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Abstract13

Data analysis is widely used to generate new insights into human disease mechanisms14

and provide better treatment methods. In this work, we used the mechanistic models of viral15

infection to generate synthetic data of influenza and COVID-19 patients. We then devel-16

oped and validated a supervised machine learning model that can distinguish between the17

two infections. Influenza and COVID-19 are contagious respiratory illnesses that are caused18

by different pathogenic viruses but appeared with similar initial presentations. While hav-19

ing the same primary signs COVID-19 can produce more severe symptoms, illnesses, and20

higher mortality. The predictive model performance was externally evaluated by the ROC21

AUC metric (area under the receiver operating characteristic curve) on 100 virtual patients22

from each cohort and was able to achieve at least AUC=91% using our multiclass classifier.23

The current investigation highlighted the ability of machine learning models to accurately24

identify two different diseases based on major components of viral infection and immune25

response. The model predicted a dominant role for viral load and productively infected26

cells through the feature selection process.27
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1 Introduction30

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses cause31

COVID-19 and influenza diseases, respectively, and mainly infect the upper and lower respi-32

ratory tract [1, 2]. Both infections present some similar prime symptoms leading to a clinical33

dilemma in diagnosing patients with the early infections [3–5]. However, COVID-19 tends to34

cause worse decompensation due to its intensive transmission, and vascular effects which have35

led to an unrivaled global crisis [6–9]. Moreover, as the striking COVID-19 outbreak contin-36

ues, the concurrence of epidemics can be impendent. Therefore, it is of interest to design data37

analysis tools that can accurately differentiate between these two infections and help curb the38

pandemics.39

One way to rapidly classify patients as influenza or COVID-19 could be through machine40

learning approaches. Preliminary investigation illustrated the potentials of machine-learning41

models for accurately distinguishing between these two viral infections, using demographics,42

body mass index, and vital signs in infected patients [9]. Herein, we used a simple ML-based43

classification to identify the patients with influenza and SARS-CoV-2 using mathematically44

based variables of the in-host infection dynamics and immune response. During the past decade,45

virus-host mathematical modeling has become an increasingly powerful tool to study intracel-46

lular viral infection dynamics and the ensuing immune response. Dynamic mathematical mod-47

eling can deepen our understanding of virus spread within organs that amplify the development48

of new antiviral drugs, and optimize treatment regimens. Importantly, these models can also49

help to mitigate difficulties related to clinical data analyses, such as inconsistencies in data col-50

lection that can lead to biased trial results and significantly complicate comparative analytics.51

For this purpose, we applied a basic mathematical model on the cellular scale (the so-called52

target cell-limited model [10, 11]) fit two different sets of in vivo data, to create virtual patient53

cohorts. Using our provided multiclass classifier, the patients were differentiated between the54

two infections. We certainly hope that our work can be a guide for future applications validated55

on the external clinical test set to help clinicians and front-line healthcare workers accurately56

recognize the disease. With just some important in-host measurements clinicians may discern57

the patients before a laboratory diagnosis.58

This paper is organized as follows: In section 2, through subsection 2.1, we discuss the59

In-host mathematical modelling of influenza and COVID-19 and parameter estimation. Via60

subsection 2.2, we use the mechanistic model to generate synthetic patient data. In subsections61

2.3 we study developing and evaluating a supervised machine learning method to discriminate62

the patients with different infections. The Interpretability of the developed model is discussed63

in subsection 2.4. The results of the prediction are presented in section 3 through subsection64

3.1. Subsection 3.2 discusses the importance of the data features and determines the dominant65

features. The paper concludes with a discussion in Section 4.66
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Figure 1: Schematic of viral infection. Each Target cell, T, is infected by a virus, V, with a
constant rate β. During the eclipse period the productively infected cell, I2, is being produced
by the first infected cell, I1, with a constant rate k. The Infected cell, I2, produces virus at rate
p, IFNI at rate q and dies at rate δ per cell. IFNI hinders viral infection by converting target
cells to a virus-resistant state with a constant rate ϕ and decays with rate d. Free virus particles
that can be influenza or coronaviruses are cleared at per-capita rate c.

