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Abbreviations:  36 

ARoC: Annual Rate of Change, BPF: Brain Parenchymal Fraction, CDP: Confirmed 37 

Disability Progression, cMRI: Conventional Magnetic Resonance Imaging, CNS: Central 38 
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Nervous System, GMF: Grey Matter Fraction, GLMM: General Linear Mixed Model, LF: 39 

Lesion Fraction, MPM: Multi-Parameter Mapping, MRI: Magnetic Resonance Imaging, 40 

MS: Multiple Sclerosis, MT: Magnetization Transfer, MTR: Magnetization Transfer 41 

Ratio, MTsat: Saturated Magnetization Transfer, NABT: Normal Appearing Brain 42 

Tissue, NACGM: Normal Appearing Cortical Grey Matter, NADGM: Normal Appearing 43 

Deep Grey matter, NAWM: Normal Appearing White Matter, NEDA-3: No Evidence of 44 

Disease Activity, RRMS: Relapsing-Remitting Multiple Sclerosis, PD: Proton Density, 45 

PMS: Progressive Multiple Sclerosis, qMRI: Quantitative Magnetic Resonance Imaging, 46 

R1: Longitudinal Relaxation Rate (1/T1), R2*: Transverse Relaxation Rate (1/T2*), TIV: 47 

Total Intracranial Volume, TPM: Tissue Probability Map, US: Unified Segmentation, 48 

USwL: Unified Segmentation with Lesion  49 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.01.26.22269806doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.26.22269806
http://creativecommons.org/licenses/by/4.0/


Abstract 50 

Quantitative MRI quantifies tissue microstructural properties and supports the 51 

characterization of cerebral tissue damages. With an MPM protocol, 4 parameter maps 52 

are constructed: MTsat, PD, R1 and R2*, reflecting tissue physical properties 53 

associated with iron and myelin contents. Thus, qMRI is a good candidate for in vivo 54 

monitoring of cerebral damage and repair mechanisms related to MS. Here, we used 55 

qMRI to investigate the longitudinal microstructural changes in MS brain.  56 

Seventeen MS patients (age 25-65, 11 RRMS) were scanned on a 3T MRI, in two 57 

sessions separated with a median of 30 months, and the parameters evolution was 58 

evaluated within several tissue classes: NAWM, NACGM and NADGM, as well as focal 59 

WM lesions. An individual annual rate of change for each qMRI parameter was 60 

computed, and its correlation to clinical status was evaluated. For WM plaques, three 61 

areas were defined, and a GLMM tested the effect of area, time points, and their 62 

interaction on each median qMRI parameter value. 63 

Patients with a better clinical evolution, i.e., clinically stable or improving state, 64 

showed positive annual rate of change in MTsat and R2* within NAWM and NACGM, 65 

suggesting repair mechanisms in terms of increased myelin content and/or axonal 66 

density as well as edema/inflammation resorption. When examining WM lesions, qMRI 67 

parameters within surrounding NAWM showed microstructural modifications, even 68 

before any focal lesion is visible on conventional FLAIR MRI. 69 

The results illustrate the benefit of multiple qMRI data in monitoring subtle changes 70 

within normal appearing brain tissues and plaque dynamics in relation with tissue 71 

repair or disease progression.  72 

 73 
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Keywords: 74 

Quantitative MRI, relaxometry, longitudinal analysis, multiple sclerosis.  75 

 76 

Key points: 77 

 Patients with a better clinical evolution showed microstructural improvement 78 

in term of MTsat and R2* increase in their normal appearing tissue, suggesting 79 

repair mechanisms. 80 

 Using qMRI allows to detect modifications in tissue microstructure in normal 81 

appearing tissues surrounding lesions several months before they are visible on 82 

conventional MRI. 83 

 84 

  85 
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1. Introduction 86 

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). 87 

Plaques are the pathological hallmark of MS. They are spread in acute, focal, disseminated 88 

and recurrent way throughout the CNS and harbor variable degrees of inflammation, 89 

demyelination, gliosis and axonal injury [1, 2]. Plaques are not restricted to the white matter 90 

