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Abstract

Background: An external control arm is a cohort of control patients that are
collected from data external to a single-arm trial. To provide an unbiased
estimation of efficacy, the clinical profiles of patients from single and external
arms should be aligned, typically using propensity score approaches. There are
alternative approaches to infer efficacy based on comparisons between outcomes
of single-arm patients and machine-learning predictions of control patient
outcomes. These methods include G-computation and Doubly Debiased Machine
Learning (DDML) and their evaluation for ECA analysis is insufficient.

Methods: We consider both numerical simulations and a trial replication
procedure to evaluate the different statistical approaches: propensity score
matching, Inverse Probability of Treatment Weighting (IPTW), G-computation,
and DDML. The replication study relies on five type 2 diabetes randomized
clinical trials granted by the Yale University Open Data Access (YODA) project.
From the pool of five trials, observational experiments are artificially built by
replacing a control arm from one trial by an arm originating from another trial
and containing similarly-treated patients.

Results: Among the different statistical approaches, numerical simulations show
that DDML has the smallest bias followed by G-computation. Ranking based on
mean square error is different with G-computation always being among the
lowest-error methods while DDML relative performance improves with increasing
sample sizes. For hypothesis testing, DDML controls type-1 error and is
conservative whereas G-computation and propensity score approaches can be
liberal with type I errors ranging between 5% and 10% in some settings.
G-computation is the best method in terms of statistical power, and DDML has
comparable power at n = 1000 but its power is inferior to propensity score
approaches at n = 250. The replication procedure also indicates that
G-computation minimizes mean squared error while DDML has intermediate
performances compared to G-computation and propensity score approaches. The
confidence intervals of G-computation are the narrowest in lines with its liberal
type I error whereas confidence intervals of DDML are the widest that confirms
its conservative nature.

Conclusions: For external control arm analyses, methods based on outcome
prediction models can reduce estimation error and increase statistical power
compared to propensity score approaches.

Keywords: observational study; average treatment effect; propensity score;
confounding variables; replication study; counterfactual; doubly robust
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Background
There is an increasing interest in using external control arms (ECA) as a source

of evidence to assess treatment efficacy. An ECA consists of a cohort of patients

that serve as controls to an intervention arm from a clinical trial, and these con-

trol patients are collected from data sources external to the single-arm trial [1, 2].

After running a single-arm phase 2 study, usage of ECA is relevant to reduce false

positive rates [3]. ECAs are also relevant to supplement randomized trials when

randomization is unethical or when it is difficult to recruit patients, typically for

rare diseases or in precision oncology where recruitment relies on biomarkers [4].

However, causal inference in non-randomized studies such as ECA is prone to

confounding bias [5, 6]. Without randomization, estimation of treatment effect can

be biased partly because of differences between the characteristics of patients in

the two arms. Methods based on propensity scores are well established to account

for confounding factors [7–10]. Propensity scores relies on the exposure model that

provides a mapping between patient characteristics and the probability to be in the

external arm. As an alternative, there are several methods that require prediction of

clinical outcomes based on covariates and on treatment [11, 12]. In epidemiology, G-

computation is such an alternative, and it is based on the counterfactual framework

in which we posit that we can predict a patient outcome if the patient would have

been enrolled in the control arm instead of the experimental one or vice-versa,

making the inference of a causal effect theoretically possible [11]. With the advent

of causal inference in machine learning, the counterfactual framework has been re-

investigated and new methods were proposed including doubly debiased machine

learning [12], which addresses bias of machine learning estimators. Here, we consider

both synthetic simulations and data of clinical trials to evaluate statistical properties

of both propensity score and outcome prediction methods. Evaluated methods seek

to estimate the average treatment effect on the treated (ATT), which is defined as

the benefit of the investigated treatment when averaged over the characteristics of

the individuals originating from the intervention arm of the clinical trial.

The first class of statistical methods relies on propensity scores that are com-

puted after learning an exposure model e, which relates individual covariates to the

probability to lie in the experimental arm. Exposure model can be estimated using

a logistic regression. Treatment effect is then estimated using patients matching

and/or weighting, such as the distribution of the propensity scores should be the

same in both arms. Rosenbaum an Rubin [13] showed that if positivity and condi-

tional ignorability hold, then conditioning on the propensity score allows to obtain

unbiased estimates of average treatment effects [14]. Conditional ignorability means

that there are no unmeasured confounders. Mathematically, it states that given a

set of covariates X, treatment assignment T is independent of the potential out-

comes (Y 0, Y 1) that would be realized when the treatment T is equal to 0 (control)

and 1 (investigated treatment). The second assumption is positivity and it assumes

that 0 < P (T = 1|X) < 1, for all values of X, which means that every subject has a

nonzero probability to receive the control treatment and the investigated treatment.