2 Method67

2.1 Mechanistic models68

We employed a target-cell limited model of viral dynamics using five differential equations that
track susceptible target cells (T ), infected cells in the eclipse phase (I1), productively infected
cells (I2), virus (V ), and interferon (F ) in-host. Figure 1 presents a flow diagram of the model.
The system of ordinary differential equations is as follows:

dT

dt
= −βTV − ϕTF (1a)

dI1
dt

= βTV − kI1 (1b)

dI2
dt

= kI1 − δI2 (1c)

dV

dt
= pI2 − cV (1d)

dF

dt
= qI2 − dF (1e)

Briefly, virus particles V can infect susceptible target cells T to produce infected cells. This is69

represented by the term βTV . Newly infected cells first enter the eclipse phase I1 and become70

productively infected cells I2 when within-cell processes that program the cell to make new71

virus particles are completed. The eclipse phase takes, on average, 1/k time units. Productively72
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infected cells produce new virus particles with a rate of p, and the virus particles are cleared73

from the system with a rate of c. We assumed that productively infected target cells have a death74

rate δ. Susceptible target cells can be protected from infection by Type I interferon (IFNI),75

F . Type I interferons protect neighboring cells from infection and elicit an immune response76

[12, 13]. They are central to combating different virus infections and are regularly measured77

in clinical trials or infection studies in humans and animals [14]. We assumed that interferon78

production is proportional to the number of productively infected cells, that interferon has a79

natural decay rate d, and that interferon protects susceptible cells by removing them from the80

susceptible target cells population, with a rate ϕF . This term was ignored in [10] for influenza81

infection. The model described by Eq. 1 was used in [10] and [11] to examine the kinetics of82

influenza A and SARS-CoV-2 viral dynamics, respectively. For the sake of simplicity, we have83

ignored a half-day lag in IFNI response that was considered in [10].84

2.1.1 Parameter Estimation85

Model parameters for influenza A infection were fit to data from an experimental H1N1 in-86

fluenza A/Hong Kong/123/77 infection for six patients [10] and for SARS-CoV-2 from thirteen87

untreated patients infected with severe acute respiratory syndrome-coronavirus [11]. The geo-88

metric average parameter values along with their 95% confidence intervals and units are sum-89

marized in Table 1. We assumed that the initial number of target cells, T0, is equal to the total90

number of target cells in the upper respiratory tract and set T0 = 4 × 108 cells. In [11] the91

authors considered that the target cells distributed in a volume of 30 mL. Assuming that 1%92

of these cells expresses the angiotensin-converting enzyme 2 (ACE2) as a receptor for SARS-93

CoV-2, the target cell concentration, T0, was expressed as 1.33 × 105 cell/ml. Model variables94

with initial values were estimated as in Table 2.

Table 1: Average values and confidence intervals, CI , for influenza A and SARS-CoV-2 within-
host viral infection model parameters. Confidence levels of 95% displays the degree of certainty
that the parameter values for different samples, fall around the mean.

Influenza Model Parameters [10]
V0 [95%CI] R0 β [95%CI] k [95%CI] p [95%CI] c [95%CI] δ [95%CI] q d ϕ

TCID50/ml1 (TCID50/ml)−1d−1 d−1 (TCID50/ml)d−1 d−1 d−1 d−1 d−1 d−1cell−1

0.075[7.6E − 4, 7.5] 21.5[10.1-46.1] 3.2E − 5[6E − 6, 1.7E − 4] 4[3, 5.2] 0.046[0.012, 0.17] 5.2[3.1− 8.7] 5.2[3.2− 8.6] 1 1.9 [12, 15, 16] 0
SD:3.5724 SD:17.15 SD:7.8124 SD:1.0486 SD:0.07527 SD:2.6677 SD:2.5724

COVID-19 Model Parameters [11]
V0 R0 95%[CI] β k p 95%[CI] c δ 95%[CI] q d ϕ

Copies/ml (Copies/ml)−1d−1 d−1 (Copies/ml)d−1 d−1 d−1 d−1 d−1 d−1cell−1

0.1 8.6[1.9− 17.6] 5.68E − 9 3 22.71[0− 59.64] 10 0.6[0.22− 0.97] 1 0.4 1.97E-6 [17]
SD:12.9893 SD:49.3426 SD:0.62051

1 1 [TCID50/ml] corresponds to 4000 [Copies/ml] [18].
2 R0 is the basic reproduction number.

