed patients with more than 4.12 million deaths in the whole world [1]. COVID-19 59 

has distinct clinical manifestations ranging from asymptomatic to severe respiratory failure [2]. 60 

Mortalities of COVID-19 are largely derived from severe patients with interstitial pneumonia in 61 

both lungs and acute respiratory distress syndrome [3]. Many earlier studies [4-6] have shown that 62 

the number of severe COVID-19 patients who are elders and have comorbidities, such as diabetes 63 

and hypertension, has increased. In this connection, understanding the immunologic mechanism of 64 

severe COVID-19 and identifying novel vaccine targets to control the pandemic are of considerable 65 

interest.  66 

Accumulating evidence have suggested that alterations of immune responses in peripheral 67 

blood mononuclear cells (PBMCs) and bronchoalveolar lavage fluid (BALF) play a crucial role in 68 

the detrimental progression of COVID-19 [7, 8]. There has been evidence that cytokine storm, 69 

usually found in severe COVID-19 patients, causes the adverse progression of COVID-19 [7]. 70 

Increased circulating levels of proinflammatory cytokine, including IL-10, IL-6 and TNF-α, have 71 

been reported to be associated with severe COVID-19 [7, 9]. Single-cell RNA sequencing (scRNA-72 

seq) has been extensively utilized to reveal the immune responses of COVID-19 patients in both 73 

lung and peripheral blood [10-18]. Megakaryocytes and monocytes [11, 12], T cells exhaustion 74 

[14], lymphopenia [19], and increased levels of cytokines [20] may cause aberrant peripheral 75 
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immune activities in severe COVID-19 patients. Based on large-scale samples, previous studies 76 

identified that dysregulation of mTOR signaling pathway in dendritic cells [21] and aberrant 77 

myeloid cell subpopulations [16, 17] implicated in severe COVID-19. Su et al. [10] revealed an 78 

increase in inflammation and a sharp drop in blood nutrients between mild and moderate-to-severe 79 

COVID-19, and new subsets of immune cells emerged in moderate COVID-19 patients.   80 

Genome-wide association study (GWAS) has emerged as a powerful approach to identify risk 81 

genes and genetic variants for complex diseases. By gathering population-based GWAS data 82 

worldwide, the COVID-19 Host Genetic Consortium has launched the “COVID-19 Host Genetics 83 

Initiative” project to facilitate COVID-19 host genetic research and identify genetic determinants 84 

of COVID-19 [22]. Subsequently, a growing number of GWASs have identified numerous 85 

significant genetic variants associated with COVID-19 susceptibility and severity [23-28]. 86 

Ellinghaus et al. [27] performed a meta-analysis of two independent GWAS datasets with 1,610 87 

severe COVID-19 patients and 2,205 matched controls at seven hospitals in the Italian and Spanish 88 

epicenters, and identified two susceptibility loci of 3p21.31 and 9q34.2 to be significantly 89 

associated with severe COVID-19 at the genome-wide level. Based on a large-scale meta-analysis 90 

(N = 680,128), our group found that the IFNAR2-IL10RB gene cluster were significantly associated 91 

with COVID-19 susceptibility, and suggested that IFNAR2 and IL10RB might have regulatory roles 92 

in the pulmonary immune response based on scRNA-seq data [25]. Consistently, Pairo-Gastineira 93 

et al. [24] conducted a GWAS study based on 2,244 critically ill COVID-19 patients and highlighted 94 

that several genes including IFNAR2, DPP9, and OAS1 were significantly associated with severe 95 

COVID-19 at a genome-wide significance. 96 

Two primary hypotheses were proposed for the involvement of immune genes in severe 97 

COVID-19 susceptibility. Whether the severe COVID-19-related risk genes associated with 98 

defective innate immune responses would induce persistent viral replication and resultant high viral 99 

loads, and whether an exaggerated genetically-mediated cytokine production contributes to the 100 
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hyper-inflammation and poor outcome among severe COVID-19. However, the effects of these 101 

genetic determinants on the peripheral immune cells for severe COVID-19 remain largely unknown. 102 

In view of a purely genetic study or single cell sequencing study cannot address this critical question, 103 

we here leveraged comprehensive computational methods to combine a large-scale GWAS 104 

summary dataset with scRNA-seq data for identifying host genetics-influenced immune cell 105 

subpopulations involved in the etiology of severe COVID-19.  106 

 107 

Methods 108 

Single cell RNA-seq data on severe COVID-19   109 

In this study, we downloaded four independent scRNA-seq datasets on COVID-19 in PBMC 110 

and BALF from the ArrayExpress database (Dataset #1, the accession number is E-MTAB-9357 111 

from Su et al. study [10]), and the Gene Expression Omnibus (GEO) database (Dataset #2, the 112 

accession number is GSE149689 from Lee et al. study [18], Dataset #3, the accession number is 113 

GSE150861 from Guo et al. study [11], and Dataset #4, the accession number is GSE158055 [29]). 114 

The first dataset contained 270 peripheral blood samples including 254 samples with different 115 

COVID-19 severity (i.e., mild N = 109, moderate N = 102, and severe N = 50) and 16 healthy 116 

controls for scRNA-seq analysis. There were eight patients in dataset #2 with COVID-19 of varying 117 

clinical severity, including asymptomatic, mild, and severe, and four healthy controls with PBMCs. 118 

The dataset #3 included five peripheral blood samples collected from two severe COVID-19 119 

patients at three different time points during tocilizumab treatment, containing two different stages: 120 

severe stage and remission stage. Within the dataset #4, 12 BALF samples were collected from 121 

lung tissues, including three moderate and nine severe patients. For all the datasets, the sample 122 

collection process were reviewed and approved by Institutional Review Board at the institutions 123 

where samples were originally collected. The COVID-19 severity was evaluated by using the World 124 

Health Organization (WHO) ordinal scale (WOS), the National Early Warning Score (NEWS), or 125 
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the Diagnosis and Treatment of COVID-19 (Trail Version 6). Single-cell transcriptomes for these 126 

four datasets were gathered using the 10× Genomics scRNA-seq platform.  127 

 128 

Single cell RNA sequencing data processing  129 

We performed normalization, clustering, and dimensionality reduction, differential expression 130 

gene (DEG) analysis, and visualization on these four independent scRNA-seq datasets with the 131 

Seurat R package [30]. The SCTransform function was used to scale and transform data, and linear 132 

regression model was applied to omit redundant variations caused by cellular complexity (i.e., cells 133 

expressed less than 200 genes or more than 2,500 genes were removed) or cellular quality (i.e., 134 

cells that had UMIs more than 10,000 and expressed reads of mitochondrial genes greater than 10% 135 

were removed). The CellCycleSoring function was applied to remove the effects of confounding 136 

factors. Principal component analysis (PCA) was carried out to extract principal components (PCs) 137 

that could explain most of datasets via using high variable genes. Top 20 PCs were utilized to 138 

conduct uniform manifold approximation and projection (UMAP) to embed the dataset into two 139 

dimensions. Subsequently, we constructed a shared nearest-neighbor graph (SNN) using the 140 

FindNeighbors function based on the top 20 PCs, and applied a graph-based modularity-141 

optimization algorithm from the Louvain method [31] on this SNN for clustering the dataset with 142 

the cluster resolution set to 0.5. We used the RunHarmony function with PCA reduction method 143 

from harmony R package [32] to integrate samples to correct batch effects. The 144 

FindConservedMarkers function in Seurat was implemented to find differential expressed genes 145 

for determining cellular identity. Well-defined markers were used to annotate clusters, and 146 

uncharacterized clusters in the first round of clustering were extracted to run the second round of 147 

clustering (Supplemental Table S2). A total of 606,534 cells with 563,856 PBMC cells and 42,678 148 

BALF cells were yielded from 300 samples based on the four independent scRNA-seq datasets 149 

