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Abstract 1 

Objectives 2 

To develop and externally geographically validate a mixed-effects deep learning model to diagnose 3 

COVID-19 from computed tomography (CT) imaging following best practice guidelines and assess the 4 

strengths and weaknesses of deep learning COVID-19 diagnosis. 5 

Design 6 

Model development and external validation with retrospectively collected data from two countries. 7 

Setting 8 

Hospitals in Moscow, Russia, collected between March 1, 2020, and April 25, 2020. The China 9 

Consortium of Chest CT Image Investigation (CC-CCII) collected between January 25, 2020, and 10 

March 27, 2020.  11 

Participants 12 

1,110 and 796 patients with either COVID-19 or healthy CT volumes from Moscow, Russia, and 13 

China, respectively. 14 

Main outcome measures 15 

We developed a deep learning model with a novel mixed-effects layer to model the relationship 16 

between slices in CT imaging. The model was trained on a dataset from hospitals in Moscow, Russia, 17 

and externally geographically validated on a dataset from a consortium of Chinese hospitals. Model 18 

performance was evaluated in discriminative performance using the area under the receiver 19 

operating characteristic (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative 20 

predictive value (NPV). In addition, calibration performance was assessed using calibration curves, 21 

and clinical benefit was assessed using decision curve analysis. Finally, the model's decisions were 22 

assessed visually using saliency maps. 23 

Results 24 

External validation on the large Chinese dataset showed excellent performance with an AUROC of 25 

0.936 (95%CI: 0.910, 0.961). Using a probability threshold of 0.5,  the sensitivity, specificity, NPV, and 26 

PPV were 0.753 (0.647, 0.840),   0.909 (0.869, 0.940), 0.711 (0.606, 0.802), and 0.925 (0.888, 0.953), 27 

respectively. 28 

Conclusions 29 

Deep learning can reduce stress on healthcare systems by automatically screening CT imaging for 30 

COVID-19. However, deep learning models must be robustly assessed using various performance 31 

measures and externally validated in each setting. In addition, best practice guidelines for 32 

developing and reporting predictive models are vital for the safe adoption of such models. 33 
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Statements 1 

The authors do not own any of the patient data, and ethics approval was not needed. The lead 2 

author affirms that this manuscript is an honest, accurate, and transparent account of the study 3 

being reported, that no important aspects of the study have been omitted, and that any 4 

discrepancies from the study as planned (and, if relevant, registered) have been explained. Patients 5 

and the public were not involved in the study. 6 

Funding 7 

This study was funded by EPSRC studentship (No. 2110275), EPSRC Impact Acceleration Account 8 

(IAA) funding, and Amazon Web Services. 9 

Summary 10 

What is already known on this topic 11 

• Deep learning can diagnose diseases from imaging data automatically 12 

• Many studies using deep learning are of poor quality and fail to follow current best practice 13 

guidelines for the development and reporting of predictive models 14 

• Current methods do not adequately model the relationship between slices in CT volumetric 15 

data 16 

What this study adds 17 

• A novel method to analyse volumetric imaging data composed of slices such as CT images 18 

using deep learning 19 

• Model developed following current best-practice guidelines for the development and 20 

reporting of prediction models 21 

  22 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.01.28.22270005doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.28.22270005
http://creativecommons.org/licenses/by/4.0/


4 
 

Introduction  1 

Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease caused by severe acute 2 

respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus clinical presentation ranges from mild cold-3 

like symptoms to severe viral pneumonia, which can be fatal.1 While some countries have achieved 4 

relative control through lockdowns, future outbreaks and new strains are expected to continue, with 5 

many experts believing the virus is here to stay.2 Detection and isolation is the most effective way to 6 

prevent further spread of the virus. Even with effective vaccines becoming widely available, with the 7 

threat of continued waves and new potentially vaccine-resistant variants, it is vital to further 8 

develop diagnostic tools for COVID-19. These tools will likely also apply to future outbreaks of other 9 

similar diseases as well as common diseases such as pneumonia. 10 

The diagnosis of COVID-19 is usually determined by Reverse Transcription Polymerase Chain 11 

Reaction (RT-PCR), but this is far from being a gold standard. A negative test does not necessarily 12 

indicate a negative diagnosis, with one recent review finding that RT-PCR has a real-world sensitivity 13 

of around 70% and a specificity of 95%.3 Furthermore, an individual patient data systematic review4 14 

found that RT-PCR often fails to detect COVID-19, and early sampling is key to reducing false 15 

negatives.  Therefore, these tests are often more helpful to rule in COVID-19 rather than ruling out. 16 

If a patient presents with symptoms of COVID-19, but an RT-PCR test is negative, then further tests 17 

are often required.1 Consecutive negative tests with at least a one-day gap are recommended; 18 

however, this still does not guarantee that the patient is negative for COVID-19.5 Computed 19 

tomography (CT) can play a significant role in diagnosing COVID-19.6 Given the excessive number of 20 

COVID-19 cases worldwide and the strain on resources expected, automated diagnosis might reduce 21 

the burden on reporting radiologists.  22 

CT images are made up of many slices, creating a three dimensional (3D)-like structure. Previous 23 

approaches, such as those used by Li et al.7 and Bai et al.,8 treat the image as separate slices and use 24 

a pooling layer to concatenate the slices. An alternative approach assumes the slices form a 3D 25 

structure and use a 3D CNN, such as that proposed in CoviNet.9 A fundamental limitation of these 26 

methods is the need for the same number of slices as their inputs, but the number of slices often 27 

varies between different CT volumes. Instead, we propose using a novel mixed-effects layer to 28 

consider the relationship between slices in each scan. Mixed-effects models are commonly used in 29 

traditional statistics,10 11 but we believe this is the first time that mixed-effects models have been 30 

utilised in such a way. It has been observed that some lobes of the lung are more often affected by 31 