95
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Table 2: Model Variables with Initial values.
Variable Definition Initial Value Unit

T Target cell 4E+8 Cell

I1 Infected cell (eclipse phase) 0 Cell
I2 Productively infected cell 0 Cell
V Viral load (flu) 7.5E-2 TCID50/ml

(COVID-19) 0.1 Copies/ml

F type I interferon (IFNI) 0 Interferon

2.2 Generation of Virtual Patients96

To generate a cohort of 100 virtual patients, we followed a technique similar to the one used97

in [13]. Initial parameter sets representing individual virtual patients were drawn from normal98

distributions with means fixed to the corresponding parameter value in Table 1 and standard99

deviations derived from confidence interval measurements. Standard deviations were obtained100

from standard errors, confidence intervals, and t statistics which measure the size of the differ-101

ence relative to the variation in the sample data. For each parameter value, the standard devi-102

ation was obtained by dividing the length of the confidence interval by standard errors width103

(2× t− value) and then multiplying by the square root of the sample size as follows104

SD =
√
N × SE =

√
N × (upperlimit− lowerlimit)/(2× t− value) (2)105

Standard errors must be of means calculated from within each parameter confidence interval.106

The t− value for a 95% confidence interval from a sample size of N was then obtained in Mi-107

crosoft Excel using the tinv function (i.e. tinv(1−0.95, N−1)). From [10], the sample size for108

the influenza cohort is 6 patients infected by H1N1 influenza A/Hong Kong/123/77 infection.109

The COVID-19 cohort consisted of 13 untreated patients infected with severe acute Respiratory110

syndrome-coronavirus2 [11]. Therefore, the t − value for influenza patients is 2.571 and for111

COVID-10 patients is about 2.179. From normal distributions with standard deviations, σ, and112

means, µ, as the original parameter values, we then generated normal distributions covering113

values lying around each parameter value such that |µ ± σ − µ|< h. Herein, the parameter114

h is the user-defined value as a measure of data diversity. In the other words, the bigger the115

parameter h, the more diverse the synthetic data. Accordingly, the external noise can affect the116

data through the parameter h. The dynamics of 100 virtual patients from each cohort are shown117

in Figure 2. The diversity of patient data is mainly reflected in various viral load levels to agree118

with prior studies that different viral load is associated with the severity of diseases or different119

factors such as age or sex of the patients [19].120

Consistency of the data121

Generating data with time consistency for different cohorts of infections is of great importance.122

Data inconsistency can lead to loss of information or biased results. Since the influenza mech-123

anistic model predicts faster clearance of influenza-infected cells than SARS-CoV-2 [11], the124
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Model features for 100 influenza virtual patients
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Model features for 100 COVID-19 virtual patients
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Figure 2: Cohort Dynamics. One hundred virtual patients are generated with different features
of Target cells, infected/productively infected cells, viral load, and the only immune factor type
I interferon for Influenza (upper two rows) and COVID-19 (lower two rows). Each solid curve
with a different color represents a patient. The insets are in log scale.
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Figure 3: Consistency of the number of virtual data points during the time of infection. Dashed
cross blue lines show eleven-time points of an influenza or COVID-19 patient.

infection period for influenza and COVID-19 patient dynamics are not the same, see Figure125

2. Therefore we limited the consistency of flu/COVID-19 cohorts to have the same number of126

data points during the infection time. Hereupon, as an example, we divided the main infection127

period (i.e., [1− 6] days for influenza patients and [10− 20] days for COVID-19 patients) into128

ten different sub-intervals with half-day length time steps for influenza patients and one and129

half-day length time steps for COVID-19 patients (see Figure 3). Hence, despite having differ-130

ent infection periods and time steps with different lengths to report the new virtual data point,131

the total number of data for the two different cohorts was the same.132

In addition to the total infection period, we were also interested in studying the viral load133

dynamics in the early period of infection. The median incubation period for influenza A(B)134

virus is estimated to be 1.4(0.6) days, and for SARS-CoV-2 is around 5−6 days [20]. Therefore,135

we assumed the time interval [0.9, 1.3] days for influenza, and [5 − 6.5] days for COVID-19136

cohorts, corresponding to [102 − 104]Copies/ml viral load. Dividing each interval into three137

different sub-intervals to get the time steps with length one-sixth of a day for Influenza and half138

a day for COVID-19 patients, we had four consistent data points for each patient.139