(Supplemental Table S1 and Figure 1A). To allow comparison across samples and datasets, we 150 
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used a common dictionary of gene symbols to annotate genes and these unrecognized symbols were 151 

removed.  152 

 153 

GWAS summary data on hospitalized COVID-19 154 

The meta-GWAS summary data on severe COVID-19 round 4 (B2_ALL, Susceptibility 155 

[Hospitalized COVID-19 vs. Population]) were downloaded from the official website of the 156 

COVID-19 Host Genetic Consortium [22] (https://www.covid19hg.org/; analyzed file named: 157 

“COVID19_HGI_B2_ALL_leave_23andme_20201020.txt.gz”; released date of October 4 2020). 158 

There were 7,885 hospitalized COVID-19 patients and 961,804 control participants from 21 159 

independent contributing studies. There was an overwhelming majority of participants in these 160 

contributing studies with European ancestry (93%). The meta-GWAS summary statistics contained 161 

P values, Wald statistic, inverse-variance meta-analyzed log Odds Ratio (OR) and related standard 162 

errors. The 1,000 Genomes Project European Phase 3 [33] was used as a panel for pruning. Results 163 

from 23&Me cohort GWAS summary statistics were excluded from our current analysis. Genetic 164 

variants without RefSNP number in the Human Genome reference builds 37 were filtered out, 165 

giving a total of 9,368,170 genetic variants satisfying the major allele frequency (MAF) over 0.0001 166 

and the imputation score of greater tha 0.6. We used the qqman R package to figure both Manhattan 167 

plot and quantile-quantile (QQ) plot, and the web-based software of LocusZoom 168 

(http://locuszoom.sph.umich.edu/)[34] to visualize the regional association plots for significant risk 169 

loci.  170 

 171 

Hierarchical clustering analysis 172 

To examine the similarity of the transcriptome profiles between cell types across different 173 

COVID-19 severities (Supplemental Figure S4), we merged the counts of UMI for each cell type 174 

according to normal, mild, moderate, and severe COVID-19. In order to normalize gene expression, 175 
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we divided the counts of UMI for each gene by the counts of total UMI for all genes in each cell 176 

type and then multiplied by 100,000, as refer to the method in a previous study [18]. A median 177 

expression value of greater than 0.5 was used to calculate the relative change in each gene 178 

expression by dividing it by the median value for each gene, and the Pearson correlation coefficient 179 

(PPC) of the relative change in gene expression was used for current hierarchical clustering analysis.  180 

 181 

Gene-based association analysis 182 

To perform a gene-based genetic association analysis of the meta-GWAS summary statistics 183 

on severe COVID-19, we leveraged the updated SNP-wise Mean model of MAGMA [35]. In this 184 

model, MAGMA computes a test statistic:  185 

ZZ
TN

i iZT   2  186 

where N is the number of SNPs mapped in a gene and )( ii pZ φ . Of note, φ is the cumulative 187 

normal distribution function and ip  is the marginal P value for a given SNP i. SNPs belonging to 188 

a specific gene were based on whether located in the gene body or within the +/- 20 kb upstream or 189 

downstream region of the gene. Furthermore, the model assumes  S0Z ),MVN(~ , where S  is the 190 

LD matrix of the SNP genotypes. The LD matrix can be diagonalized and hence written as 191 

T
QAQS  , where Q  is an orthogonal matrix and ),...,,diag( 21 NA  with j  being the jth 192 

eigenvalue of S . The 1,000 Genomes Project Phase 3 European Panel [33] was used for calculating 193 

the LD information among SNPs extracted from GWAS summary data on COVID-19.194 

),MVN(~ KI0D  is a random variable, where ZQAD
T-0.5 . Then the sum of squared SNP Z-195 

statistics as the following formula:  196 


N

i i

0.50.5
ADDDQADQAZZ

2)( i

TTT DT   197 
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with N(0,1)~iD  and 2

1

2 ~ iD . Namely, T  follows a mixture distribution of independent 2

1  198 

random variables. A total of 19,138 genes were included in the current analysis. We used the 199 

Benjamini-Hochberg false discovery rate (FDR) method, in which a gene with a FDR ≤ 0.05 (P ≤ 200 

6.8×10-5) was interpreted as significant, to adjust for multiple testing.  201 

 202 

Pathway enrichment analysis 203 

We applied the built-in functions of MAGMA [35], using the results from GWAS summary 204 

statistics as its input, to examine genome-wide enriched biological pathways for severe COVID-19. 205 

We calculated competitive P values by examining the results that the combined effect of genes 206 

within a pathway is significantly greater than the combined effect of all other genes, and 10,000 207 

permutations was used to adjust competitive P values. Additionally, we leveraged the over-208 

representation algorithm of the WebGestalt (http://www.webgestalt.org) [36] along with the 209 

significant genes as an input list to conduct a pathway enrichment analysis using the KEGG 210 

pathway resource [37]. The number of genes in each pathway was set to between 5 and 2,000, and 211 

the Benjamini-Hochberg FDR was used for multiple correction. To cluster these identified KEGG 212 

pathways, we performed a multidimensional scaling (MDS) analysis based on the Jaccard distance 213 

method [38], and constructed a pathway-pathway interaction network for these significantly 214 

enriched pathways setting the Jaccard distance > 0.1.  215 

 216 

Combining GWAS-based genetic signals with eQTL data 217 

To uncover genetically-regulatory expression of genes associated with severe COVID-19, we 218 

conducted an integrative genomics analysis by using the S-PrediXcan [39] by combining meta-219 

GWAS summary statistics with expression quantitative trait loci (eQTL) data for 49 tissues from 220 

the GTEx Project (version 8). S-PrediXcan mainly uses two linear regression models to analyze the 221 

association between predicted gene expression and severe COVID-19: 222 
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11 εXαY  ll β  223 

22 εGαY  ggγ  224 

where 1α  and 2α  are intercepts, 1ε  and 2ε  are independent error terms, Y  is the n  dimensional 225 

vector for n  individuals, lX  is the allelic dosage for SNP l  in n individuals, l  is the effect size 226 

of SNP l ,  


)(ggenei iigg XG   is the predicted expression calculated by lg  and lX , in which  227 

lg  is derived from the GTEx Project , and g  is the effect size of gG . The Z-score (Wald-statistic) 228 

of the association between predicted gene expression and severe COVID-19 can be transformed as:  229 
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230 

where ĝ  is the standard deviation of gG  and can be calculated from the 1,000 Genomes Project 231 

European Phase 3 Panel, l̂  is the effect size from GWAS on COVID-19 and l̂  is the standard 232 

deviation of l̂ . S-PrediXcan was run for each of 49 tissues with 659,158 gene-tissue pairs.  233 

Furthermore, to increase the power to discover significant genes whose expression has similar 234 

regulations across multi-tissues, we utilized the S-MultiXcan [40] to meta-analyze these results 235 

from above S-PrediXcan analysis. S-MultiXcan fits a linear regression model of severe COVID-19 236 

on predicted expression from multiple tissue models jointly:  237 

eTgeTY 


j

p

j

j g
1

 238 

where  


)(

~
jgenei iij XT   is the predicted expression of tissue j , and jT  is the standardization of 239 

jT
~

 to 0mean and 1deviation standard . jg  is the effect size for the predicted gene expression 240 

in tissue j , e  is an error term with variance 2

e , and p  is the number of included tissues. There 241 

were 22,326 genes across 49 GTEx tissues with integrated convergent evidence in S-MultiXcan, 242 

and a gene with a value of FDR ≤ 0.05 (P ≤ 3.8×10-5) is considered to be significant. 243 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.21266924doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.21266924
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                                                                           Page 11 of 39 

 

 

 244 

In silico permutation analysis 245 

To explore the concordance of results from both MAGMA analysis (Gene set #1: N = 944, P 246 

≤ 0.05) and S-MultiXcan analysis (Gene set #2: N =1,274, P ≤ 0.05), we performed an in silico 247 

permutation analysis  which consisted 100,000 times (N Total)  random selections [41, 42]. We first 248 

calculated the number of overlapped genes between Gene Set #1 and #2 (N Observation = 302), then 249 

employed the total number of genes in S-MultiXcan analysis as background genes (N Background = 250 