(WM), but are also present in the cortex and deep grey matter (GM) [3-5].  91 

Over and above focal WM lesions, an early, diffuse and chronic inflammation within the 92 

normal appearing white matter (NAWM) and grey matter (NAGM) is ultimately responsible 93 

for diffuse neuro-axonal loss and neurodegeneration, which is deemed responsible for a 94 

progressive accumulation of disability [3, 4, 6].  95 

By contrast, effective repair mechanisms can occur within focal lesions but probably also in 96 

normal appearing brain tissue (NABT) [7]. However, our understanding of these complex 97 

processes is still fragmentary. The difficulty of acquiring histopathological data on MS patients 98 

at various stages of the disease makes it challenging to describe the time course of injury and 99 

potential repair mechanisms in MS. Consequently, there is a need for new imaging techniques 100 

to improve the in-vivo monitoring of brain damages formation, progression and repair in MS 101 

[8]. 102 

Conventional MRI (cMRI) readily depicts focal WM lesions on T2/FLAIR sequences and is able 103 

to distinguish between acute and allegedly chronic lesions. T2-hyperintensities in cMRI 104 

constitute the keystone of McDonald diagnostic criteria [9] and also make an important 105 

contribution to the monitoring of WM lesion burden. Unfortunately, cMRI sequences do not 106 

sensitively detect cortical lesions and diffuse changes in NABT, due to a rather low sensitivity 107 

of cMR imaging for cortical lesions, mixed contrast weight, and an overall limited 108 

histopathological specificity within cerebral tissues. Quantitative MRI (qMRI) potentially 109 
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overcomes these limitations by quantifying physical microstructural properties of cerebral 110 

tissue in standardized units. qMRI is more sensitive but also more specific to microstructural 111 

properties of CNS tissues. Magnetization transfer ratio (MTR) was regularly linked to cerebral 112 

macromolecular content detected by a greater percentage loss of magnetization in voxels with 113 

a higher myelin content and axons density [10-12]. Post-mortem studies comparing the 114 

relative contribution of these two factors indicate that myelin has a stronger and more direct 115 

influence on MTR than the axonal density, which is considered as a T1-dependent effect. 116 

Tissue water content (inflammation, edema…), another T1-dependent effect, also accounts 117 

for MTR variability [11, 13, 14]. However, the MT saturation (MTsat) map offers a measure 118 

which, unlike MTR, is minimally affected by longitudinal relaxation and B1 mapping 119 

inhomogeneities [15], increasing its sensitivity to myelin content. Moreover, the brain 120 

contrast to noise ratio is larger for the MTsat map than for MTR, thus improving brain tissue 121 

segmentation in healthy subjects [11, 16]. R2* was usually linked to iron and myelin contents, 122 

as paramagnetic iron and diamagnetic myelin generate microscopic field gradients in the CNS, 123 

thus shortening T2* and increasing R2* (1/T2*). Orientation and density of myelin fibers are 124 

also a determining factor of R2* values [17-19]. Iron is probably a key factor in MS monitoring 125 

as it was shown that aberrant iron metabolism occurs in the course of the disease [20]. 126 

Particularly increased iron concentration within chronic active lesions (i.e iron rim lesion) or 127 

deep grey matter structures was observed [20]. Regarding the longitudinal relaxation rate R1 128 

(1/T1), its three major determinants in the CNS are tissue myelination and associated axons, 129 

iron, and extracellular water contents [19, 21, 22]. Finally, proton density (PD) mostly reflects 130 

the free water content of the brain [23].  131 

A number of cross-sectional studies using a combination of MT, R1, R2* or PD parameters, 132 

comparing MS patients to healthy controls, reported significant changes in the microstructure 133 
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of NABT, such as a decrease in MT, R1 and R2* and an increase in PD in patients [24-32]. Few 134 

studies addresses the longitudinal variations in qMRI. R2* [33-35], PD and T1 were reported 135 

to increase in the basal ganglia over a period of a year [36], whereas a decrease in MTR in 136 

NAWM was reported over one [37] or two years [38]. 137 

Regarding focal WM plaques, qMRI emerges as an appealing biomarker to describe the 138 

dynamic processes of demyelination and remyelination. For instance, MTR was shown to 139 

sharply decrease within gadolinium enhancing lesions before recovering during the 140 

subsequent months [39-41], and within NAWM days to weeks before the formation of a new 141 

active lesion [42, 43].  142 

Because each qMRI parameter is differently sensitive to histologically measured iron and 143 

myelin contents, this approach might become a fundamental tool for longitudinal in vivo 144 

monitoring of MS lesions and NABT evolution at the tissue microstructural level.  145 