2.3 Predictive Model Development140

To distinguish between patients who encounter COVID-19 from those who are exposed to in-141

fluenza, we developed a predictive model based on some biological feature selections. Accord-142

ingly, we adopted Logistic regression with ℓ1-regularization, referred to Lasso (stands for least143

absolute shrinkage and selection operator) Regression, as an appropriate technical classifica-144

tion. Lasso regression is widely used for many supervised classification problems based on145

the concept of probability [21]. It can simplify the model complexity by removing irrelevant146
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features of the data set. Recently, this algorithm was used by Han et al. to find some addi-147

tional novel immune features that accurately identified patients before the clinical diagnosis of148

preeclampsia [22].149

Logistic regression, which is a special case of linear regression and used for binary classifi-150

cation, is defined by the following sigmoid function151

h(X) =
1

1 + e−(β0+βX)
(3)152

in which X is the (n × p) model feature matrix of n = 100 patients and p = 5 biological153

hallmarks. Defining the cost/objective (C) function of logistic regression in mean squared error154

format leads to a non-convexity that makes it difficult to optimally converge. Therefore, it is155

represented by the following equations156

C(h(X), Y ) =

{
−log(h(X)), if y = 1

−log(1− h(X)), if y = 0
(4)157

where Y is a binary response vector of outcome (CVOID-19 vs flu). Compressing the above158

two equations inside a single function, we have159

J(X) = − 1

n

n∑
i=1

[yilog(h(xi) + (1− yi)log(1− h(xi))] (5)160

Replacing the sigmoid function from equation (3) and applying a penalty term equal to the161

absolute value of the magnitude of coefficients, we can reach the following objective function162

(after doing some mathematical simplifications) [22]163

J(X) = −

[
1

n

n∑
i=1

yi(β0 + βTxi)− log (1 + eβ0+βT xi)

]
+ α||β||, α > 0 (6)164

The penalty term which is called the ℓ1-regularization term is added to prevent data over-fitting.165

The model objective is to find a specific solution with a best-optimized cost function.166

For model training and testing, we developed a K-fold cross-validation strategy, which is167

a re-sampling method to evaluate machine learning models on a limited data sample. The168

procedure has a single parameter called K which displays the number of groups that a given169

data sample is to be split into. As such, the procedure is often called K-fold cross-validation.170

Therefore, our regression model is not tailored to a particular data set and is exposed to all171

available samples of a given subject in the training set. This approach implies that the training172

procedure was entirely blinded to the synthetic patient data sets, and ensures the presumed173

independence from any intra-subject correlations that are required for Lasso classification. We174

fixed the number of folds of the data as K = 5. Running the analysis on each fold, the predicted175

outcome will be the one with the least estimated prediction error. The regularization parameter176

α is estimated by a cross-validation procedure.177
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2.3.1 Evaluating Model Performance178

The discriminating ability of the developed model in predicting patients with influenza from179

COVID-19 was evaluated using AUC (Area Under The Curve) ROC (Receiver Operating Char-180

acteristics) curve analysis. AUC - ROC curve is one of the most important evaluation metrics to181

visualize the performance of multi-class classification problems. ROC represents a probability182

curve of sensitivity (true positive rate= TP
TP+FN

) against 1-specificity (false positive rate= FP
FP+TN

)183

and AUC is a performance measure of discrimination. In the other words, the AUC score is a184

criterion that explains how well the model is capable of discerning different cohorts. Generally,185

an AUC closer to 1 indicates a better overall diagnostic performance of influenza classes as186

influenza or COVID-19 to COVID-19.187

2.4 Model Interpretability188

From [23, 24], “Interpretability" is the degree to which a human can understand the cause of189

a decision and consistently predict the model’s result. The higher the interpretability of a ma-190

chine learning model, the better understanding of why certain predictions have been made.191