22,326). By randomly selecting the same number of genes as Gene set #2 (N = 1,274) from the 251 

background genes, and after repeating it 100,000 times, we calculated the number of overlapped 252 

genes between Gene Set #1 and the sample we selected  each time (N Random). Finally, we calculated 253 

the empirically permuted P value using the following formula: P = 
 𝑁𝑅𝑎𝑛𝑑𝑜𝑚 ≥ 𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑁𝑇𝑜𝑡𝑎𝑙
, and 254 

empirical P value ≤ 0.05 is considered to be significant. 255 

 256 

Drug-gene interaction analysis 257 

We conducted a drug-gene interaction analysis for identified genetics-risk genes by using 258 

protein-chemical interactions in the context of STRING-based PPI networks [43] and STITCH-259 

based drug annotation information (v5.0, http://stitch.embl.de/) [44]. Only experimentally-260 

validated gene-drug interactions with ranked confidence score were selected for constructing a 261 

drug-gene interaction network. To examine the potential therapeutic effects of highly-expressed 262 

genes in each immune cell, we conducted an enrichment analysis of 43 druggable categories based 263 

on the DGIdb database (https://www.dgidb.org/druggable_gene_categories). Additionally, we 264 

collected 1,263 human druggable proteins, which are therapeutic targets of clinical stage or 265 

approved drugs, from a previous study [26]. Among them, 704 proteins are targets for potential 266 

COVID-19-relevant drugs based on registers of clinical trials for COVID-19, approved 267 
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immunomodulatory/anticoagulant drugs, or have biological functions associated with SARS-CoV-268 

2 infection (Supplemental Table S11). 269 

 270 

Integrated analysis of GWAS summary statistics and scRNA-seq data 271 

To identify genetically regulatory-related peripheral immune cells for severe COVID-19, we 272 

implemented the RolyPoly algorithm [45] to incorporate GWAS summary statistics with scRNA-273 

seq data. Let )(ig  stands for the gene associated with SNP i , })(:{ jigiS j   be the SNP set with 274 

multiple SNPs associated with the gene j , and 
jSβ be a GWAS-based effect-size vector of jS  with 275 

a priori assumption that ),MVN(~ 2

j ||Iβ
jj SS 0 . Following the priori, RolyPoly gives a polygenic 276 

linear model for 
jSβ : 277 





N

i

jiij

1

0

2   278 

where 0  is an intercept term, ),...,2,1( Niji   are annotations such as cell-type-specific gene 279 

expression, and i  are annotation coefficients for ji . To fit the observed and expected sum 280 

squared SNP effect sizes related to each gene by using the method-of-moments estimators, 281 

RolyPoly estimates i  by the following equation: 282 

12222 ||)(Tr)ˆ( 



 nSE ejSj

Si

i j

j

 R  283 

where 
jSR  is the LD matrix of jS  and Tr represents the trace of a matrix. Finally, RolyPoly applies 284 

the block bootstrap method with 1,000 iterations to estimate standard errors 
i

̂  for calculating a t-285 

statistic and corresponding P values. The PLINK (v1.90) [46] was used to calculate the LD between 286 

SNPs within the 1 Mb window based on the 1,000 Genome Project European Phase 3 panel [33]. 287 

We restricted the analysis to SNPs in the autosomes, and any SNPs with MAF ≤ 5% were excluded. 288 
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The major histocompatibility complex region (Chr6: 25-35 Mbp) was also excluded due to the 289 

extensive LD in this region. 290 

 291 

Defining cell state scores 292 

We leveraged cell state scores to assess the immunological degree of each immune cell type 293 

expressed a pre-curated expression gene set [11, 14, 29]. The cell state scores (CTS) were calculated 294 

based on the average expression of genes from the pre-curated gene set in the respective cell with 295 

the following formula: CTSk(m) = average(RE(GSk, m)) - average(RE(GSn, m)), where GSk is a 296 

pre-defined gene set k in a given cell m, and GSn is a control gene set that was randomly chosen on 297 

the basis of aggregate expression levels bins, which obtain a comparable distribution of expression 298 

levels and over size to that of the pre-curated gene set. RE represents the relative expression of GSk 299 

or GSn. The AddModuleScore function in Seurat [30] was applied to calculate the CTS with default 300 

parameters. We used the inflammatory and cytokine genes (N = 324 genes, Supplemental Table 301 

S10), cytokine-cytokine receptor interactions (N = 294 genes), chemokine signaling pathway (N = 302 

189 genes), T cell activation (GO: 0042110), response to interferon alpha (GO: 0035455), response 303 

to interferon beta (GO: 0035456), leukocyte migration (GO: 0050900), 5 well-defined proliferating 304 

markers (MK167, TYMS, NKG7, IL7R, and CCR7), 6 well-defined exhaustion markers (LAG3, 305 

TIGIT, PDCD1, CTLA4, HAVCR2, and TOX), and 12 cytotoxicity-associated genes (PRF1, IFNG, 306 

GNLY, NKG7, GZMB, GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW, and CST7) to define 307 

inflammatory cytokine, chemokine, T cell activation, IFN-α/β response, migration, proliferation, 308 

exhaustion, and cytotoxicity score, respectively.  309 

 310 

Cell-to-cell interaction analysis 311 

To identify potential cellular interactions of CCR1+ CD16+monocytes and CXCR6+ memory 312 

CD8+T cells with other immune cells, we utilized the CellChat R package [47] for inferring the 313 
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predicted cell-to-cell communications based on two normalized scRNA-seq datasets (dataset #1 of 314 

PBMC and dataset #4 of BALF). CellChat algorithm could examine the significance of ligand-315 

receptor interactions between two cell types depending on the expression of important factors, 316 

including stimulatory and inhibitory membrane-bound co-receptors, soluble agonists and 317 

antagonists. The communication probability of a signaling pathway was derived from the sum of 318 

probabilities of their ligand-receptor interactions. We only concentrated on the ligand-receptor 319 

interactions that significantly associated with severe COVID-19 compared with normal control.  320 

 321 

Statistical analysis 322 

The Wilcoxon sum-rank test was used to assess DEGs in mild, moderate, and severe COVID-323 

19 group compared with normal control. The Mann-Kendall trend analysis was applied to evaluate 324 

the significance of cell state cells with elevated severities of COVID-19. Pathway- and disease-325 

based enrichment analyses used the hypergeometric test to identify remarkable biological pathways 326 

and disease-terms. The Pearson correlation analysis was used to calculate the correlation coefficient 327 

of highly-expressed genes in CCR1+ CD16+monocytes between moderate and severe patients. The 328 

paired Student’s t test was used to calculate the significance of ligand/receptor interactions of 329 

CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells with other immune cells between 330 

normal control and severe COVID-19. 331 

 332 

Results 333 

The computational framework for integrating single-cell transcriptomes and GWAS on COVID-334 

19 335 

As shown in Figure 1, we devised a computational framework to parse the host genetics-336 

modulated immune cell subpopulations implicated in severe COVID-19. It included three main 337 

parts: 1) integrative analysis that combined GWAS summary statistics with scRNA-seq data to 338 
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genetically map single-cell landscape for severe COVID-19 (Figure 1A); 2) identifying genetics-339 

risk genes, pathways, and immune cell subpopulations that contributed to cytokine storms among 340 

severe patients (Figure 1B); and 3) uncovering the cellular interactions of genetics-modulated 341 

immune cell subsets, as well as their functions with cells in lung tissues (Figure 1C).  342 

 343 

Identification of immune cell types associated with severe COVID-19 344 

To parse the host genetics-influenced immune responses at single cellular level in PBMCs for 345 

severe COVID-19, we subjected three independent scRNA-seq datasets with 563,856 cells to 346 