If the exposure model is misspecified, potentially because parametric assumptions

of logistic regression are not valid, then estimators of treatment effect might be

biased [15].
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The second class of methods, outcome prediction methods, relies on the outcome

model µ0, sometimes named Q-model, which is the conditional expectation of the

clinical outcome based on covariates X [11]. Because we focus on the estimation

of the average treatment effect on the treated (ATT), the nuisance function µ0

corresponds to the expected outcome for a patient enrolled in the control arm (see

Methods). By contrast, estimation of the average treatment effect (ATE) would have

required outcome prediction as function of both the treatment and the covariates,

which is the standard definition of the Q model [11]. Fitting the Q model can

be done with flexible machine learning models such as boosted trees or neural

networks [16, 17]. Machine learning models can be trained using regularization to

limit overfitting. However, while reducing variance of estimators, regularization can

bias estimation of outcome model that can in turn bias estimation of treatment

effect [12]. Doubly debiased machine learning (DDML) is related to G-computation

but it further accounts for the possible bias of machine learning outcome models

[12]. DDML requires to estimate both the exposure model e and the outcome model

µ0, and flexible models can be fitted to infer both e and µ0, which are considered

as nuisance parameters [18]. To provide unbiased estimation of treatment effect,

DDML relies on Neyman orthogonal scores and on cross fitting, which is a sample

splitting approach [12].

There is a lack of studies based on clinical trial data that compares propensity

score approaches and methods based on outcome modelling. Numerical simulations

suggest that G-computation reduces bias and variance of causal inference estimate

compared to propensity-score approaches [19, 20]. Another simulation study finds

that DDML was among the top performers methods to estimate average treatment

effect [21]. However, comparisons based on actual trial data are insufficient. Here

we consider an internal replication framework for evaluation of causal inference

methods [22]. It is based on comparisons between randomized studies that provide

ground truths for treatment effect and artificial non-randomized studies consisting

of the grouping of the experimental arm and of the standard-of-care arm, which are

derived from two different clinical trials [23]. An internal replication framework was

used for instance to demonstrate that propensity score matching is highly sensi-

tive to baseline covariates included in the exposure model [24]. Internal replication

framework are not the only setting to compare results from RCT and from obser-

vational data. Several studies compared results obtained from observational data

to the conclusions obtained from randomized experiments, which are considered

as ground truth [25–28]. However, heterogeneity of treatment effect can explain

the difference of efficacy measured in a RCT and observational setting [29, 30].

By contrast, there is no expected difference of treatment effect (ATT) in internal

replication studies when comparing efficacy obtained from randomized and non-

randomized experiment [22]. Our internal replication study is based on data from

the YODA project, which includes a pool of type-2 diabetes randomized clinical

trials sharing arms with the same treatment delivered to patients (Canagliflozin)

[31, 32].
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Methods
Average Treatment effect on the Treated (ATT)

Generally, the primary quantity of interest in interventional clinical trials is the effi-

cacy of an investigated treatment compared to another standard of care or placebo

treatment. Formally, from the study cohort comprising of two groups, each exposed

to a different treatment T (0 for control, 1 for experimental treatment), the target is

to infer the average treatment effect on the treated (ATT). The ATT corresponds

to the difference between the outcome of a patient treated with the experimen-

tal drug and a control patient when averaging over baseline clinical attributes X

of patients belonging to the experimental treatment arm. Using the formalism of

potential outcomes, the ATT is defined as [33]

ATT = E
[
Y 1 − Y 0|T = 1

]
,

where Y 0 (respectively Y 1) is the potential outcome for a unit that undergoes

treatment 0 (respectively 1). The observed outcome Y can be expressed as

Y = Y 1T + Y 0 (1− T ) .

For a given patient, only one of the two potential outcomes is realized and observed,

the other is named a counterfactual outcome. The ATT estimand is different from

the average treatment effect that is obtained as

ATE = E
[
Y 1 − Y 0

]
.