Interpretable machine learning models are beneficial to extract the relevant knowledge from192

relationships either contained in data or learned by the model [25, 26].193

Here, we looked at the regularization path which is a plot of all coefficients values against194

the values of α in-ℓ1 penalization term, to see the behavior of the Lasso regression and interpret195

the prediction outcomes. The main purpose of Lasso regression is to classify groups of data196

by providing feature coefficients that can select the important features and maintain model reg-197

ularization to avoid over-fitting the data. Therefore, the Lasso path can give us an idea of the198

feature’s importance.199

3 Results200

3.1 Prediction of Influenza versus COVID-19 infection201

In this study we developed a classifier in the Lasso framework to identify patients with either in-202

fluenza or COVID-19, based on four major entities of viral dynamics, {T (t), I1(t), I2(t), V (t)},203

and one main factor of host immune response, type I interferon (F (t)), as the entry data fea-204

tures. The model was trained on data from one hundred virtual patient-level data in each infec-205

tion cohort without noise, and it was externally validated on testing set with demographic noise206

(reflected in diverse viral load levels). Results in Figures 4, 5 and 6 reflect the Lasso predictions207

using the entire infection period (see Section 2.2). In Figures 4 and 5, two-dimensional scatter208

plots are used to compare ground truth to regression predicted values based on all model fea-209

tures. The hue spectrum from light to dark illustrates the probability of being in the influenza210

(blue) or COVID-19 (red) group. In the other words, the darker the colors, the better the pre-211

diction. Considering three attributes in the data, the predicted outcomes are improved. This212
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is shown in three-dimensional scatter plots in Figure 6 of the ground truth and regression pre-213

dicted values. ROC AUC=95% indicates a satisfactory performance of the model to distinguish214

between COVID-19 and influenza patients, see figure 7 for more details.215

Early days of infection216

We examined the model prediction for the data generated at the early days of infection after217

the incubation period. The results are shown in Figure 8 based on the model features. From218

the figure, we can see that there are some mispredictions, for small values of I1(t), I2(t), V (t),219

and F (t), especially when I2(t) is plotted as a function of I1(t) or V (t) is plotted in terms of220

I2(t). In the other words, for this range of values, the influenza patients were misdiagnosed with221

COVID-19. In an attempt to find the reason, we compared correlations between the different222

variables in our model – see Figure 9). Here, we see small regions of overlap between influenza223

and COVID-19 models. Accordingly, the compatibility of the results between the two infections224

may lead to some overlaps in the model predictions. However, the ability of the model in the225

prediction of infections when the patients were monitored by V (t)/F (t) as a function of I1(t),226

panels (b) and (c), or F (t) in terms of I2(t)/V (t), panels (e) and (f), can be satisfactory, and227

thus can serve as benchmarks for clinical diagnosis. The model had a ROC AUC of 91% on the228

external validation data set for early infection – see Figure 7.229

3.2 Significance of the features230

To investigate the importance of various data features we created our ℓ1-regularization path,231

which was the best way to see the behavior of the Lasso regression. The regularization path232

is a plot of all coefficient values in terms of the regularization parameter. Figure 10 illustrates233

the selection path of each feature with its corresponding coefficient in terms of the logarithm234

of the regularization parameter α. For each value of α, the path method on the Lasso object235

returns the coefficients that solve the logistic regression problem with that parameter value. The236

optimal value of − log(α) was estimated at around 3.25 for the test set distributed over the entire237

infection course, and 3.04 when the early days of infection were studied. The results suggested238

a higher coefficient value for viral load V (t) and productively infected cells I2(t) compared to239

the other features.240

4 Discussion241

This study presents a machine learning model to effectively classify influenza and COVID-19242

virtual patients using in-host patient data. Our model employed a Lasso regression classifier243

trained to identify between two hundred patients, highlighted by a ROC AUC of 95%. Using244

the existing within-host models, We generated synthetic data with five in-host measurements245

including target cells, eclipse phase, and productively infected cells, viral load, and type I IFN.246