COVID-19 than others12 13 with lower lobe distribution being a prominent feature of COVID-19,14 the 32 

fixed-effects take this into account by considering where each slice is located within the scan.  33 

Deep learning has shown great potential in the automatic classification of disease, often achieving 34 

expert-level performance. Such models could screen and monitor COVID-19 by automatically 35 

analysing routinely collected CT images. As observed by Wynants et al.15 and Roberts et al.,16 many 36 

models are already developed to diagnose COVID-19, which often obtain excellent discriminative 37 

performance; however, very few of these models, if any, are suitable for clinical use, mainly due to a 38 

lack of robust analysis and reporting. These models often suffer from common pitfalls, making them 39 

unsuitable for broader adoption. Roberts et al.16 identified three common areas in which models 40 

often fail these are: (1) a lack of adequately documented methods for reproducibility, (2) failure to 41 

follow established guidelines and best practices for the development of deep learning models, and 42 

(3) an absence of external validation displaying the model's applicability to a broader range of data 43 

outside of the study sample. Failure to address these pitfalls leads to profoundly flawed and biased 44 

models, making them unsuitable for deployment.  45 
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In this work, we aim to address the problems associated with previous models by following 1 

guidelines for the reporting17 18 and development19 of prediction models to ensure that we have 2 

rigorous documentation allowing the methods developed here to be replicated. In addition, we will 3 

make code and the trained model publicly available at [github.com/JTBridge/ME-COVID19] to 4 

promote reproducible research and facilitate adoption. Finally, we use a second dataset from a 5 

country other than the development dataset to externally validate the model and report a range of 6 

performance measures evaluating the model's discrimination, calibration, and clinical usefulness.     7 

Hence, our main aim is to develop a mixed-effects deep learning model to accurately classify images 8 

as healthy or COVID-19, following best practice guidelines. Our secondary aim is to show how deep 9 

learning predictive algorithms can satisfy current best practice guidelines to create reproducible and 10 

less biased models.  11 

Methods 12 

Our proposed method consists of a feature extractor and a two-stage generalised linear mixed-13 

effects model (GLMM),20 with all parameters estimated within the deep learning framework using 14 

backpropagation. First, a series of CT slices forming a CT volume is input to the model. In our work, 15 

we use 20 slices. Next, a convolutional neural network (CNN) extract relevant features from the 16 

model and creates a feature vector for each CT slice. Then, a mixed-effects layer concatenates the 17 

feature vectors into a single vector. Finally, a fully connected layer followed by a sigmoid activation 18 

gives a probability of COVID-19 for the whole volume. The mixed effects and fully connected layer 19 

with sigmoid activation are analogous to a linear GLMM in traditional statistics. The overall 20 

framework is shown in Figure 1.  21 

 22 

Figure 1: Diagram of the overall framework. Twenty slices are chosen from a CT volume. Each slice is 23 

fed into a CNN with shared weights, which outputs a feature vector of length 2048 for each image. 24 

The feature vectors form a 20-by-2048 fixed effects matrix, 𝑋, for the GMM model with a random-25 

effects matrix, 𝑍, consisting of an identity matrix.  A mixed-effects model is used to model the 26 

relationship between slices. Finally, a fully connected layer and sigmoid activation return a 27 

probability of the diagnosis. 28 
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Feature extractor 1 

For the feature extractor, we use a CNN. In this work, we chose InceptionV321 as it is relatively 2 

efficient and commonly used. InceptionV3 outputs a feature vector of length 2048. To reduce the 3 

time needed to reach convergence, we pretrained the CNN on ImageNet.22 A CNN is used for each 4 

slice, with shared weights between CNNs; this reduces the amount of computational power 5 

required. Following the CNN, we used a global average pooling layer to reduce each image to a 6 

feature vector for each slice. We then added a dropout of 0.6 to improve generalizability to unseen 7 

images. We form the feature vectors into a matrix of shape 20 × 2048.  Although we used 8 

InceptionV321 here, other networks would also work and may provide better performance on other 9 

similar tasks. We then need to concatenate these feature vectors into a single feature vector for the 10 

whole volume; normally, pooling is used, in our work we propose using a mixed-effects models. 11 

Mixed-effects network 12 

We propose utilising a novel mixed-effects layer to model the relationship between slices. Mixed-13 

effects models are a statistical model consisting of a fixed-effects part and a random-effects part. 14 

The fixed-effects part models the relationship within the CT slice; the random effects can model the 15 

spatial correlation between CT slices within the same image.11 For volumetric data, the number of 16 

slices may differ significantly due to various factors such as imaging protocol and the size of the 17 

patient. Some volumes may have fewer images than the model is designed to use, which leads to 18 

missing data. Mixed-effects models can deal with missing data provided the data are missing at 19 

random. The mixed-effects model is given by 20 

𝑌𝑖 = 𝑋𝑖𝛼 + 𝑍𝑖𝛽 + 𝑒𝑖 21 

where 𝑌𝑖,  𝑋𝑖, 𝑍𝑖 , 𝑒𝑖   are vectors of outcomes, fixed effects design matrix of shape 20 × 2048, 22 

random effects design matrix of shape 20 × 20, and vector of error unknown random errors of the 23 

ith patient of shape 20, respectively, and 𝛼, 𝛽 are fixed and random effects parameters, both of 24 

length 20. We assume that the random effects 𝛽 are normally distributed with 0 and variance 𝐺 25 