UMAP based on highly variable genes using the Seurat (See Methods) [30]. There was 347 

identification of 13 distinct clusters unbiased by patients with different severities (Supplemental 348 

Figure S1). We leveraged well-known marker genes to assign these clusters to 13 distinct cell types, 349 

including mature B cells, megakaryocytes, naïve B cells, CD34+progenitors, dendritic cells, natural 350 

killer (NK) cells, CD14+monocytes, CD16+monocytes, memory CD4+T cells, naïve CD4+T cells, 351 

naïve CD8+T cells, memory CD8+T cells, and effector CD8+T cells (Supplemental Figures S2-352 

S3).  353 

While performing the hierarchical clustering analysis on the scRNA-seq profiles, we 354 

discovered that cell types were the primary determinants of their clustering, followed by disease 355 

severities, indicating both COVID-19 pathology and immune cell types might have crucial roles in 356 

altered patterns of immune transcriptome instead of technical artifacts (Supplemental Figure S4). 357 

As a vital feature for reflecting the alterations of immune responses, we examined the relative 358 

proportions of peripheral immune cells across different COVID-19 groups in comparison with 359 

normal group. The proportions of CD14+monocytes, megakaryocytes, and CD34+progenitors were 360 

significantly elevated in moderate and severe patients, whereas the proportions of 361 

CD16+monocytes, effector CD8+ T cells, memory CD8+T cells, memory CD4+T cells, naïve 362 
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CD4+T cells, and NK cells were significantly decreased with the increased severities 363 

(Supplemental Figure S5). 364 

  365 

Identification of genetic risk loci associated with severe COVID-19 366 

Through performing a meta-analysis of 21 independent GWAS studies from the COVID-19 367 

Host Genetic Consortium, eight genomic loci were identified to be associated with hospitalized 368 

COVID-19 at a genome-wide significant level, including 1p22.2 (rs2166172, P = 2.74×10-8), 369 

3p21.31 (rs35081325, P = 3.32×10-58, and rs33998492, P = 3.59×10-14), 6p21.33 (rs143334143, P 370 

= 1.28×10-10), 7p11.2 (rs622568, P = 2.57×10-8), 9q34.2 (rs505922, P = 2.24×10-9), 12q24.13 371 

(rs2269899, P = 3.24×10-8), 19p13.3 (rs2109069, P = 6.4×10-13), and 21q22.11 (rs13050728, P 372 

=1.91×10-11) (Figure 2A, Supplemental Table S3, Figure S6, and Materials S2). Among these eight 373 

loci, three loci, 1p22.2, 6p21.33 and 7p11.2, were newly identified. It should be noted that there 374 

were two independent genetic association signals (Index SNPs: rs35081325 and rs33998492) in the 375 

3p21.31 locus for severe COVID-19 (Figure 2B and Supplemental Figure S7A-C). Using the 376 

Variant2Gene (V2G) algorithm [48], we prioritized CXCR6 as a candidate causal gene for 377 

rs35081325 and causal gene CCR1 for rs33998492 (Supplemental Method S1).  378 

Furthermore, the index SNP of rs505922 (P = 2.24×10-9) in the 9q34.2 locus is highly LD with 379 

the reported SNP of rs657152 (R2 = 0.874) [27] and rs8176719 (R2 = 0.876) [25]. Based on the top-380 

ranked V2G score for rs505922, we prioritized ABO as a potential causal gene contributing 381 

susceptibility to severe COVID-19. By performing a MAGMA gene-level association analysis, we 382 

observed that 25 genes including CXCR6, CCR1, IFNAR2, IL10RB, and OAS1 were significantly 383 

associated with severe COVID-19 (FDR < 0.05, Supplemental Figure S8 and Table S4). GWAS-384 

based pathway enrichment analysis revealed that 19 biological pathways, including cytokine-385 

cytokine receptor interaction, influenza A, and TNF signaling, were significantly associated with 386 

hospitalized COVID-19 (Supplemental Figure S9 and Table S5).  387 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.21266924doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.21266924
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                                                                           Page 17 of 39 

 

 

 388 

Integrative analysis of GWAS on severe COVID-19 with GTEx eQTL data 389 

To obtain combined signals from multiple tissues [49], we leveraged S-MultiXcan to meta-390 

analyze the tissue-specific associations from 49 tissues in GTEx (see Methods), which showed that 391 

the genetically predicted expressions of 16 genes were significantly associated with severe COVID-392 

19 (FDR < 0.05, Figure 2C and Supplemental Table S6). Of note, 14 of 16 genes (87.5%) were 393 

identified to be significant in MAGMA analysis (Supplemental Figure S10A-B). Through 394 

conducting S-PrediXcan analysis of blood and lung tissues that were linked with SARS-CoV-2 395 

infection, we found eight genes whose genetically-regulated expression were significantly 396 

associated with severe COVID-19 (FDR < 0.05, Supplemental Table S7). Using in silico 397 

permutation analysis, we further observed that there existed a high consistence among results from 398 

MAGMA, S-PrediXcan, and S-MultiXcan analyses (P < 1.0×10-5, Supplemental Figure S11A-C). 399 

The aforementioned multiple genomic analyses identified 34 risk genes that showed supportive 400 

evidence of involvement in the etiology of COVID-19 (Supplemental Figure S12A-B).  401 

 402 

Functional characterization of 34 risk genes for severe COVID-19 403 

The result of a network-based enrichment analysis suggested that 22 of 34 risk genes were 404 

significantly enriched in a PPI subnetwork (P = 2.85×10-13, Figure 2D), which is consistent with 405 

the consensus that disease-related genes are more densely connected [50, 51]. To functionally 406 

characterize the drug targets of these genes, we conducted a drug-gene interaction analysis and 407 

identified 11 genes including CCR1, IFNAR2, IL10RB, and OAS1 were targeted by at least one 408 

known drug (Figure 2D and Supplemental Figure S14), of which some genes including CCR1, 409 

IFNAR2, and IL10RB have been reported to be drug targets for treating severe COVID-19 patients 410 

[25, 26]. Furthermore, these 34 genes were significantly enriched in a functional module consisting 411 

of 10 biological pathways (Figure 2E, Supplemental Table S8 and Figure S13), among which two 412 
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top-ranked ones being cytokine-cytokine receptor interaction and chemokine signaling pathway 413 

(FDR < 0.05). Most of these enriched pathways have been reported to be implicated in COVID-19 414 

[25, 52, 53].  415 

Based on the expression profile of dataset #1, we conducted a hierarchical clustering analysis 416 

of these identified risk genes on COVID-19 severity, and found that these risk genes predisposed 417 

be highly-expressed in severe patients compared to normal group (Permuted P = 0.023, Figure 2F-418 

G). Consistently, the number of significant enriched pathways were elevated with increased 419 

severities (Figure 2H). Genes in both cytokine-cytokine receptor interaction and chemokine 420 

signaling pathways showed significantly high expressions in the early phase of SARS-CoV-2 421 

infection (Figure 2H), suggesting that these two pathways could play critical roles in the initiation 422 

of COVID-19.  423 

 424 

Genetics-influenced peripheral immune cell types for severe COVID-19 425 

To identify genome-wide genetics-influenced immune cells for severe COVID-19, we first 426 

leveraged a regression-based polygenic model to integrate GWAS summary data on severe 427 

COVID-19 with single-cell transcriptomic profiles (dataset #1) according to different COVID-19 428 

severities (See methods). We found that CD16+monocytes were significantly associated with three 429 

phases of COVID-19, mature B cells showed remarkable associations with mild COVID-19, 430 

megakaryocytes were significantly associated with moderate and severe COVID-19, and memory 431 

CD8+T cells showed significant associations with severe COVID-19 (simulated P < 0.05, Figure 432 

3A). Further, we used a generalized linear regression model to validate these severe COVID-19-433 

associated cell types by conditioning on the 10% most specific genes for each type, and consistently 434 

found that CD16+monocytes and megakaryocytes showed notable associations with severe 435 