Analyzing the feature importance revealed that the viral load and the productively infected cells247
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Figure 4: Two-dimensional scatter plots of ground truth and regression predicted values based
on model features. Classification of the data was done for: I2 versus I1 in panels (a), T vs. I1
in panels (b), V vs. I1 in panels (c), F vs. I1 in panels (d), T vs. I2 in panels (e), V versus
I2 in panels (f), and F versus I2 in panel (g). Color denotes the patient probability of being
in the influenza (blue color scheme) or COVID-19 (red color scheme) cohorts. Data points,
corresponding to each model feature, are rescaled by dividing by their standard deviations.
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Figure 5: Two-dimensional scatter plots of the ground truth and regression predicted values for
three model features T, V, F . Classification of the data was done based on: T versus V in panels
(a), T versus F in panels (b), and F versus V in panels (c). Color denotes the patient probability
of being in the influenza (blue color scheme) or COVID-19 (Red color scheme) cohorts.
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Figure 6: Three-dimensional scatter plots of the ground truth and regression predicted values
based on all model features. Classification is based on I1, I2, T in panels (a), I1, I2, V in panels
(b), I1, I2, F in panels (c), T, V, F in panels (d), I1, T, V in panels (e), I2, T, V in panels (f),
I1, T, F in panels (g), I2, T, F in panels (h), I1, F, V in panels (i), and I2, F, V in panels (j).
Shades of blue (red) indicate influenza (COVID-19) group patients. Data points are dimension-
less by dividing by the corresponding standard deviations.
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and early days (orange curve). The black dashed line in the diagonal has a ROC AUC of 0.5.

are the most important components to determine if a patient is infected by influenza or SARS-248

CoV-2.249

While our machine learning model was built on the synthetic data distributed during the250

main infection period, it ascertained a good performance (ROC AUC = 91%) even for the early251

days, once after the incubation period. However, there are some exceptions for the small values252

of in-host features where the influenza patients are misdiagnosed by COVID-19 for the early253

days of infection. The reason was explained by the fact that during the early days of the in-254

fection, influenza and COVID-19 patients have comparable in-host measurements that lead to255

some errors in discriminating the patients. This is interpreted as a limitation of our model and256

can be a future extension of developing dynamic models which take more immune entities into257

account and end in a better classifier.258

Our model was trained and successfully evaluated on synthetic data. The model, however,259

could be applied to animal or human clinical data. This could be useful, for example, if a clinical260

trial is complicated by the existence of an infectious disease with similar infection character-261

istics. The model could be applied as a low-cost classification system that would not require262

expensive virus typing procedures and could rely solely on viral load and interferon measure-263

ments. We note that studies like [9] that focus analysis on demographic and observational data264

can be cheaper to conduct, but these data can also be subject to inconsistencies and bias, af-265

fecting classification outcomes. In a future study, we will expand our analysis to a model of266

in-host measurements and observational data to determine if specific combinations of in-host267

and observational data that best classify influenza and COVID-19 infections differ.268
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Figure 8: Early days of infection. Two-dimensional scatter plots of the ground truth and regres-
sion predicted values based on model features are shown. Classification is based on I1, I2 in
panels (a), I1, V in panels (b), I1, F in panels (c), I2, V in panels (d), I2, F in panels (e), and
V, F in panels (f). Shades of blue (red) indicate influenza (COVID-19) group patients. Data
points are dimensionless by dividing by the corresponding standard deviations.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.22269978doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269978
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 0.005 0.01 0.015 0.02

I1(t)

0

0.01

0.02

0.03

0.04

I 2
(t
)

(a)

0 0.005 0.01 0.015 0.02

I1(t)

0

0.005

0.01

0.015

0.02

0.025

V
(t
)

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06

I1(t)

0

0.05

0.1

0.15

0.2

F(
t)

(c)

0 0.01 0.02 0.03 0.04 0.05 0.06

I2(t)

0

0.05

0.1

0.15

0.2

F(
t)

(d)

0 0.01 0.02 0.03 0.04 0.05 0.06

I2(t)

0

0.01

0.02

0.03

0.04

0.05
V
(t
)

(e)

0 0.01 0.02 0.03 0.04 0.05 0.06

V(t)

0

0.05

0.1

0.15

0.2

F(
t)

Influenza
COVID-19

(f)