𝛽 ∼ 𝑁(0, 𝐺) 26 

We also assume independence between the random effects and the error term. 27 

The fixed effects design matrix, 𝑋, is made up of the feature vectors output from the feature 28 

extraction network. For the random effects design matrix, 𝑍, we use an identity matrix with the 29 

same size as the number of slices; in our experiments, this is 20. The design matrix is then given by 30 

Z20×20 =

[
 
 
 
 
1 0
0 1

…
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

…
1 0
0 1]

 
 
 
 

. 31 

This matrix easily generalises to any number of slices. If the distance between slices is not uniform, 32 

the values can be altered accordingly. We assumed no particular correlation matrix. We included the 33 

fixed and random intercept in the model. All parameters for the mixed-effects layer were initialised 34 

using the Gaussian distribution with mean 0 and standard deviation 0.05. 35 

A type of mixed-effects modelling has previously been combined with deep learning for gaze 36 

estimation.23 However, their mixed-effects method is very different from our proposed method; 37 

they used the same design matrix for fixed and random effects. In addition, they also estimated 38 

random-effects parameters with an expectation-maximisation algorithm, which was separate from 39 

the fixed effects estimation, which used deep learning. In our work, we utilise a spatial design matrix 40 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.01.28.22270005doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.28.22270005
http://creativecommons.org/licenses/by/4.0/


7 
 

to model the spatial relationship between slices and estimate parameters within the deep learning 1 

framework using backpropagation without the need for multiple stages. 2 

Loss function 3 

As the parameters in the model are all estimated using backpropagation, we must ensure that the 4 

assumption of normally distributed random effects parameters with mean zero is valid. We achieve 5 

this by introducing a loss function for the random effects parameters, which enforces a mean, 6 

skewness, and excess kurtosis of 0. We measure skewness using the adjusted Fisher–Pearson 7 

standardised moment coefficient 8 

𝑆𝑘𝑒𝑤(𝛽) =
√𝑛(𝑛 − 1)

𝑛 − 2

𝐸 [(𝛽 − �̅�)
3
]

(𝐸 [(𝛽 − �̅�)
2
])

3/2
 9 

 and the excess kurtosis using 10 

𝐾𝑢𝑟𝑡(𝛽) − 3 =
1

𝑛2
∑(

𝐸 [(𝛽 − �̅�)
4
]

(𝐸 [(𝛽 − �̅�)
2
])

2 − 3)

𝑛

𝑖=1

, 11 

where 𝑛 is the length of 𝛽, �̅� is the mean of 𝛽 and 𝐸[⋅] is the expectation function. The Gaussian 12 

distribution has a kurtosis of 3; therefore, the excess kurtosis is given by the kurtosis minus 3. This 13 

formula for this fixed-effects parameters loss function which we aim to minimise, is then given by 14 

𝐿𝑓𝑖𝑥𝑒𝑑 = |𝐸(𝛽) + 𝑆𝑘𝑒𝑤(𝛽) + 𝐾𝑢𝑟𝑡(𝛽) − 3|. 15 

For the classification, we use the Brier Score24 as the loss function, which is given by 16 

𝐿𝐵𝑟𝑖𝑒𝑟 =
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

2 

𝑁

𝑖=1

 17 

where 𝑁 is the total number of samples, 𝑝𝑖  is the predicted probability of sample 𝑖 and 𝑜𝑖 is the 18 

observed outcome of sample 𝑖. The Brier score is the same as the mean squared error of the 19 

predicted probability.  20 

We chose to use the Brier Score over the more commonly used binary cross-entropy because it can 21 

be decomposed into two components: refinement and calibration. Calibration is often overlooked in 22 

deep learning models but is vital to assess the safety of any prediction model. The refinement 23 

component combines the model's resolution and uncertainty and measures the model's 24 

discrimination.  The calibration component can be used as a measure of the model calibration. 25 

Therefore, the Brier Score can be used to optimize both the discrimination and calibration of the 26 

model. The overall loss function is given by  27 

𝐿 = 𝐿𝐵𝑟𝑖𝑒𝑟 + 𝐿𝑓𝑖𝑥𝑒𝑑 . 28 

A scaling factor could be introduced to weight one part of the loss function as more important than 29 

the other; however, we give both parts of the loss function equal weighting in our work.  30 

We also transformed the labels as suggested by Platt25 to reduce overfitting. The negative and 31 

positive labels become 32 

𝑜− =
1

𝑁− + 2
 33 
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and  1 

𝑜+ =
𝑁+ + 1

𝑁+ + 2
 2 

respectively, where 𝑁− and 𝑁+ are the total number of negative and positive cases in the training 3 

set. This is similar to label smoothing as commonly used in deep learning, but the new targets are 4 

chosen by applying Baye's Rule to the out-of-sample data to prevent overfitting. 5 