If either the propensity score e(X) = E [T |X] is constant (randomization) or the

Conditional Average Treatment Effect CATE = E
[
Y 1 − Y 0|X

]
is constant (no

heterogeneity), then ATT and ATE are equal. In the following, we will also denote

by µ0 = E
[
Y 0|X

]
, the conditional expectation of the outcome for patients in the

control arm.

Estimators of the average treatment effect of the treated

The problem of causal inference for external control arm analysis revolves around

the two populations’ prognosis characteristics not being of equal distribution in the

two arms. A solution to balance populations’ characteristics is to reweight or choose

units such that the two resulting virtual populations match as closely as possible. To

balance populations, the exposure model e(·) should be estimated when considering

propensity score matching (PSM) and Inverse Probability of Treatment Weighting

(IPTW). The PSM estimator selects matched units in each group whereas IPTW

re-weights units based on functions of the propensity score, which leads to the

following estimator [34, 35]

ˆATT IPTW =
1

n1

n∑
i=1

Yi

(
Ti −

ê(Xi)(1− Ti)
1− ê(Xi)

)
, (1)

where Xi, Yi, Ti are the covariates, outcome, and treatment for the ith individual,

1, . . . , n1 are the indices of the individuals in the experimental arm, n1 + 1, . . . , n
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are the indices of the individuals in the external arm, n, n1 are the sample sizes

for the whole sample and the experimental arm only, and ê is an estimator of the

exposure model.

The first estimator based on outcome prediction we consider is the G-computation

estimator [19, 36]. G-computation does not rely on estimation of the propensity

score but on the the conditional expectation of the outcome µ0. For each treated

patient defined by his covariates X and outcome Y , we can predict a control counter-

factual outcome µ̂0(X), and the G-computation estimator is defined as the average

over the experimental arm of the difference between the measured and counterfac-

tual outcome

ˆATTGC =
1

n1

n1∑
i=1

(Yi − µ̂0(Xi)), (2)

where µ̂0 is an estimator of the nuisance function.

Machine learning estimators can be biased in order to avoid overfitting and this is

especially true when the dimension of the covariates X is large [37]. Doubly debiased

machine learning (DDML) accounts for the bias of the G-computation estimator,

which can result from the bias of a machine learning estimator, µ̂0, for µ0 [12]. A

core principle of DDML is to consider a sample splitting approach to estimate and

account for the bias of the machine learning estimator of the outcome model. The

dataset is split into a training set and an auxiliary set. The training set is used to

fit two machine learning models to learn the outcome and exposure models µ0 and

e. The ATT estimator is obtained by subtracting to the G-computation estimator

evaluated on the auxiliary dataset an estimate of its bias

ˆATTDDML = ˆATTGC −
1

ñ1

ñ∑
i=1

ê(Xi)

1− ê(Xi)
(1− Ti)(yi − µ̂0(Xi)), (3)

where ñ, ñ1 are the sample sizes for the whole auxiliary dataset and the control arm

part of this dataset. Because the estimator depends on actual splitting, we consider

an averaging procedure over multiple splits [12]. In the Appendix, we describe the

averaging procedure and the estimation procedure for the variance.

Finally, we compute an unadjusted estimator that consists of the difference be-

tween the mean of the clinical outcomes Y in each arm. This estimator measures

the level of bias that is expected when not accounting for confounding factors. If

the data include confounding that may impact causal inference, the unadjusted

estimator should be biased.

Variance, confidence intervals, and regularisation

To estimate variance and confidence intervals we consider non-parametric bootstrap

with 100 replicates for both the propensity score approach and G-computation. For

G-computation, the bootstrap procedure was applied before fitting the µ0 function.

For DDML, we consider a sample-splitting approach [12]; estimation of the variance

is detailed in the Appendix.

For all methods, we consider linear regression and logistic regression with all co-

variates to fit µ0 and e. To train the propensity score model e, we consider ridge
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regression, and to train the outcome model µ0, we consider lasso regression. For

G-computation, regularisation parameters were learned using cross-validation. For

DDML, regularisation parameters were learned using nested cross-validation be-

cause of the internal cross-validation procedure described in the Appendix. Machine

learning operations were performed using the Scikit-learn Python library [38].