In this longitudinal study, we investigate the evolution of four simultaneously acquired qMRI 146 

parameters (MTsat, PD, R1, R2*) within NABT and WM lesions of 17 MS patients - relapsing 147 

remitting (RRMS) and progressive MS (PMS) - who were scanned two times with at least a 148 

one-year interval, following the same multi-parameter mapping (MPM) protocol at 3 Tesla 149 

[10, 44].   150 

We assessed the time course of parameter values in several tissue classes: normal appearing 151 

white matter (NAWM), normal appearing cortical and deep GM (NACGM and NADGM) as well 152 

as focal WM lesions. In addition, we related longitudinal qMRI changes within NABT to clinical 153 

course.  154 
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2. Materials and methods  155 

 2.1 Population  156 

Seventeen patients, recruited at the specialized MS outpatient clinic of the CHU Liège, 157 

Belgium, with a diagnosis of MS according to the McDonald criteria 2010 [45], were gathered 158 

from two studies: ten of them were part of the work reported by Lommers et al. 2019 [24], 159 

the other seven were recruited from another MS study taking place at the GIGA Cyclotron 160 

Research Centre – In Vivo Imaging (Liège, Belgium) [46]. For the first study (10 subjects), the 161 

inclusion criteria were (1) age between 18 and 65 years ; (2) Expanded Disability Status Scale 162 

(EDSS) inferior or equal to 6.5 ; (3) absence of relapse within the previous four weeks ; (4) 163 

absence of IVMP administration for at least 6 months prior to the study. Both RRMS and PMS 164 

patients were recruited. The second study (7 subjects) differs a bit as it comprises only RRMS 165 

patients, and the inclusion criteria were (1) age between 18 and 45, (2) EDSS between 0 and 166 

4, (3) absence of relapse for at least 6 months prior to the study, (4) disease duration was 167 

below or equal to 5 years, (5) absence of IVMP administration for at least 6 months prior to 168 

the study. For both studies, compatibility with MRI and absence of other 169 

neurological/psychiatric diseases were required. These studies were approved by the local 170 

ethics committee (approval numbers B707201213806 and B707201835630, respectively). All 171 

patients were followed up and scanned twice on the same 3T MRI scanner, every 1 to 3 years. 172 

For each of the 17 MS patients, data from two MRI sessions were available, at T0 and T1. This 173 

cohort included 11 RRMS and 6 (primary and secondary) PMS patients. Thirteen were 174 

receiving disease-modifying treatments (DMTs). The patients’ median age was 36 years 175 

(range: 25-65) and the median time interval between two scans was 30 months (range: 14-176 

61). Demographic data appears in Table 1. Extended individual information appears in 177 

Supplementary data. 178 
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 179 

 2.2 MR image acquisition  180 

MRI data were acquired on a 3T whole-body MRI-scanner (Magnetom Prisma, Siemens 181 

Medical Solutions, Erlangen, Germany). The whole-brain MRI acquisitions included a multi-182 

parameter mapping protocol (MPM), from which one can simultaneously estimate 183 

(semi)quantitative maps of magnetization transfer saturation (MTsat), proton density (PD), 184 

transverse relaxation (R1) and effective longitudinal relaxation (R2*). This protocol arising 185 

from an international collaborative effort [10, 44], has already been used to study brain 186 

microstructure in various conditions including normal aging [9, 44, 47], brain tumor [48], 187 

Parkinson’s disease [49-51] as well as MS. It consists of three co-localized 3D multi-echo fast 188 

low angle shot (FLASH) acquisitions at 1mm³ resolution and two additional calibration 189 

sequences to correct for inhomogeneities in the RF transmit field [52, 53]. The FLASH datasets 190 

were acquired with predominantly PD, T1 and MT weighting, referred to in the following as 191 

PDw, T1w and MTw, at multiple echo times. All three had high bandwidth to minimize off-192 

resonance and chemical shift artifacts. Volumes were acquired in 176 sagittal slices using a 193 

256x224 voxel matrix. GRAPPA parallel imaging was combined with partial Fourier acquisition 194 

to speed up acquisition time to approximately 20 min. An additional FLAIR sequence was 195 

recorded with spatial resolution 1mm³ and TR/TE/TI=5000ms/516ms/1800ms. Extra B1 field 196 

mapping images (transmit B1+ and receive B1- fields) were also acquired to reduce spatial 197 

inhomogeneities related to B1 effect. This was essential for proper quantification of T1 (or 198 