Classification layer 6 

The output of the mixed-effects layer is a single vector, which is the same length as the number of 7 

slices used. For example, in our work, we had a vector of length 20. Furthermore, we used a fully 8 

connected layer with sigmoid activation to obtain a probability of the scan showing COVID-19; the 9 

sigmoid activation is analogous to the logistic link function in traditional statistics. Finally, we added 10 

an L1 regularisation term of 0.1 and an L2 regularisation term of 0.01 to the kernel to reduce 11 

overfitting. 12 

Model performance 13 

Many deep learning models focus on assessing discriminative performance only, using measures 14 

such as the area under the receiver operating characteristic curve (AUROC), sensitivity, and 15 

specificity. To better understand the model performance and impact, we report performance 16 

measures in three broad areas: discrimination, calibration, and clinical usefulness.26 Discrimination 17 

assesses how well a model can discriminate between healthy and COVID-19 positive patients. 18 

Models with excellent discriminative performance can still produce unreliable results, with vastly 19 

overestimated probabilities regardless of the true diagnosis.27 Model calibration is often overlooked 20 

and rarely reported in deep learning, if at all; however, poorly calibrated models can be misleading 21 

and lead to dangerous clinical decisions.27 Calibration can be assessed using four levels, with each 22 

level indicating better calibration than the last.28 The fourth and most stringent level (strong 23 

calibration) requires the correct model to be known, which in turn requires predictors to be non-24 

continuous, and an infinite amount of data to be used and is therefore considered utopic. We 25 

consider the third level (moderate calibration) using calibration curves. Moderate calibration will 26 

ensure that the model is at least not clinically harmful. Finally, measures of clinical usefulness assess 27 

the clinical consequences of the decision and acknowledge that a false positive may be more or less 28 

severe than a false negative. 29 

Firstly, the discriminative performance is assessed using AUROC using the pROC package in R,29 with 30 

confidence intervals constructed using DeLong's30 method. For sensitivity, specificity, positive 31 

predictive value (PPV), and negative predictive value (NPV), we use the epiR31package in R;29 with 32 

95% confidence intervals constructed using Jeffrey’s prior.32 We report performance at a range of 33 

probability thresholds to demonstrate how the thresholds can be adjusted to reduce false positives 34 

or false negatives depending on the setting.33 Secondly, we assess model calibration using 35 

calibration curves created using the CalibrationCurves package,28 which is based on the rms34 36 

package. Finally, we assess the clinical usefulness of the model using decision curve analysis.35 Net 37 

benefits are given at various thresholds, and models which reach zero net benefit at higher 38 

thresholds are considered more clinically useful. Two brief sensitivity analyses are performed, one 39 

assessing the model's ability to deal with missing data and the other assessing its ability to deal with 40 

noise. To improve the model's interpretability and reduce the black-box nature, we produce saliency 41 

maps36 that show which areas of the image are helpful to the model in the prediction. We also check 42 

the assumption of normally distributed random-effects parameters.  43 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.01.28.22270005doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.28.22270005
http://creativecommons.org/licenses/by/4.0/


9 
 

Comparison models 1 

To assess the added benefit of using our mixed-effects method, we compare against networks that 2 

use alternative methods. Both COVNet7 and a method proposed by Bai et al.8 propose deep learning 3 

models that consider the slices separately before concatenating the features using max pooling. 4 

COVNet uses a ResNet5037 CNN to extract features and pooling layers to concatenate the features 5 

before a fully connected classification layer. The model proposed by Bai et al. uses EfficientNetB438 6 

to extract features followed by a series of full-connected layers with batch normalisation and 7 

dropout; average pooling is then used to concatenate the feature vectors before classification. While 8 

max pooling is simple and computationally efficient, it cannot deal with pose variance and does not 9 

model the relationship between slices.  10 

An alternative method to pooling is treating the scans as 3D, such as in CoviNet39. CoviNet takes the 11 

whole scan and uses a 16 layer 3D CNN followed by pooling and fully connected layers. We 12 

implemented these models as described in their respective papers.  13 

In all comparison experiments, we kept hyperparameters, such as learning rate, learning rate decay, 14 

and data augmentation, the same to ensure the comparisons were fair. For COVNet7 and the model 15 

proposed by Bai et al.,8 we pretrained the CNNs on ImageNet as they also did; however, no 16 

pretrained models were available for CoviNet. For the loss function, we also used the Brier score.24 17 

Computing  18 

Models were developed using an Amazon Web Services p3.8xlarge node with four Tesla V100 16GiB 19 

GPUs and 244GiB available memory. Model inference was performed on a local Linux machine 20 

running Ubuntu 18.04, with a Titan X 12GiB GPU and 32GiB available memory. Model development 21 

and inference were performed using Tensorflow 2.4,40 41 and R 4.0.5 29 was used to produce 22 

evaluation metrics42 43 and graphs.34 44 We used mixed precision to reduce the computational cost, 23 

which uses 16-bit floating-point precision in all layers, except for the mixed-effects and classification 24 

layers, where 32-bit floating-point precision is used.  25 

We used the Adam optimiser45 with an initial learning rate of 1e-4; if the internal validation loss did 26 

not improve for three epochs, we reduced the learning rate to 20%. In addition, we assumed 27 

convergence and stopped training if the loss did not improve for ten epochs to reduce the time 28 

spent training and the energy used. 29 

Data 30 

There is currently no established method for estimating the sample size estimate in deep learning. 31 

We propose treating the final fully connected classification layer as the model and treating previous 32 

layers as feature extraction. We can then use the number of parameters in the final layer to estimate 33 

the required sample size. Using the 'pmsampsize' package46 in R, we estimate the required minimum 34 

sample size in the development set. We use a conservative expected C-statistic of 0.8, with 21 35 

parameters and an estimated disease prevalence of 80% based on datasets used in other studies. 36 