Synthetic Simulations

We consider two scenarios of simulations to benchmark estimators. The first scenario

assumes an homogeneous treatment effect and includes confounding factors because

both the exposure and the outcome models are linear functions of several of the

20 simulated covariates. The second scenario further assumes an heterogeneous

treatment effect by including interaction between treatment and covariates to model

outcomes.

Experiments are based on synthetic data with a binary exposure T and 20 covari-

ates X. The numbers of patients (including patients in both arms) of 250, 500 and

1000, were chosen to be in the same order of magnitude as external control arm

analyses. The simulations rely on two scenarios differing by the potential outcomes

(Y 0, Y 1) generation. For both scenarios, the exposure model is a linear function of

5 of the 20 covariates.

logit (E [T |X]) =
1√
5

5∑
j=1

βjX
(j),

where βj ∼ U([−1, 1]), X ∼ N (0,Σ) with Σ a random sparse symmetric definite

positive matrix, and where X(j) is the jth element of the vector of covariates X. In

the first scenario, the potential outcomes are sparse linear functions of the covariates

and the treatment effect is homogeneous among the patients. To make it sparse,

half of the variables are randomly sampled and the corresponding coefficient is set

to zero,

y = f(X,Ω) + θT + ε,with f(X,Ω) =
1√
10

10∑
j=1

xΩ(j),

where ε ∼ N (0, 1), Ω is a random permutation of the covariate indices and θ ∼
N (0, 0.4) or θ = 0 for the null hypothesis. We chose a variance of 0.4 because

we have found in simulations that this value induces a level of confounding that

biases the unadjusted estimator, and which can be handled with causal inference

approaches.

The second scenario includes a term of interactions to model an heterogeneity of

treatment. The outcome is obtained as follows :

y = (1− T )f(X,Ω0) + Tf(X,Ω1) + θT + ε,

where ε ∼ N (0, 1), Ω1,Ω2 are random permutations of the covariate indices, and θ

is sampled such that ATT ∼ N (0, 0.4) or ATT = 0.

To evaluate the estimators, the following metrics were considered : bias, mean ab-

solute error (MAE), mean squared error (MSE), average confidence interval length

measured by the variance of a matched Gaussian distribution, type I error and

power.
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Trial Nb. patients Inclusion criteria Arms Background therapy

NCT01106625 [39] 469
Canagliflozin 300

Sitaglipin 100
Metformin and Sulphonylurea

NCT01137812 [40] 755
Canagliflozin 300
Canaglifozin 100

Placebo
Metformin and Sulphonylurea

NTC01106651 [41] 659 Age: 55 to 80 y.o.
Canagliflozin 300
Canaglifozin 100

Placebo

Metformin and
Sulphonylurea (357 patients)

Metformin (302 patients)

NCT01106677 [42] 1284

Canagliflozin 300
Canaglifozin 100

Sitaglipin 100
Placebo

Metformin

NCT00968812 [43] 1450 45≥BMI≥22
Canagliflozin 300
Canaglifozin 100
Glimepiride 100

Metformin

Table 1 Description of the five type 2 diabetes clinical trials used for the internal replication
study. We report only the trial-specific inclusion criteria.

Internal replication study

The internal replication study is based on data from five randomized clinical trials

assessing the efficacy of Canagliflozin in patients with type 2 diabetes [39–43]. Access

to the trials, shortly described in Table 1, was granted through the Yale University

Open Data Access (YODA) Project [31, 32]. Experiments are restricted to the set of

patients that share similar background therapy and inclusion/exclusion criteria in

order to make causal inference valid because of the positivity assumption. A set of 40

baseline covariates were selected by a clinician and considered as confounding factors

(see Appendix). The primary endpoint is change in HbA1c (glycated hemoglobin)

between baseline and 12 weeks, which is available in all trials. Patients with missing

outcome are not considered in the analysis.

From the pool of five trials, an observational setting is built by replacing a control

arm in one trial by another trial arm composed of patients that were given the same

treatment. This procedure is replicated by varying the trial of interest. Estimation

obtained in the non-randomized setting can be compared to the treatment effect

obtained in the well randomized setting.

We conduct two categories of internal replication studies. For each experiment,

the experimental arm and the control arm are extracted from different trials. In

the first category, the experimental and control treatments are the same. In this

negative control setting, the treatment effect on the treated is null regardless of the

underlying population [44]. The negative control study is based on 9 non-randomized

comparisons. The ground truth of a null effect being known, the comparison between

the estimators is performed using the following metrics: the mean absolute error

(MAE), the mean squared error (MSE), the width of confidence intervals, and the

coverage rates for the 95% confidence intervals.