Figure 9: Comparison of in-host measurements, {T, I1, I2, V, F}, between influenza and
COVID-19 virtual patients where plotted as a function of each other. Blue(red) solid lines
represent the ratio of the features for one hundred influenza (COVID-19) patients. Data points
are divided by the corresponding standard deviations for each feature.
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Figure 10: Lasso coefficients of five sample features, {T, I1, I2, V, F}, as a function of the
logarithm of regularization parameter, − logα. Each colored line represents the value taken by
a different coefficient in the optimization objective for Lasso. The black dashed line indicates
the selected regularization parameter with the value of − log(α) ≈ 3.25. This number was
≈ 3.04 with the same Lasso Paths when the early days of the infection period were considered.
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Our machine learning model was developed in the Lasso framework. Ridge regression could269

also be employed, and require only small changes to our method to include this. We find that270

the model demonstrated a satisfactory performance by using a Ridge regression classifier –271

(ROC AUC= 95%) for the main infection period, and (ROC AUC= 89%) for the early days of272

infection.273

References274

[1] Kanta Subbarao and Siddhartha Mahanty. Respiratory virus infections: understanding275

covid-19. Immunity, 52(6):905–909, 2020.276

[2] Laura D Manzanares-Meza and Oscar Medina-Contreras. Sars-cov-2 and influenza: a277

comparative overview and treatment implications. Boletín médico del Hospital Infantil de278

México, 77(5):262–273, 2020.279

[3] Shuhei Azekawa, Ho Namkoong, Keiko Mitamura, Yoshihiro Kawaoka, and Fumitake280

Saito. Co-infection with sars-cov-2 and influenza a virus. IDCases, 20:e00775, 2020.281

[4] Pavan K Bhatraju, Bijan J Ghassemieh, Michelle Nichols, Richard Kim, Keith R Jerome,282

Arun K Nalla, Alexander L Greninger, Sudhakar Pipavath, Mark M Wurfel, Laura Evans,283

et al. Covid-19 in critically ill patients in the seattle region—case series. New England284

Journal of Medicine, 382(21):2012–2022, 2020.285

[5] Hossein Khorramdelazad, Mohammad Hossein Kazemi, Alireza Najafi, Maryam286

Keykhaee, Reza Zolfaghari Emameh, and Reza Falak. Immunopathological similar-287

ities between covid-19 and influenza: Investigating the consequences of co-infection.288

Microbial pathogenesis, 152:104554, 2021.289

[6] Maximilian Ackermann, Stijn E Verleden, Mark Kuehnel, Axel Haverich, Tobias Welte,290

Florian Laenger, Arno Vanstapel, Christopher Werlein, Helge Stark, Alexandar Tzankov,291

et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. New292

England Journal of Medicine, 383(2):120–128, 2020.293

[7] Qun Li, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren,294

Kathy SM Leung, Eric HY Lau, Jessica Y Wong, et al. Early transmission dynamics295

in wuhan, china, of novel coronavirus–infected pneumonia. New England journal of296

medicine, 2020.297

[8] Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang298

Zhao, Baoying Huang, Weifeng Shi, Roujian Lu, et al. A novel coronavirus from patients299

with pneumonia in china, 2019. New England journal of medicine, 2020.300

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.22269978doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269978
http://creativecommons.org/licenses/by-nc-nd/4.0/


[9] Naveena Yanamala, Nanda H Krishna, Quincy A Hathaway, Aditya Radhakrishnan,301

Srinidhi Sunkara, Heenaben Patel, Peter Farjo, Brijesh Patel, and Partho P Sengupta. A vi-302

tal sign-based prediction algorithm for differentiating covid-19 versus seasonal influenza303

in hospitalized patients. NPJ digital medicine, 4(1):1–10, 2021.304

[10] Prasith Baccam, Catherine Beauchemin, Catherine A Macken, Frederick G Hayden, and305

Alan S Perelson. Kinetics of influenza a virus infection in humans. Journal of virology,306

80(15):7590–7599, 2006.307

[11] Antonio Gonçalves, Julie Bertrand, Ruian Ke, Emmanuelle Comets, Xavier De Lambal-308

lerie, Denis Malvy, Andrés Pizzorno, Olivier Terrier, Manuel Rosa Calatrava, France Men-309

tré, et al. Timing of antiviral treatment initiation is critical to reduce sars-cov-2 viral load.310

CPT: pharmacometrics & systems pharmacology, 9(9):509–514, 2020.311

[12] Pengxing Cao, Ada WC Yan, Jane M Heffernan, Stephen Petrie, Robert G Moss, Louise A312