This gives a minimum required sample size of 923 patients in the training set. For model validation, 37 

around 200 patients with the disease and 200 patients without the disease are estimated to be 38 

needed to assess calibration.28 39 

All data used here is retrospectively collected and contains hospital patients with CT scans 40 

performed during the COVID-19 pandemic. The diagnosis was determined by examining radiological 41 

features of the CT scan for signs of COVID-19, such as ground-glass opacities. For model 42 

development, we use the MosMed dataset,47 which consists of a total of 1,110 CT scans displaying 43 

either healthy or COVID-19 infected lungs. The scans were performed in Moscow hospitals between 44 
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March 1, 2020, and April 25, 2020. We split the dataset into two sets for training and internal 1 

validation on the patient level. The training set is used to train the model, and the internal validation 2 

set is used to select the best model based on the loss at each epoch; this helps prevent overfitting on 3 

the training set. In addition, we obtained images from a publicly available dataset published by 4 

Zhang et al.48 consisting of CT images from a consortium of Chinese hospitals. 5 

Overall, this allows us to perform external geographical validation in another country and to better 6 

evaluate the developed model. In addition, we will be able to assess how well a deep learning model 7 

generalises to other populations. A summary of all the datasets used is shown in Table 1. We have 8 

923 patients in the training set and at least 200 patients in each class for the external validation set. 9 

Table 1: Summary of the datasets used.  10 

Dataset Location Use Healthy/COVID19 

MosMed Training Moscow, Russia Training 169/856 
MosMed Validation Moscow, Russia Internal Validation 85/285 
Zhang et al.48 China External Validation 243/553 

 11 

 12 

 13 

(a) 14 

 15 

(b) 16 

Figure 2: Example images showing (a) healthy and (b) COVID-19 lungs taken from the Mosmed 17 

dataset. 18 

Data pre-processing and augmentation 19 

The MosMed dataset was converted from Dicom image format into PNG, normalised to have a mean 20 

of 120 and a variance of 95. Images were ordered from the top of the lungs to the bottom. During 21 

training, we applied random online data augmentation to the images. This alters the image slightly 22 

and gives the effect of increasing the training dataset size, although this is not as good as expanding 23 

the training dataset with more samples. First, we adjusted the brightness and contrast between 80% 24 

and 120%. We then rotated the image plus or minus 5 degrees and cropped the image up to 20% on 25 
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each side. Finally, we flipped the image horizontally and vertically with a probability of 50% each. All 1 

random values were chosen using the uniform distribution except for the flips, which were  chosen 2 

using a random bit. 3 

The dataset taken from Zhang et al.48 required a large amount of sorting to be made suitable for use. 4 

Some of the scans were pre-segmented and only showed the lung areas, while others showed the 5 

whole CT scan. We removed any pre-segmented images. Identifying information on some images 6 

had to be cropped to reduce bias in the algorithm. In addition, many of the scans were duplicates 7 

but were not labelled as such, and many scans were incomplete, only showing a few lung slices or 8 

not showing any lung tissue at all. We only used complete scans with one scan per patient. Finally, 9 

some scans needed to be ordered top to bottom. Using the bilinear sampling algorithm, all images 10 

were resized to 256 by 256 pixels, and image values were divided by 255 to normalise between 0 11 

and 1.  12 

The MosMed dataset has a median of 41 slices, a minimum of 31 slices and a maximum of 72 slices. 13 

The Zhang et al. dataset has much greater variability in scan size with a median of 61 slices, a 14 

minimum of 19 slices, and a maximum of 415 slices. We present histograms showing the number of 15 

slices per scan in Figure 3. We require a fixed number of slices as input, and we chose 20 as the slice 16 

size. For all scans, we included the first and last images. If scans had more than 20 slices, we sampled 17 

uniformly to select 20. Only one scan in the Zhang et al. dataset had less than 20 slices; a blank slice 18 

replaced this slice; the mixed-effects model can account for missing data.  19 

 20 

(a)                                                                                        (b) 21 

Figure 3: Histogram showing the number of slices per scan for (a) the MosMed47 dataset and (b) the 22 

Zhang et al.48 dataset. The MosMed dataset has much fewer slices on average with a much smaller 23 

spread.  24 

Results 25 

On the internal validation dataset, the proposed model attained an AUROC of 0.936 (95%CI: 0.910, 26 

0.961). Using a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.753 27 

(0.647, 0.840), 0.909 (0.869, 0.940), 0.711 (0.606, 0.802), and 0.925 (0.888, 0.953), respectively. The 28 

model proposed by Bai et al.8 attained an AUROC of 0.731 (0.674, 0.80). However, despite attaining 29 

a reasonably AUC value, the model was badly calibrated, and the predicted probabilities of COVID-19 30 

were all clustered around 0.42, meaning that the sensitivity, specificity, PPV, and NPV are 31 

meaningless. We tried to retrain the model and rechecked the code implementation; however, we 32 

could not obtain more meaningful results. Covinet9 attained an AUROC of 0.810 (0.748, 0.853). Using 33 
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a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.824 (0.726, 0.898), 1 

0.596 (0.537, 0.654), 0.378 (0.308, 0.452), and 0.919 (0.870 0.954), respectively. COVNet7 attained 2 

an AUROC of 0.935 (0.912, 0.959). Using a probability threshold of 0.5, the sensitivity, specificity, 3 