In the second category of experiments, the experimental and control treatments

are different and an RCT estimate is available from one of the five trials listed in

Table 1. In this RCT replication setting, a reference treatment effect and confidence

intervals are available from the RCT but the true treatment effect is unknown. The

RCT replication study is based on 19 non-randomized comparisons. Evaluation

relies on previously proposed metrics [45]:
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• Pseudo bias is defined as the difference between the randomized treatment

effect estimation and the non-randomized estimation;

• Pseudo mean squared error is defined as the squared difference between the

randomized effect estimation and the non-randomized estimation, averaged

over the different combinations of trials;

• Estimate agreement measures the percentage of time when treatment effect

estimated in the non-randomized setting lies within the 95% confidence inter-

val of the randomized trial;

• Regulatory agreement is the percentage of time the cutoff P < 0.05 obtained

with the non-randomized experiments agrees with the RCT result about P <

0.05.

Results
Synthetic Simulations

Type I error rates and statistical power are evaluated with simulations using P <

0.05 as a decision cutoff. The unadjusted estimator has an inflated type I error

ranging from 10 − 20% when n = 250 to 30 − 45% when n = 1000 showing that

simulations include a confounding bias (Figure 1). The statistical power obtained

with the unadjusted estimator is of poor relevance because of its inflated type I

error. Among the methods that adjust for confounding bias, we find a slight excess

of type I error for propensity-score methods and G-computation with type I error

values that range between 5% and 10%. The propensity score approaches have type

I error rates that range between 0% and 10%. The 10% error rate is reached when

n = 1, 000 and when simulations include interaction terms between treatment and

covariates. The DDML method has the lowest type I error that stays below or at

the order of the 5% nominal threshold.

When considering G-computation, power is increased by 0− 10% when compared

to propensity-score approaches (Figure 1). By contrast, the power of DDML is not

always larger than the ones of propensity-score approaches. The power of DDML is

smaller that the ones obtained with propensity score approaches when n = 250, of

comparable values at n = 500, and larger when n = 1000. As expected, the power

of each method increases with increasing sample size.

Statistical properties of the different estimators are also compared using Mean

Absolute Error (MAE) and the Mean Squared Error (MSE). Both errors indicate

that there are three groups of estimators as ranked by their performances (Fig-

ure 2). The unadjusted difference of means provides the worst estimate of ATT.

Then, the second group includes the two propensity score approaches. They have

similar performances than methods of the third group based on outcome modelling

(G-computation and DDML) for small sample size at n = 250. However, their

errors decrease more slowly than outcome modelling methods resulting in larger

errors especially when n = 1000. When comparing outcome modelling methods,

G-computation has a lowest error compared to DDML except when n = 1, 000 for

the Monte Carlo simulations without treatment effect heterogeneity.

To have a finer look at the different properties of ATT estimators, we investigate

their bias (Figure 3). As expected by construction of the DDML estimator, its bias

is inferior to the bias of G-computation. For this outcome prediction methods, bias
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Figure 1 Type I error rate and power evaluated with Monte Carlo simulations of the five
estimators included in the simulation study. Each dot corresponds to a simulation study that
includes 100 replicates. The horizontal dashed line corresponds to the expected type I error rate of
5%.

Figure 2 Logarithm of the Mean Absolute Error (MAE) and Mean Squared Error (MSE) of the
five estimators included in the simulation study. Each dot corresponds to a simulation study that
includes 100 replicates.

decreases a a function of sample size. The bias of propensity score methods was

larger than the ones of outcome prediction methods and it does not monotonically

decrease with sample size.
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Figure 3 Logarithm of the bias of the five estimators included in the simulation study. Each dot
corresponds to a simulation study that includes 100 replicates.

Last, we capture the width of the confidence intervals by computing the variance of

a Gaussian distribution which 95% C.I. match the observed 95% C.I. width (Figure

4). G-computation produces the narrowest credibility intervals and as expected

their width decreases with increasing sample sizes. The width decrease is more

pronounced for DDML. At n = 250, DDML produces the widest confidence intervals

of all methods whereas for n = 1, 000, its C.I. width is inferior or comparable to the

ones obtained with propensity score methods.