COVID-19 (P < 0.05, Supplemental Method S2). These results indicated that CD16+monocytes, 436 
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megakaryocytes, and memory CD8+T cells were more vulnerable to the influence of genetic 437 

components on severe-stage patients.  438 

Based on the specificity algorithm used in MAGMA, we noticed that the top specific cell type 439 

of CCR1 was CD16+monocytes, CXCR6 was most specifically expressed in memory CD8+T cells, 440 

and ABO was specific to megakaryocytes (Supplemental Figure S15A), recalling that CXCR6, 441 

CCR1 and ABO were prioritized to be candidate causal genes for severe COVID-19 based on the 442 

V2G score in above genetics-based analysis. Compared with other cell types, CCR1 was primarily 443 

expressed in CD16+monocytes (24.77%), CXCR6 was mainly expressed in memory CD8+T cells 444 

(40.29%), and the ABO-expressed cells were highly specific to megakaryocytes (54.63%) 445 

(Supplemental Figure S15B and Table S9). To gather additional empirical support, we analyzed the 446 

combined dataset of both datasets #2 and #3 as a validation and found CCR1, CXCR6, and ABO 447 

showed a consistent specificity in the three cell types (Supplemental Figure S16).  448 

Given that the primary goal of current study was to characterize genetics-influenced peripheral 449 

immune cell types for severe COVID-19, the majority of our subsequent detailed analyses would 450 

be concentrated on three immune cell subpopulations: CCR1+ CD16+monocytes, ABO+ 451 

megakaryocytes, and CXCR6+ memory CD8+T cells (Figure 3B). 452 

  453 

CCR1+ CD16+monocytes and ABO+ megakaryocytes contributing higher risk to cytokine storm 454 

The accumulating lines of evidence [29, 54] have suggested that subsets of monocytes and 455 

megakaryocytes might be the major resources of inflammatory storm. We sought to examine 456 

whether CCR1+ CD16+monocytes and ABO+ megakaryocytes play more important roles in 457 

cytokine storm among severe patients. As for CCR1+ CD16+monocytes, we found that the 458 

inflammatory cytokine score was significantly higher than that of CCR1- CD16+monocytes (P = 459 

2.5×10-7, Figure 4A). Consistently, the combined score of both cytokine-cytokine receptor 460 

interaction and chemokine signaling pathway was prominently higher in CCR1+ CD16+monocytes 461 
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(P < 2.2×10-16, Supplemental Figure 17A). Compared with CCR1- CD16+monocytes, there were 462 

351 significantly highly-expressed genes in CCR1+ CD16+monocytes, such as inflammatory and 463 

cytokine genes of IL1B, IL27, CXCL10, CXCL8, CD14, and OSM (FDR < 0.05, Figure 4B and 464 

Supplemental Table S11), which have been documented to be associated with the inflammatory 465 

response and chemotaxis of immune cells among COVID-19 patients [10, 15, 55, 56]. Functionally, 466 

19 KEGG pathways were significantly overrepresented by the 351 highly-expressed genes (FDR < 467 

0.05, Figure 4C and Supplemental Table S12), including cytokine-cytokine receptor interaction and 468 

chemokine signaling pathway, reminiscing that most of them were identified in above genetics-469 

based pathway analysis. Additionally, these highly-expressed genes among CCR1+ 470 

CD16+monocytes have a remarkably higher proportion of druggable genes and COVID-19-471 

associated druggable genes (P ≤ 0.01, Supplemental Figure S17 and Table S13).  472 

The cell percentage of CCR1+ CD16+monocytes showed a notable elevation among moderate 473 

and severe patients compared with normal controls (P < 0.001), with no significant difference 474 

between mild patients and normal controls (P = 0.1, Figure 4D). Furthermore, the inflammatory 475 

cytokine scores among CCR1+ CD16+monocytes were significantly elevated with increased 476 

severities (Trend P = 0.0013, Figure 4E). In comparison with normal controls, mild, moderate, and 477 

severe patients displayed significantly up-regulated expressions (up-DEGs) with 14, 169, and 190 478 

genes respectively (FDR < 0.05, Figure 4F and Supplemental Figure S17D). Notably, there existed 479 

a high correlation between up-DEGs of moderate and severe patients (r = 0.937, P < 2.2×10-16; 480 

Figure 4G), such as S100A8, S100A9, and IFITM1 (Figure 4H-4J), indicating a similar expression 481 

pattern between moderate and severe patients. Accumulating release of massive amounts of 482 

calprotectin (S100A8/S100A9) in monocytes contributes to inflammatory response among severe 483 

COVID-19 patients [10, 16, 29].  484 

Furthermore, these 190 up-DEGs were significantly enriched in disease-terms associated with 485 

viral infection and inflammation and 17 functional GO-terms (FDR < 0.05, Figure 4K, 486 
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Supplemental Figure S17E and Tables S14-S15), including interferon alpha/beta signaling and 487 

interferon gamma signaling. These interferon-related genes including IRF3, IRF2, IFI6, IFITM1, 488 

ISG15, and ICAM1 may induce autoinflammatory and autoimmune conditions contributing to the 489 

innate immune cells against SARS-CoV-2 infection [57, 58]. Of note, a high proportion of 63.68% 490 

among 190 up-DEGs such as CXCL8, IFITM1, S100A8, and S100A9 were annotated into 15 491 

potential druggable gene categories (Supplemental Figure S17F-L and Table S16). These results 492 

indicated that interferon-related genes among CCR1+ CD16+monocytes have instrumental effects 493 

in exacerbating inflammation among severe patients. 494 

In addition, we found that ABO+ megakaryocytes had a significantly higher inflammatory 495 

cytokine score than that in ABO- cells (P < 0.001, Supplemental Figure S18A-B). Compared with 496 

ABO- megakaryocytes, 424 genes were significantly highly-expressed in ABO+ megakaryocytes 497 

(FDR < 0.05, Supplemental Figure S18C and Table S17). These 424 highly-expressed genes were 498 

significantly enriched in systemic lupus erythematosus, alcoholism, and platelet activation (FDR < 499 

0.05, Supplemental Figure S18D and Table S18). Similar to CCR1+ CD16+monocytes, the cell 500 

percentage of ABO+ megakaryocytes was significantly elevated among moderate and severe 501 

patients (P < 0.01, Supplemental Figure S18E). Among ABO+ megakaryocytes, 20 and 35 up-DEGs 502 

were notably associated with moderate and severe patients, respectively (FDR < 0.05, Supplemental 503 

Figure S18F-G). There was a highly overlapped rate of these up-DEGs between moderate and 504 

severe COVID-19 groups, including ACP1, S100A8, and A100A9 (18/20 = 90%, Supplemental 505 

Figure S18F-N). These 35 up-DEGs were annotated to 12 druggable gene categories and 506 

significantly enriched in several disease terms (Supplemental Figure S18H and Tables S19-S20), 507 

such as shock and thrombocytopenia, which were reported to be associated with COVID-19 [59]. 508 

Overall, these results suggest that both CCR1+ CD16+monocytes and ABO+ megakaryocytes 509 

contribute higher risk to inflammatory storm among severe patients.  510 

 511 
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CXCR6+ memory CD8+T cells convey risk to severe COVID-19 512 

Earlier studies [10, 60] have indicated that polyfunctional T cells play important roles in 513 

dominating the anti-viral infection immune response and can release a substantially higher amount 514 

of multiple distinct cytokines and chemokines in comparison to other T cells. It is plausible to infer 515 

that there exist subsets of memory CD8+T cells predisposing to be multi-functional for against 516 

SARS-CoV-2 infection. We calculated several immunological features to evaluate whether 517 

CXCR6+ memory CD8+T cells have a higher polyfunctionality than CXCR6- memory CD8+T cells. 518 

Compared with CXCR6- memory CD8+T cells, we found that scores of cytokine, chemokine, IFN-519 

ɑ/β response, T cell activation, proliferation, and migration were significantly higher among 520 