NPV, and PPV were 1.0 (0.958, 1.0), 0.796 (0.745, 0.842), 0.594 (0.509, 0.676), and 1.0 (0.984, 1.0), 4 

respectively. Full results for a range of probability thresholds are shown in Table 2.  5 

Calibration curves in Figure 5 show reasonable calibration for the mixed-effects model, although the 6 

model may still benefit from some recalibration. The other models do not have good calibration and 7 

likely provide harmful predictions. The decision curve in Figure 6 shows that the proposed model is 8 

of great clinical benefit compared to the treat all and treat-none approach.  9 

It is important to remember that the model was selected using this internal testing set to avoid 10 

overfitting on the training set; therefore, these results are biased, and the external validation results 11 

are more representative of the true model performance. 12 

On the external geographical validation dataset, the proposed model attained an AUROC of 0.930 13 

(0.914, 0.947). With a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 14 

0.778 (0.720, 0.828), 0.882 (0.853, 0.908), 0.744 (0.686, 0.797), and 0.90 (0.872, 0.924), respectively. 15 

The model proposed by Bai et al.8 again attained a reasonable AUROC of 0.805 (0.774, 0.836); 16 

however, the sensitivity, specificity, NPV, and PPV were meaningless. Covinet9 attained an AUROC of 17 

0.651 (0.610, 0.691). Using a probability threshold of 0.5,  the sensitivity, specificity, NPV, and PPV 18 

were0.008 (0.001, 0.029),  0.991 (0.979, 0.997), 0.286 (0.037, 0.710), and 0.695 (0.661, 0.727), 19 

respectively. COVNet7 attained an AUROC of 0.808 (0.775, 0.841). With a cut-off point of 0.5,  the 20 

sensitivity, specificity, NPV, and PPV were 0.387 (0.325, 0.451),   0.940 (0.917, 0.959), 0.740 (0.655, 21 

0.814), and 0.777 (0.744, 0.808), respectively. Full results are shown in Table 3.  22 

Similar to the internal validation, Figure 7 shows reasonable calibration for the mixed-effects model, 23 

although some recalibration may improve performance. Again, the comparison models could give 24 

harmful predictions as they are poorly calibrated. The decision curve in Figure 8 shows that the 25 

model is of great clinical benefit compared to the treat all and treat-none approach.  26 

Although our proposed method and the Covnet model showed comparable performance on the 27 

internal validation set, the Covnet model could not generalise to the external geographical validation 28 

set, and calibration showed that the Covnet model would provide harmful risk estimates. This 29 

highlights the need for robust external validation in each intended setting. Nevertheless, the results 30 

show that the proposed method better generalises to external geographical datasets and provides 31 

less harmful predictions when compared to the four previously proposed methods based on the 32 

calibration curves.  33 

 34 
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Table 2: Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value 1 

(NPV) on the internal validation dataset. Point estimates and 95% confidence intervals were calculated using De Long's method for AUROC and Jeffrey’s 2 

interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range of probability thresholds. 3 

Model AUROC Threshold Sensitivity Specificity PPV NPV 

Bai et al 0.731  
(0.674, 0.80) 

0.3 0 .0 (0.0, 0.042) 1.0 (0.987, 1.0) NA 0.77 (0.724, 0.812) 

0.4 0.012 (0, 0.064) 0.996 (0.981, 1.0) 0.50 (0.013, 0.987) 0.772 (0.725, 0.814) 

0.5 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

CoviNet 0.801  
(0.748, 0.853) 

0.3 0.459 (0.350, 0.570) 0.898 (0.857, 0.931) 0.574 (0.448, 0.693) 0.848 (0.802, 0.886) 

0.4 0.706 (0.597, 0.80) 0.761 (0.708, 0.810) 0.469 (0.380, 0.559) 0.897 (0.851, 0.932) 

0.5 0.824 (0.726, 0.898) 0.596 (0.537, 0.654) 0.378 (0.308, 0.452) 0.919 (0.870 0.954) 

0.6 0.918 (0.838, 0.966) 0.446 (0.387, 0.505) 0.331 (0.271, 0.394) 0.948 (0.895, 0.979) 

0.7 0.965 (0.90, 0.993) 0.246 (0.197, 0.30) 0.276 (0.226, 0.331) 0.959 (0.885, 0.991) 

CovNet 0.935  
(0.912, 0.959) 

0.3 0.941 (0.868, 0.981) 0.839 (0.791, 0.879) 0.635 (0.544, 0.719) 0.98 (0.953, 0.993) 

0.4 0.965 (0.90, 0.993) 0.825 (0.775, 0.867) 0.621 (0.533, 0.704) 0.987 (0.964, 0.997) 

0.5 1.0 (0.958, 1.0) 0.796 (0.745, 0.842) 0.594 (0.509, 0.676) 1.0 (0.984, 1.0)      

0.6 1.0 (0.958, 1.0) 0.779 (0.726, 0.826) 0.574 (0.490, 0.655) 1.0 (0.984, 1.0)      

0.7 1.0 (0.958, 1.0) 0.761 (0.708, 0.810) 0.556 (0.473, 0.636) 1.0 (0.984, 1.0)      

Mixed-Effects  
(Ours) 

0.936  
(0.910, 0.961) 

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920) 

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933) 

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953) 

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960) 

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986) 
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Table 3: Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value 1 

(NPV) on the external validation dataset. Point estimates and 95% confidence intervals were calculated using De Long's method for AUROC and Jeffrey’s 2 

interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range of probability thresholds. 3 