Figure 4 Log width of the 95% Credibility Intervals (C.I) for the different methods. To measure
the log width, we compute the logarithm of the variance of a Gaussian distribution which 95%
C.I. would match the observed C.I.

Internal replication study

The internal replication study confirms simulation results. G-computation has the

smallest MSE and MAE errors for both null and trial replication (Figure 5, Tables 2

and 3). By contrast the unadjusted approach has the worst performance in terms of

MAE and MSE. The two propensity score methods and DDML have intermediate

performances (Tables 2 and 3). For null replication, DDML has better performance

than IPTW, and PSM has the worst performance (Table 2). For trial replication,

DDML has better performance than IPTW, and PSM has the better or worst

performance of the three methods depending on the criterion used for evaluation

(Table 3).

Width of confidence intervals also varies between methods (Tables 2 and 3). The

G-computation method has the smallest width of C.I., the DDML methods has the
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MSE(x1000) MAE(x100) C.I. width (x1000) Coverage(%)
Unadjusted 8.73 7.62 24.9 78% (7/9)

PSM 6.46 6.79 28.3 100% (9/9)
IPTW 4.79 5.91 27.9 100% (9/9)

G-computation 3.53 4.79 22.0 88% (8/9)
DDML 4.72 5.70 28.9 100% (9/9)

Table 2 Results of the negative control experiments when the experimental and control arms are the
same. MSE and MAE are respectively the mean squared error and the mean average error between
the ATT estimation and the ground truth, which is null. Coverage is the percentage of confidence
intervals that contain zero.

Pseudo MSE(x1000) Pseudo MAE(x100) C.I. Width(x100) Estimate Ag. Regulatory Ag.
Unadjusted 7.94 7.30 25.1 84.2% (16/19) 73.7% (14/19)

PSM 4.51 6.15 29.0 89.5% (17/19) 73.7% (14/19)
IPTW 5.75 5.86 28.5 89.5% (17/19) 78.9% (15/19)

G-computation 3.26 4.68 25.9 100% (19/19) 78.9% (15/19)
DDML 4.70 5.60 31.3 100% (19/19) 84.2% (16/19)

Table 3 Results of the RCT replication experiments. Pseudo MSE and MAE are respectively the
pseudo mean squared error and the pseudo mean average error obtained by replacing the unknown
ground truth with the RCT estimate. Estimate agreement is the percentage of RCT 95% confidence
intervals that contain ATT estimation. Regulatory agreement is the percentage of time the cutoff
P < 0.05 obtained from the non-randomized experiments agrees with the RCT result about P < 0.05.

largest width and the C.I. widths obtained with propensity-score methods are in

between. The results mimic what is found at n = 250 for the synthetic simula-

tions; the smallest width of C.I is found with G-computation and the largest one is

obtained with DDML (Figure 4).

We also investigate coverage for the null replication (Table 2). The unadjusted

method has the lowest coverage (7/9) whereas the propensity-score methods and

DDML have complete coverage (9/9). The G-computation has intermediate cover-

age (8/9) reflecting its narrower confidence intervals.

In terms of estimate and regulatory agreement for the trial replication experiment,

DDML has better agreement with trial results followed by G-computation (Table

3). However, differences between the two methods are small; there is regulatory

agreement for 16 out of 19 trials with DDML whereas there is regulatory agreement

for 15 out of 19 trials with the G-computation method. Agreement with trial results

is inferior for propensity-score methods.

Discussion
Based on both synthetic simulations and a replication study of completed random-

ized trials, we show that statistical methods based on outcome prediction models

estimate treatment effect (ATT) more precisely than propensity-score methods,

which confirms previous simulation results [19, 21]. Outcome prediction methods

have correct type I errors while their power is generally greater than power of

propensity score approaches. G-computation methods have increased power com-

pared to propensity score approaches whatever the sample size. The results are more

tempered for the DDML approach that explicitly accounts for the bias of machine

learning models. For small sample sizes of n = 250 individuals, power of DDML can

be reduced compared to propensity score methods whereas it is comparable to the

power of G-computation for large sample size of n = 1000 patients.