CXCR6+ memory CD8+T cells (P < 0.05, Figure 5A-D and Supplemental Figure S19A-C). There 521 

were 158 highly-expressed genes among CXCR6+ memory CD8+T cells in comparison with 522 

CXCR6- cells (FDR < 0.05, Figure 5E). These highly-expressed genes were significantly enriched 523 

in two biological pathways of cytokine-cytokine receptor interaction and inflammatory bowel (FDR 524 

< 0.05, Supplemental Figure S19D and Table S21). The chemokine signaling pathway showed a 525 

suggestive enrichment (P < 0.05). These highly-expressed genes contained numerous pro-526 

inflammatory cytokine and chemokine genes, such as CCR1, CCR2, CCR5, CCR6, CCL3L1, 527 

IFNGR1, IL18R1, IL23R, MYC, and TNFSF14, which may be associated with the activation of 528 

memory CD8+T cells.  529 

Furthermore, the cell proportion of CXCR6+ memory CD8+T cells was significantly higher 530 

among both mild and moderate COVID-19 than that among normal group (P < 0.05), whereas the 531 

cell proportion of CXCR6+ memory CD8+T cells among severe COVID-19 was remarkably lower 532 

than that among normal group (P = 0.012, Figure 5F). Consistently, we found that the scores of 533 

chemokine, T cell activation, and migration were increased with the increasing patient severities 534 

among CXCR6+ memory CD8+T cells (Trend P < 0.05, Figure 5G-I), and that lower cytotoxicity 535 

score and exhaustion score were observed among moderate-to-severe patients (Trend P < 0.05, 536 
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Supplemental Figure S19E-F). Additionally, we found 44, 42, and 53 up-DEGs that were notably 537 

associated with mild, moderate, and severe COVID-19, and there were six significant common 538 

genes across three phases of COVID-19, including TCF7, GZMH, RAB5IF, CCND2, BIRC6, and 539 

NDUFAF3 (Figure 5J-K and Supplemental Figure S19G-N). The gene of TCF7 was an essential 540 

factor in memory CD8+T cell differentiation [61], and GZMH was reported to mediate antiviral 541 

activity through direct cleavage of viral substrates [62]. These 108 up-DEGs were found to be 542 

significantly enriched in 22 functional GO-terms, including Fc-gamma receptor signaling pathway, 543 

regulation of leukocyte differentiation, and activation of immune response (Figure 5L-M and 544 

Supplemental Table S22). Overall, these results indicated that CXCR6+ memory CD8+T cells have 545 

an enhanced propensity to be multi-functional and activated T cells involved in severe COVID-19. 546 

 547 

Elevated cellular interactions may enhance the resident to lung airway for COVID-19 548 

To gain refined insights into CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells, we 549 

examined the cellular interactions among cell populations in PBMCs and BALFs according to the 550 

COVID-19 disease status using the CellChat algorithm [47]. For CCR1+ CD16+monocytes in 551 

PBMCs, we found a notable increase in cell-to-cell interactions with other immune cells among 552 

severe patients than that in normal controls (P < 0.05, Figure 6A and Supplemental Figure S20). 553 

There was no statistical difference in cellular communications of CCR1- CD16+monocytes with 554 

other cells between normal and COVID-19 patients (P > 0.05, Figure 6B). Compared with normal 555 

controls, CCR1+ CD16+monocytes showed elevated interactions with megakaryocytes, memory 556 

CD8+T cells, NK, effector CD8+T cells, and CD14+monocytes among severe patients 557 

(Supplemental Figure S20). There were 14 ligand-receptor interactions observed to be remarkably 558 

dominated among severe patients (Figure 6C), including ANXA1-FPR1, ITGB2-ICAM2/CD226, 559 

LGALS9-CD44, SELPLG-SELL/SELP, APP-CD74, and THBS1-CD36/CD47. 560 
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With regard to CXCR6+ memory CD8+T cells in PBMCs, the predicted cell-to-cell interactions 561 

showed a prominent elevation with increased severities of COVID-19 (P < 0.05, Figure 6D). 562 

Similar to CCR1- CD16+monocytes, we observed no obvious difference of cellular interactions 563 

between normal controls and COVID-19 patients among CXCR6- memory CD8+T cells (P > 0.05, 564 

Figure 6E). Compared with healthy individuals, CXCR6+ memory CD8+T cells demonstrated 565 

higher cellular communications with CD14+monocytes, CD34+progenitors, dendritic cells, 566 

effector CD8+T cells, naïve CD8+T cells, memory CD4+T cell, naïve CD4+T cells, NK, and 567 

megakaryocytes among severe patients (Supplemental Figure S20). There were 20 elevated cellular 568 

interactions of CXCR6+ memory CD8+T cells with other immune cells among severe patients, 569 

including ADGRE5-CD55, ANXA1-FPR1, CCL3/CCL5-CCR1, CD99-CD99/PILRA, ICAM2-570 

(ITGAL+ITGB2), and ITGB2-ICAM2/CD226 (Figure 6F). These cell adhesion molecules (ANXA1 571 

and ICMA2), cytokine binding and receptor activity genes (CD44, CD36, CD74, CXCR4, and 572 

THBS1), and inflammatory genes (FPR1 and SELL) have been reported to be associated with 573 

COVID-19 [16, 55, 63, 64].  574 

Among BALF cells, we also observed a remarkable increase in cellular interactions of CCR1+ 
575 

CD16+monocytes and CXCR6+ memory CD8+T cells comparing to their corresponding negative 576 

cells (P < 0.001, Figure 6G-J and Supplemental Figure S21A). For example, enhanced ligand-577 

receptor axes of SELPLG-SELL, CCL5-CCR1, FN1-(ITGA4+ITGB1), CD99-CD99, and APP-578 

CD74 among CCR1+ CD16+monocytes (Figure 6H), as well as CXCL16-CXCR6, TNFSF14-579 

TNFRSF14, ITGB2-CD226, CLEC2B/CLEC2C-KLRB1, and CCL3/CCL4-CCR5 among CXCR6+ 
580 

memory CD8+T cells (Figure 6J). Notably, there was a 60% increase in cellular interactions 581 

between CCR1+ CD16+monocytes and epithelial cells compared with that of CCR1- 
582 

CD16+monocytes (Supplemental Figure S21B). We also found a 33.33% increase in the 583 

interactions between CXCR6+ memory CD8+T cells and epithelial cells compared with that of 584 

CXCR6- memory CD8+T cells (Supplemental Figure S21C), such as enhanced ligand-receptor 585 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.21266924doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.21266924
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                                                                           Page 25 of 39 

 

 

interactions including TNF-TNFRSF1A, CXCL16-CXCR6, and CCL3-CCR5. Previous studies [65, 586 

66] have reported that the CXCL16-CXCR6 axis modulates the localization of tissue-resident 587 

memory CD8+T cells to the lung airway. Overall, these results suggest that the increased cellular 588 

interactions with epithelial cells probably enhance the resident to the lung airway for against SARS-589 

CoV-2 infection.  590 

 591 

Discussion 592 

By using large-scale genetics data, we identified eight genomic loci including three novel loci 593 

(e.g., 1p22.2, 6p21.33, and 7p11.2) that were significantly associated with severe COVID-19. Other 594 

five loci including 3p21.31, 9q34.2, 12q24.13, 19p13.3, and 21q22.11 have been reported to be 595 

involved in COVID-19 risk in previous studies [23-28]. Notably, we prioritized 34 risk genes, 596 

including potential causal genes of CXCR6, CCR1, and ABO, to be associated with severe COVID-597 

19. The CXC motif chemokine receptor 6 (CXCR6), which is a G protein-coupled receptor with 598 

seven transmembrane domains, regulates the partitioning of resident memory T cells by recruiting 599 

lung tissue-resident memory CD8+T cells to airways [65]. CCR1 gene encodes the CC motif 600 

chemokine receptor 1 (CCR1) belonging to a member of the beta chemokine receptor family. 601 