4 
Model AUROC Threshold Sensitivity Specificity PPV NPV 

Bai et al 
0.805 

(0.774, 0.836) 

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.5 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

0.6 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

0.7 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

CoviNet 
0.651 

(0.610, 0.691) 

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.5 0.008 (0.001, 0.029) 0.991 (0.979, 0.997) 0.286 (0.037, 0.710) 0.695 (0.661, 0.727) 

0.6 0.160 (0.117, 0.213) 0.929 (0.905, 0.949) 0.50 (0.385, 0.615) 0.716 (0.681, 0.749) 

0.7 0.551 (0.487, 0.615) 0.694 (0.654, 0.733) 0.442 (0.385, 0.50) 0.779 (0.740, 0.815) 

CovNet 
0.808 

(0.775, 0.841) 

0.3 0.305 (0.247, 0.367) 0.969 (0.951, 0.982) 0.813 (0.718, 0.887) 0.760 (0.727, 0.791) 

0.4 0.354 (0.294, 0.418) 0.955 (0.934, 0.971) 0.775 (0.686, 0.849) 0.771 (0.737, 0.802) 

0.5 0.387 (0.325, 0.451) 0.940 (0.917, 0.959) 0.740 (0.655, 0.814) 0.777 (0.744, 0.808) 

0.6 0.432 (0.369, 0.497) 0.937 (0.913, 0.956) 0.750 (0.670, 0.819) 0.790 (0.756, 0.820) 

0.7 0.473 (0.409, 0.538) 0.931 (0.907, 0.951) 0.752 (0.675, 0.818) 0.801 (0.768, 0.831) 

Mixed-Effects 
(Ours) 

0.930 
(0.914, 0.947) 

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894) 

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913) 

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924) 

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941) 

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961) 
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 1 

  2 

(a)                                                                             (b) 3 

Figure 4: Receiver operating characteristic curves for (a) the MosMed internal validation set and (b) 4 

the Zhang et al.48 external validation set. 5 

 6 

(a)                                                                                           (b) 7 

 8 

(c)                                                                                          (d) 9 

Figure 5: Calibration curves for (a) the Bai et al.8 model (b) the Covinet model9, (c) the Covnet 10 

model7, (d) the proposed mixed-effects model on the Mosmed internal validation dataset. 11 
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 1 

Figure 6: Decision curves for the proposed mixed-effects model on the Mosmed internal validation 2 

dataset. 3 

 4 

(a)                                                                                    (b) 5 

 6 

(c)                                                                                        (d) 7 

Figure 7: Calibration curves for (a) the Bai et al.8 model (b) the Covinet model9, (c) the Covnet 8 

model7, (d) the proposed mixed-effects model on the Zhang et al. external validation dataset. 9 
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 1 

Figure 8: Decision curves for the proposed mixed-effects model on the Zhang et al. external 2 

validation dataset. 3 

Saliency maps 4 

It is vital to understand how the algorithm makes decisions and to check that it identifies the correct 5 

features within the image. Saliency maps can be used as a visual check to see what features the 6 

algorithm is learning. For example, the saliency maps in Figure 9 show that the model correctly 7 

identifies the diseased areas of the scans. We used 100 samples with a smoothing noise of 0.05 to 8 

create these saliency maps. 9 

 10 

 11 

(a) 12 
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(b) 2 

 3 

(c) 4 
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 1 

(d) 2 

Figure 9: Example of original images and saliency maps showing highlighted regions on four patients 3 

(a, b, c, and d) in the Zhang et al.48 dataset. Four consecutive slices display how the diseased areas 4 

differ between slices. All images are taken from the external validation set. 5 

Sensitivity analysis 6 

Mixed-effects models are capable of accounting for missing data. However, only one image had less 7 

than 20 slices; hence, we could not adequately assess if our model can indeed maintain good 8 

performance with missing data. Here, we rerun the analysis using the same dataset, using the same 9 

model and weights; however, we reduce the number of slices available as testing data inputs to 10 

simulate missing data. Blank images replace these slices. We uniformly sampled the slices choosing 11 

between 10 and 19 slices; this equates to between 5 and 50% missing data for the model. We ran 12 

inference at each level of missingness and briefly show the AUROC to determine at which point the 13 

predictive performance is significantly reduced.  14 

The plot of AUROCs at different levels of missingness is shown in Figure 10, along with 95% 15 

confidence intervals. We can see that at 20% missingness, there is a statistically significant decrease 16 

in predictive performance. Although, even at 50% missingness, the model still performs relatively 17 

well, with an AUROC of 0.890 (95% CI: 0.868, 0.912). It should be noted that this does not mean that 18 

there is no reduction in performance at 5-15% missingness, only that the reduction was not 19 

statistically significant at the 95% confidence level. 20 

Deep learning models can be susceptible to adversarial attacks49, where minor artefacts or noise on 21 

an image can cause the image to be misclassified, even when the image does not look significantly 22 

different to a human observer. Here, we perform a brief sensitivity analysis by adding a small 23 

Gaussian noise to the image. We tested the model performance on the external dataset, with each 24 

image having a random Gaussian noise added. Experiments were conducted with standard 25 

deviations of 0 up to 0.005 in increments of  0.001 added to the normalised image. We did not add 26 