There are marked differences between the results obtained with G-computation

and DDML. As expected by construction of the DDML estimator, its bias is smaller

than the bias of G-computation, which is in turn smaller than the bias of propensity
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Figure 5 Results of the two replication experiments. Each point corresponds to an observational
experiment. For the 9 null replication experiments, the expected target ATT is 0 and for the 19
RCT experiments, the expected target ATT is the RCT estimate. The larger point is the mean of
the points and the bar extends to the mean plus or minus two times the standard deviation. For
each method, the position on the x-axis does not matter and random perturbation on the x-axis is
added to the points to allow optimal visualisation.

score approaches. Another marked difference concerns the estimation of variance in

order to compute credibility intervals. The sample splitting approach overestimates

variance of DDML estimator. As a consequence, the widths of credibility intervals

for DDML are increased that explains why type I errors are below the 5% threshold

rate. DDML being conservative comes at a price of a 15− 20% reduction of power

compared to G-computation when the sample size is small (n = 250). By contrast

G-computation is slightly too liberal; type I errors are between 5% and 10% and

confidence intervals are the narrowest of all methods we considered. Propensity

score methods have also increased type I error in some simulation setting which

confirm previous simulation findings about excess of type I error of a propensity

score matching method [46].

In practice, choosing between DDML and G-computation can be guided by at

least two factors. The first factor is sample size as we found that DDML relative

performance depends on sample size. In practice, sample sizes for external control
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arms can have different orders of magnitude ranging from dozens to thousands

of patients [47]. In oncology, after application of inclusion and exclusion criteria,

sample size can be smaller than n = 100 [48] where G-computation should be

preferred, but can also exceed n = 500 where application of DDML can be preferred

[49]. The second factor is the dimension of confounding covariates that is related

to the risk of bias for machine learning estimator. When considering one or several

dozens of confounding variable, risk of bias is small or moderate (for very small

sample size) and G-computation can be considered. However, in future applications

of external control arms, confounding variables can be high dimensional data such as

as genomics, imaging, or electronic health record data. Observational experiments

where high-dimensional confounders have been measured is emerging because of

availability of electronic health record data and DDML can be relevant in this

setting [50, 51]. When risk of bias exists because of overfitting, the DDML estimator

should be preferred.

External control arm (ECA) analysis considerably reduces the risks of false posi-

tive errors of single arm-trial because it adjusts for the clinical profiles of patients

[3]. However, ECA analyses, and more generally RWE analyses, do not fully repro-

duce results of randomized studies [49, 52, 53]. Therefore, it provides a valuable

and less liberal estimation of efficacy than single arm studies [3] but it is not a

substitute for large randomized studies. In this paper, we have shown that machine

learning methods such as G-Computation and DDML, can improve external control

arm analyses by increasing statistical power while preserving type I error.

Appendix

Method to compute DDML estimator and its variance To take into account the

variability of the splitting procedure in the computation of the DDML estimator

(equation (3)), the split is repeated S × K times by repeating S K-fold cross-

validation procedures. For a cross-validation scheme, the aggregated estimator is

the average of the estimators obtained using the kth-fold, k = 1, . . . ,K, as the

auxiliary dataset

ν̂s =
1

K

K∑
k=1

ν̂s,k,

where νs,k is the ATT estimator ˆATTDDML (Equation (3)) for the sth cross-

validation repetition, considering the kth fold as the auxiliary dataset, and the

remaining folds to train the two machine learning models. The overall estimate is

obtained as

ν̂ =
1

S

S∑
s=1

ν̂s.

The variance of ν̂ is estimated with

σ̂2 =
1

S

S∑
s=1

(
σ̂2
s + (ν̂s − ν̂)

2
)
,
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Appendix Table 1 Distribution of main variables used in the replication analysis

Trials NCT01137812 NCT01106625 NTC01106651 NCT01106677 NCT00968812

Variables

Age
56.86

(± 9.25)
56.30

(± 9.33)
63.55

(± 6.27)
55.46

(± 9.33)
55.95

(± 9.28)
Sex (Male) 52.3% 6.5% 55% 47% 53%

HBA1C
8.12

(± 0.92)
8.12

(± 0.91)
7.70

(± 0.78)
7.94

(± 0.90)
7.79

(± 0.78)

BMI
33.0

(± 6.49)
31.6

(± 6.76)
31.6

(± 4.60)
31.9

(± 6.10)
31.1

(± 5.35)

LDL
2.70

(± 6.49)
2.54

(± 6.76)
2.33

(± 4.60)
2.78

(± 6.10)
2.66

(± 5.35)

Blood Glucose Level
12.62

(± 7.54)
13.60

(± 6.97)
10.60

(± 2.36)
11.03

(± 13.29)
8.83

(± 1.94)

where

σ̂2
s =

1

K

K∑
k=1

(ν̂s,k − ν̂s)2.