Several previous GWASs have reported genetic variants in CCR1 are associated with COVID-19 602 

susceptibility at a genome-wide significant level [25, 27]. For the ABO gene, it encodes protein 603 

relevant to the ABO blood group system. Both genetic and non-genetic studies [25, 27, 67] have 604 

showed the involvement of ABO gene in COVID-19 susceptibility, while the ABO gene encodes 605 

protein that is relevant to the ABO blood group system, and it was also notably associated with 606 

several thrombotic and coagulation-related traits including deep vein thrombosis and pulmonary 607 

heart disease, which have been reported to be risk factors and sequalae to severe COVID-19 [68, 608 

69].  609 
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Understanding the immune responses of monocytes and memory T cells is fundamental to the 610 

rational design of innovative and effective strategies to develop better vaccines [70, 71], and 611 

contributes to reveal the pathogenesis of severe COVID-19 [29]. Our current analyses reveal that 612 

host genetic determinants have a prominent influence on the immune responses of 613 

CD16+monocytes, megakaryocytes, and memory CD8+T cells to severe COVID-19. Previous 614 

studies [11, 29, 54] showed that the influence caused by monocytes and megakaryocytes in 615 

inflammatory storms is noteworthy among severe COVID-19 patients. We found that CCR1+ 616 

CD16+monocytes and ABO+ megakaryocytes showed a significantly increased propensity to cause 617 

inflammatory storms among severe patients. The observations suggest highly-expressed interferon-618 

related genes, including S100A8, S100A9, S100A12, CD14, CXCL8, IGSF6, IRF3, IFI6, IFITM1, 619 

and IFITM3 among the two cell subsets contribute to exacerbate inflammation among severe 620 

patients. The inflammatory mediator of EN-RAGE encoded by S100A12 was significantly 621 

correlated with COVID-19 [21], and S100A8, S100A9, IRF3, IFI6, IFITM1, and IFITM3 have been 622 

reported to elicit autoinflammatory and autoimmune conditions in response to SARS-CoV-2 623 

infection [10, 16, 29, 57, 58]. Double positive CD14+CD16+monocytes reported as tissue-624 

infiltrative cells have a higher potency of antigen presentation and highly-expressed 625 

proinflammatory cytokines [72, 73]. Additionally, interferons are the mediators in several canonical 626 

host antiviral signaling to activate the expression of numerous required molecules of the early 627 

response to viral infection [74], and impaired type I interferon activity play important roles in severe 628 

COVID-19 [58]. Our findings described above suggest that CCR1+ CD16+monocytes and ABO+ 
629 

megakaryocytes as a functional subset of myeloid cells convey higher risks to severe COVID-19. 630 

Memory CD8+T cells could elicit improved immunological features that are critical in host 631 

protection from viral infectious [71]. After influenza virus infections, memory CD8+T cells reside 632 

in the lung for a couple of months and these resident memory T cells are necessary for effective 633 

immunity against secondary infection [75]. Among severe COVID-19 patients, we found that 634 
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CXCR6+ memory CD8+T cells undertook several improved immunological features, including 635 

higher scores of cytokine, chemokine, T cell activation, proliferation, and migration, which 636 

suggests CXCR6+ memory CD8+T cells potentially contribute to the protection of SARS-CoV-2 637 

infection. Among these positive CXCR6+ cells, numerous highly-expressed cytokine and 638 

chemokine genes, including CCR1, CCR2, IFNGR1, and MYC, may work on activating memory T 639 

cells. Earlier evidence indicated that MYC was rapidly but temporally induced during the early 640 

stage of T cell activation [76]. The CCR1 plays a pivotal role in the recruitment of effector immune 641 

cells to the site of inflammation, and the pharmacologic inhibition of this gene may suppress 642 

immune hyper-activation in severe COVID-19 [15]. Memory CD8+T cells obtained the capability 643 

of transforming to effector cells by sensing inflammation from monocytes [71]. Thus, inflammatory 644 

CCR1+ CD16+monocytes among severe COVID-19 patients potentially accelerate the activation 645 

of memory CD8+T cells.  646 

Additionally, we observed a prominent decrease of the cell proportion of CXCR6+ memory 647 

CD8+T cells among severe patients. This decrease in peripheral blood among severe patients is 648 

probably due to efflux to the site of viral infected lung tissue in answer to ongoing tissue damage. 649 

Earlier studies [29, 77] have reported that functional CD8+T cell subsets manifest a notable 650 

decrease in the peripheral blood of severe COVID-19 patients. Epithelium is the most vulnerable 651 

tissue to be attacked by viral or microbial infection, thus the presence of resident memory CD8+T 652 

cells are imperative for defending the debilitating infections for hosts [75]. In the current study, we 653 

found an obvious increase in cellular interactions of CXCR6+ memory CD8+T cells with 654 

epitheliums. Enhanced ligand-receptor interactions including TNF-TNFSFRSF1A, CXCL16-655 

CXCR6, and CCL3-CCR5 may contribute to the lung-residence of memory CD8+T cells. Previous 656 

evidence demonstrated a major role for CXCL16-CXCR6 interactions in regulating the resident of 657 

virus-specific memory CD8+T cells [65, 66]. An earlier study showed a stronger interactions 658 

between epithelial and immune cells among severe COVID-19 cases than that among moderate 659 
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cases [15]. We demonstrated that CXCR6+ memory CD8+T cells mounted highly effective immune 660 

responses to against COVID-19, highlighting the remarkable biological plasticity in subsets of 661 

memory CD8+T cells differentiation.  662 

The power of this study is limited by the lack of matched genetic data and scRNA-seq data in 663 

each sample for uncovering the genetic effects on immune cells for severe COVID-19. To reduce 664 

the influence of this limitation, we adopted a widely-used approach by integrating a large-scale 665 

GWAS summary statistics with enormous amount of single cell sequencing data, as referenced in 666 

previous studies [45, 78]. Based on our findings suggesting that host genetic components exert 667 

regulatory effects on immunological dysregulations for SRAS-CoV-2 infection, more studies are 668 

warranted for exploring the genetic modification of peripheral T cells to defend against lethal severe 669 

COVID-19.  670 

 671 

Conclusions 672 

In sum, we provide comprehensive insights that host genetic determinants are fundamental in 673 

influencing the peripheral immune responses to severe COVID-19. Both CCR1+ CD16+monocytes 674 

and ABO+ megakaryocytes contribute higher risk to the inflammatory storms among severe patients. 675 

CXCR6+ memory CD8+T cells exhibit a notable polyfunctionality of several improved 676 

immunologic features implicated in the etiology of severe COVID-19. Further experiments to parse 677 

the molecular mechanism of these three cell subpopulations on severe COVID-19 patients are 678 

crucial for promoting personalized protective immunity.  679 

 680 
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linkage disequilibrium; FDR: false discovery rate; KEGG: the Kyoto Encyclopedia of Genes and 688 

Genomes; PPC: the Pearson correlation coefficient; MDS: multidimensional scaling; OTG: the 689 
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Figure Legends 730 

Figure 1. The workflow for this integrative genomic analysis. A) Combination of single cell 731 

RNA sequencing data and GWAS summary statistics on severe COVID-19 based on two 732 

independent methods. One method is regression-based polygenic model based on whole scRNA-733 

seq profiles, and another is generalized linear regression model based on top 10% most specific 734 
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genes for each cell type. B) An increase in genetics-risk genes and cytokines for severe COVID-19. 735 

C) Cellular interaction analysis of genetics-influenced immune cell subsets with epithelial cells.  736 

 737 

Figure 2. Risk genes and pathways associated with hospitalized COVID-19 from meta-GWAS 738 

summary data. A) Manhattan plot and quantile-quantile (QQ) plot of meta-GWAS analysis 739 

highlighting eight risk genetic loci for hospitalized COVID-19. The red horizontal line represents 740 

the genome-wide significance threshold of P < 5×10-8. The genomic inflation factor λ = 1.02. B) 741 