Gaussian noise in the data augmentation so that the model is not explicitly trained to deal with this 27 

kind of attack.  28 

 When using a variance of 0, the images are unchanged, and the results are the same as the standard 29 

results above. We present results on the Zhang et al.48 dataset. Example images for each level of 30 

variance are shown in Figure 11, and a graph showing the reduction in AUROC is shown in Figure 12. 31 
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 1 

 2 

Figure 10: AUROC values at different levels of missingness. At 20% missingness, the loss in 3 

performance becomes statistically significant; however, even with 50% missing images, the model 4 

still has a reasonably high AUROC. 5 

 6 

 7 

(a)     (b)   (c) 8 

 9 

(d)     (e)   (f) 10 

Figure 11: Example images showing the effect of increasing the amount of noise in the image input. 11 

Noise is increased by increasing the standard deviation (s.d.) of the Gaussian noise.  (a) s.d.=0; (b) 12 

s.d.=0.001; (c) s.d.=0.002; (d) s.d.=0.003; (e) s.d.=0.004; (f) s.d.=0.005. 13 

 14 
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 1 

Figure 12: Graph showing the drop in AUROC as the amount of noise in the image input increases. 2 

The AUROC falls steadily with increased noise in the image. 3 

Discussion 4 

Artificial intelligence is set to revolutionise healthcare, allowing large amounts of data to be 5 

processed and analysed automatically, reducing pressure on stretched healthcare services. These 6 

tools can aid clinicians in monitoring and managing both common conditions and outbreaks of novel 7 

diseases. However, these tools must be assessed adequately, and best practice guidelines for 8 

reporting and development must be followed closely to increase reproducibility and reduce bias. We 9 

have developed a deep learning model to classify CT scans as healthy or COVID-19 using a novel 10 

mixed-effects model. Following best practice guidelines, we have externally validated the model. In 11 

addition, we robustly externally geographically validated the developed model in several 12 

performance areas, which are not routinely reported. For example, discriminative performance 13 

measures show that the model can discriminate between healthy and COVID-19 CT scans well, 14 

calibration shows that the model is not clinically harmful. Finally, the clinical usefulness measures 15 

show that the model may be useful in a clinical setting. From the results presented here, it would 16 

seem that our deep learning model outperforms the RT-PCR tests as shown in the review by Watson 17 

et al. 3; however, those results are conservative estimates and were conducted under real-world 18 

clinical settings. A prospective study is required to determine if this is the case. 19 

Compared to previously proposed models, our model showed similar discriminative performance to 20 

one existing method; however, our method generalised better to an external geographical validation 21 

set and showed improved calibration performance. Interestingly, in both internal and external 22 

validation, the sensitivity and NPV are similar in all models. However, the specificity and PPV are 23 

statistically significantly improved for the mixed-effects model in the external validations dataset. 24 

The performance of the proposed model in the external validation set is similar to that reported by 25 

PCR testing3. However, a direct comparison should not be made as PCR testing on this exact dataset 26 

is unavailable.  27 
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There are several limitations of the study that should be highlighted and improved in future work. 1 

Firstly, we have only performed external geographical validation in a single dataset. Further external 2 

validation, both geographical and temporal, is needed on many datasets to determine if the model is 3 

correct in each intended setting. Although we performed a brief sensitivity analysis here, more 4 

extensive work on adversarial attacks is needed. Future studies could consider following the method 5 

proposed by Goodfellow et al.49 to improve robustness against adversarial examples. Patient 6 

demographic data were not available for this study, but future studies could incorporate this data 7 

into the model to improve results. Finally, rules of thumb for assessing sample size calculations in 8 

the validation set can lead to imprecise results50. Simulating data is a better alternative; however, it 9 

is difficult to anticipate the distribution of the model's linear predictor. Therefore, we were required 10 

to revert to the rule of thumb using a minimum of 200 samples in each group28. 11 

Initial experiments used the Zhang et al.48 dataset for training; this showed promising results on the 12 

internal validation set; however, external validation showed random results. In addition, saliency 13 

maps showed that the model was not using the features of COVID-19 to make the diagnosis and was 14 

instead using the area around the image. We concluded that the images for each class were slightly 15 

different, perhaps due to different imaging protocols, and the algorithm was learning the image 16 

format rather than the disease. We then used the MosMed dataset for training and the Zhang et 17 

al.48 dataset for external validation. This highlights the need for good quality training data and 18 

external validation and visualisation. 19 

Future studies should validate models and follow reporting guidelines such as TRIPOD17 or the 20 

upcoming QUADAD-AI51 and TRIPOD-AI52 to bring about clinically useful and deployable models. 21 

Further research could look deeper into the areas of images identified by the algorithm as shown on 22 

the saliency maps; this could potentially identify new features of COVID-19 which have gone 23 

unnoticed. Before any model can be fully deployed, clinical trials are needed to study the full impact 24 

of using such algorithms to diagnose COVID-19 and the exact situations in which such a model may 25 

be used. In-clinic prospective studies comparing the performance deep learning models with RT-PCR 26 

and lateral flow tests should be carried out to determine how deep learning compares; this will show 27 

whether deep learning could be used as an automated alternative to RT-PCR testing. 28 

This study indicates that deep learning could be suitable for screening and monitoring of COVID-19 29 

in a clinical setting; however, validation in the intended setting is vital, and models should not be 30 

adopted without this. It has been observed that the quality of reporting of deep learning prediction 31 

models is usually very poor; however, with a bit of extra work and by following best practice 32 

guidelines, this problem can be overcome. This study highlights the importance of robust analysis 33 

and reporting of models with external validation. 34 

 35 
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