We always consider 3-fold cross validation. In the Monte Carlo simulations, we

consider S = 20 repetitions, and in the internal replication, we consider S = 10

repetitions.

List of the variable included in the propensity score/outcome model Serum Al-

bumin, Alkaline phosphatase, Alkaline transaminase, Aspartate transaminase, Ba-

sophils/Leukocytes, Biliburin, Blood Urea Nitrogen, Calcium, Cholesterol, Crea-

tine Kinase, Chloride, Serum Creatinine, Eosinophils, Glomerular Filtration Rate

Corrected, Gamma-Glutamyl Transferase, Blood sugar level, Plasma Glucose,

Hemoglobin A1C, HDL Cholesterol, Hemoglobin, Potassium, LDL, Lymphocytes,

Lymphocytes/Leukocytes, Magnesium, Neutrophil, Phosphate, Platelets, Protein,

Sodium, Triglycerides, Diastolic Blood Pressure, Systolic Blood pressure, Pulse

Rate, Weight, Age, Sex, Race Black or African American, Race other, Race white,

Zone asia pacific, Zone central South America, Zone north America, Tabacco

use, Concomitant medication diabetes, Previous concomitant medication anti-

hyperglycemic, previous concomitant therapy
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42. Lavalle-González, F., Januszewicz, A., Davidson, J., Tong, C., Qiu, R., Canovatchel, W., Meininger, G.:

Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on

background metformin monotherapy: a randomised trial. Diabetologia 56(12), 2582–2592 (2013)

43. Cefalu, W.T., Leiter, L.A., Yoon, K.-H., Arias, P., Niskanen, L., Xie, J., Balis, D.A., Canovatchel, W.,

Meininger, G.: Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes

inadequately controlled with metformin (cantata-su): 52 week results from a randomised, double-blind, phase 3

non-inferiority trial. The Lancet 382(9896), 941–950 (2013)

44. Tian, Y., Schuemie, M.J., Suchard, M.A.: Evaluating large-scale propensity score performance through

real-world and synthetic data experiments. International Journal of Epidemiology 47(6), 2005–2014 (2018).

doi:10.1093/ije/dyy120.

https://academic.oup.com/ije/article-pdf/47/6/2005/27015849/dyy120 supplementary material.pdf

45. Franklin, J.M., Pawar, A., Martin, D., Glynn, R.J., Levenson, M., Temple, R., Schneeweiss, S.: Nonrandomized

real-world evidence to support regulatory decision making: Process for a randomized trial replication project.

Clinical Pharmacology & Therapeutics 107(4), 817–826 (2020)

46. Austin, P.C., Cafri, G.: Variance estimation when using propensity-score matching with replacement with

survival or time-to-event outcomes. Statistics in medicine 39(11), 1623–1640 (2020)

47. Goring, S., Taylor, A., Müller, K., Li, T.J.J., Korol, E.E., Levy, A.R., Freemantle, N.: Characteristics of

non-randomised studies using comparisons with external controls submitted for regulatory approval in the usa

and europe: a systematic review. BMJ open 9(2), 024895 (2019)

48. Davies, J., Martinec, M., Delmar, P., Coudert, M., Bordogna, W., Golding, S., Martina, R., Crane, G.:

Comparative effectiveness from a single-arm trial and real-world data: alectinib versus ceritinib. Journal of

comparative effectiveness research 7(09), 855–865 (2018)

49. Carrigan, G., Whipple, S., Capra, W.B., Taylor, M.D., Brown, J.S., Lu, M., Arnieri, B., Copping, R., Rothman,

K.J.: Using electronic health records to derive control arms for early phase single-arm lung cancer trials:

proof-of-concept in randomized controlled trials. Clinical Pharmacology & Therapeutics 107(2), 369–377

(2020)

50. Schneeweiss, S., Rassen, J.A., Glynn, R.J., Avorn, J., Mogun, H., Brookhart, M.A.: High-dimensional

propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology

(Cambridge, Mass.) 20(4), 512 (2009)

51. Benasseur, I., Talbot, D., Durand, M., Holbrook, A., Matteau, A., Potter, B.J., Renoux, C., Schnitzer, M.E.,
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