Nine index SNPs within eight genomic loci associated with hospitalized COVID-19. Left panel 742 

shows the P value of each index SNP, and right panel shows the odds ratio with 95% confidence 743 

interval. C) Circus plot showing the results of S-MultiXcan-based analysis. The inner ring 744 

demonstrates the 22 autosomal chromosomes (Chr1-22). In the outer ring, a circular symbol 745 

represents a specific gene and color marks the statistical significance of the gene for hospitalized 746 

COVID-19 (Red marks FDR < 0.05, orange indicates 6.96×10-5 ≤ P < 0.001, light blue marks 0.001 747 

≤ P ≤ 0.05, and dark blue indicates P > 0.0). D) PPI network of these 34 identified risk genes based 748 

on the STRING database (v11.0, https://string-db.org/). Orange ring represents druggable genes 749 

targeted by at least one known drug. E) Network module constructed by using the Jaccard distance 750 

showing the connectivity of 10 significant pathways enriched by 34 risk genes. F) Heatmap 751 

showing the results of hierarchical clustering analysis of 27 risk genes on COVID-19 severity. 752 

Seven risk genes did not expressed in the dataset #1, and the expression level of each gene was 753 

scaled. G) The proportion of highly-expressed genes among 27 risk genes in normal controls and 754 

in the three phases of COVID-19 (mild, moderate, and severe patients). Using 10,000 times of 755 

permutation analysis to calculate the significance of the observation (permuted P = 0.023). H) Plot 756 

showing an increase of the significantly enriched pathways in the network module with elevated 757 

COVID-19 severities. Orange color represents a significant enriched pathway (FDR ≤ 0.05) and 758 

gray color represents a non-significant enriched pathway (FDR > 0.05). 759 
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 760 

Figure 3. Integrative analysis identifies genetic associations between peripheral immune cells 761 

and severe COVID-19. A) Bar graph showing the results of the combination of scRNA-seq data 762 

and GWAS summary statistics on severe COVID-19 based on the RolyPoly among normal controls 763 

and patients with different severities (i.e., mild, moderate, and severe). The y-axis shows the 13 cell 764 

types, and x-axis shows mean negative log-transformation P value (-Log2(P)). Orange color 765 

indicates a cell type showing a significant association, and light blue represents there is no 766 

significant association. B) UMAP projections of peripheral immune cells colored by annotated cell 767 

types. The plot showing the region of CD16+monocytes, megakaryocytes, and memory CD8+T 768 

cells. Red dot represents positive gene expressions of CCR1+, ABO+, and CXCR6+, and gray stands 769 

for negative cells. 770 

 771 

Figure 4. CCR1+ CD16+momocytes contributes higher risk to cytokine storms among severe 772 

COVID-19 patients. A) Boxplot showing the difference in inflammatory cytokine score between 773 

CCR1+ and CCR1- CD16+ monocytes. Two-side Wilcoxon sum-rank test was used. B) Volcano 774 

plot showing differentially expressed genes between CCR1+ and CCR1- CD16+ monocytes. C) 775 

Significantly enriched pathways by 351 highly-expressed genes among CCR1+ CD16+ monocytes. 776 

Color legend represents the log transformed FDR value (-Log10(FDR)). D) Bar graph showing the 777 

proportion of CCR1+ CD16+ monocytes among normal, mild, moderate, and severe groups. E) 778 

Boxplot showing the inflammatory cytokine score of CCR1+ CD16+ monocytes among normal, 779 

mild, moderate, and severe groups. The Mann-Kendall trend analysis was used. F) Bar graph 780 

showing the differentially up-DEGs among different COVID-19 patients compared with normal 781 

controls. Namely, mild COVID-19 vs. normal, moderate COVID-19 vs. normal, and severe 782 

COVID-19 vs. normal. Venn plot on top of bar showing the overlapped up-DEGs between moderate 783 

and severe patients. G) The correlation of up-DEGs between moderate and severe patients. Pearson 784 
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correlation analysis was used to calculate the correlation coefficient and P value. H)-J) 785 

Representative up-DEGs among CCR1+ CD16+ monocytes showing significantly elevated 786 

expressions with increased COVID-19 severities. H) S100A8, I) S100A9, and J) IFITM1. K) 787 

Disease-terms enrichment analysis on 190 up-DEGs based on the GLAD4U database. The y-axis 788 

shows -Log10(FDR), and x-axis shows the enrichment ratio.  789 

 790 

Figure 5. Multi-functionality of CXCR6+ memory CD8+T cells for severe COVID-19. A)-D) 791 

Boxplots showing the difference in (A) cytokine score, (B) chemokine score, (C) IFN-ɑ/β response 792 

score, and (D) T cell activation score between CXCR6+ and CXCR6- memory CD8+T cells. Two-793 

side Wilcoxon sum-rank test was used. E) Volcano plot showing differentially expressed genes 794 

between CXCR6+ and CXCR6- memory CD8+T cells. F) Bar graph showing the proportion of 795 

CXCR6+ memory CD8+T cells among normal, mild, moderate, and severe groups. G)-I) Boxplots 796 

showing the (G) chemokine score, (H) T cell activation score, and (I) migration score of CXCR6+ 797 

memory CD8+T cells among normal, mild, moderate, and severe groups. The Mann-Kendall trend 798 

analysis was used. J) Venn plot showing the overlapped up-DEGs between pairwise comparisons: 799 

mild vs. normal, moderate vs. normal, and severe vs. normal. K) Representative gene of GZMH 800 

among CXCR6+ memory CD8+T cells showing significantly elevated expressions with increased 801 

COVID-19 severities. L) Heatmap showing up-DEGs in CXCR6+ memory CD8+T cells from 802 

pairwise comparisons: mild vs. normal, moderate vs. normal, severe vs. normal. The up-DEGs 803 

listed in the green panel were from mild vs. normal, yellow panel were from moderate vs. normal, 804 

and orange panel were from severe vs. normal. M) Scatter plot showing the enriched GO biological 805 

processes by 108 up-DEGs among CXCR6+ memory CD8+T cells. The x-axis shows -Log10(FDR), 806 

and y-axis shows the enrichment ratio.  807 

 808 
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Figure 6. Cell-to-cell interactions of CCR1+ CD16+momocytes and CXCR6+ memory CD8+T 809 

cells with other cells in PBMC and BALF. A)-B) Boxplot showing the number of cellular 810 

interactions of (A) CCR1+ CD16+ monocytes and (B) CCR1- CD16+ monocytes with other immune 811 

cells in PBMC between normal controls and patients with increased COVID-19 severities. C) 812 

Predicted cellular interactions of CCR1+ CD16+ monocytes with other immune cells in PBMC, 813 

comparing severe COVID-19 vs. normal control. D)-E) Boxplot showing the number of cellular 814 

interactions of (D) CXCR6+ memory CD8+T cells and (E) CXCR6- memory CD8+T cells with other 815 

immune cells in PBMC between normal controls and patients with increased COVID-19 severities. 816 

F) Predicted cellular interactions of CXCR6+ memory CD8+T cells with other immune cells in 817 

PBMC, comparing severe COVID-19 vs. normal control. G) Boxplot showing an increase in 818 

cellular interactions with other cells in BALF for CCR1+ CD16+ monocytes than CCR1- CD16+ 819 

monocytes. H) Predicted cellular interactions with other cells in BALF, comparing CCR1+ CD16+ 820 

monocytes with CCR1- CD16+ monocytes. I) Boxplot showing an increase in cellular interactions 821 

with other cells in BALF for CXCR6+ memory CD8+T cells than CXCR6- memory CD8+T cells. 822 

J) Predicted cellular interactions with other cells in BALF, comparing CXCR6+ memory CD8+T 823 

cells with CXCR6- memory CD8+T cells. The circular size represents the significance of each 824 

ligand-receptor axis, and color represents the communication probability.  825 
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