Carolan, Teagan A Guarnaccia, Anne Kelso, Ian G Barr, Jodie McVernon, et al. Innate313

immunity and the inter-exposure interval determine the dynamics of secondary influenza314

virus infection and explain observed viral hierarchies. PLoS computational biology,315

11(8):e1004334, 2015.316

[13] Adrianne L Jenner, Rosemary A Aogo, Sofia Alfonso, Vivienne Crowe, Xiaoyan Deng,317

Amanda P Smith, Penelope A Morel, Courtney L Davis, Amber M Smith, and Morgan318

Craig. Covid-19 virtual patient cohort suggests immune mechanisms driving disease out-319

comes. PLoS pathogens, 17(7):e1009753, 2021.320

[14] Finlay McNab, Katrin Mayer-Barber, Alan Sher, Andreas Wack, and Anne O’garra. Type321

i interferons in infectious disease. Nature Reviews Immunology, 15(2):87–103, 2015.322

[15] Frederick G Hayden, R Fritz, Monica C Lobo, W Alvord, Warren Strober, Stephen E323

Straus, et al. Local and systemic cytokine responses during experimental human influenza324

a virus infection. relation to symptom formation and host defense. The Journal of clinical325

investigation, 101(3):643–649, 1998.326

[16] Kasia A Pawelek, Giao T Huynh, Michelle Quinlivan, Ann Cullinane, Libin Rong, and327

Alan S Perelson. Modeling within-host dynamics of influenza virus infection including328

immune responses. PLoS computational biology, 8(6):e1002588, 2012.329

[17] Naveen K Vaidya, Angelica Bloomquist, and Alan S Perelson. Modeling within-host330

dynamics of sars-cov-2 infection: A case study in ferrets. Viruses, 13(8):1635, 2021.331

[18] Licia Bordi, Giuseppe Sberna, Eleonora Lalle, Pierluca Piselli, Francesca Colavita,332

Emanuele Nicastri, Andrea Antinori, Evangelo Boumis, Nicola Petrosillo, Luisa Mar-333

chioni, et al. Frequency and duration of sars-cov-2 shedding in oral fluid samples assessed334

by a modified commercial rapid molecular assay. Viruses, 12(10):1184, 2020.335

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.22269978doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269978
http://creativecommons.org/licenses/by-nc-nd/4.0/


[19] Waleed H Mahallawi, Ali Dakhilallah Alsamiri, Alaa Faisal Dabbour, Hamdah Alsaeedi,336

and Abdulmohsen H Al-Zalabani. Association of viral load in sars-cov-2 patients with337

age and gender. Frontiers in Medicine, 8:39, 2021.338

[20] Keisuke Ejima, Kwang Su Kim, Christina Ludema, Ana I Bento, Shoya Iwanami, Ya-339

suhisa Fujita, Hirofumi Ohashi, Yoshiki Koizumi, Koichi Watashi, Kazuyuki Aihara,340

et al. Estimation of the incubation period of covid-19 using viral load data. Epidemics,341

35:100454, 2021.342

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal343

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.344

[22] Xiaoyuan Han, Mohammad S Ghaemi, Kazuo Ando, Laura S Peterson, Edward A345

Ganio, Amy S Tsai, Dyani K Gaudilliere, Ina A Stelzer, Jakob Einhaus, Basile Bertrand,346

et al. Differential dynamics of the maternal immune system in healthy pregnancy and347

preeclampsia. Frontiers in immunology, 10:1305, 2019.348

[23] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.349

Artificial intelligence, 267:1–38, 2019.350

[24] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn351

to criticize! criticism for interpretability. Advances in neural information processing352

systems, 29, 2016.353

[25] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Defi-354

nitions, methods, and applications in interpretable machine learning. Proceedings of the355

National Academy of Sciences, 116(44):22071–22080, 2019.356

[26] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.357

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.22269978doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269978
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Method 
	Mechanistic models
	Parameter Estimation 

	Generation of Virtual Patients
	Predictive Model Development
	 Evaluating Model Performance

	Model Interpretability

	Results
	Prediction of Influenza versus COVID-19 infection 
	Significance of the features

	Discussion 