R1=1/T1) in particular. Finally, B0 field mapping images, corresponding to both magnitude 199 

images and pre-subtracted phase image, were acquired for image distortions corrections. A 200 

summary of the acquisition parameters appears in Supplementary data. 201 
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Note that these MR sequences at 3 Tesla are not sensitive to cortical lesion as described in 202 

[54, 55] although a few lesions at the cortico-subcortical border were detected. Quantification 203 

of cortical parameters is thus confounded by voxels potentially located within cortical lesions.  204 

 2.3 MR image processing 205 

All data processing was performed in Matlab (The MathWorks Inc., Natick, MA, USA) using 206 

SPM12 (www.fil.ion.ucl.ac.uk/spm) and three additional dedicated SPM extensions: the 207 

Lesion Segmentation Tool (LST) version 1.2.3 (www.statisticalmodelling.de/lst.html) [56], the 208 

“quantitative MRI and in vivo histology using MRI” toolbox (hMRI, http://hmri.info) [10], and 209 

“US-with-Lesion” tool (USwL, https://github.com/CyclotronResearchCentre/USwLesion).  210 

Quantitative maps - MTsat, PD, R1 and R2* - were estimated using the hMRI toolbox. T1w, 211 

PDw and MTw images acquired at multiple echo times (TE) were extrapolated to TE=0 to 212 

increase signal-to-noise ratio and remove the otherwise remaining R2* bias [10, 24, 57]. The 213 

TE=0 extrapolated MTw, PDw and T1w images were used to calculate MT saturation, R1 and 214 

apparent signal amplitude A* maps. PD map was derived from A* map, which is proportional 215 

to proton density. All quantitative maps were corrected for inhomogeneities from local RF 216 

transmit field (B1+), and R1 quantitative maps were further corrected for imperfect RF spoiling 217 

using the strategy of Preibisch and Deichmann [58]. The receive bias field map (B1-) was used 218 

to correct PD maps for instrumental biases. The R2* map was estimated from all three multi-219 

echo series (MTw, PDw and R1w) using the ESTATICS model [57].  220 

After generating quantitative maps using the hMRI toolbox for all sessions, spatial 221 

preprocessing involved the following steps (Figure 1): within-patient registration brought the 222 

two serial MR data sets into the individual T0 space, using the longitudinal registration tool 223 

from SPM [59]. For each individual patient, a preliminary WM lesion mask was generated 224 

based on FLAIR and T1w images by the lesion growth algorithm implemented in the LST 225 
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toolbox [56], followed by manual corrections by an MS expert (EL) to remove 226 

aberrant/artefactual lesion detections [24]. The images were then segmented using the USwL 227 

toolbox, which consists of an extended version of the traditional Unified Segmentation (US) 228 

algorithm [60] and includes an additional tissue class representing the WM lesion(s). The US-229 

with-lesion method internally generates a subject-specific extended set of tissue probability 230 

maps (TPM) [61]: an extra tissue class, based on the smoothed preliminary lesion mask warped 231 

into template space (using cost function masking during normalization [62]), is added to 232 

account for the lesion, and the original white matter prior map is updated accordingly [63]. 233 

The grey matter TPM was not updated due to a very low number of lesions present in the 234 

cortical ribbon. Multi-channel segmentation was conducted, using MTsat, PD, R1 and FLAIR 235 

images. This pipeline did not use the PD-, T1- and MT-weighted images acquired for the MPM 236 

maps construction, but the parametric maps themselves instead. In this way, voxels do not 237 

depict MR intensities but rather physical quantitative parameters. The method generated the 238 

segmented tissue classes (a posteriori tissue, including lesion, probability maps), as well as 239 

spatial warping into standard template space. The preliminary lesion mask was used as input 240 

for the first session data (at T0) then the a posteriori lesion map generated at this initial step 241 

served as prior to the subsequent session (at T1). 242 

Segmentation teased out the different tissue classes of interest: NAWM, NACGM and NADGM, 243 

as well as WM lesions. To analyze the microstructure within those tissue classes, a posteriori 244 

tissue maps were binarized and tissue-specific independent masks were constructed:  each 245 

voxel is assigned to one single tissue class with the highest probability for that voxel (provided 246 

that this probability was above 0.2). The lesion binary mask was further cleaned for lesions 247 

<10mm³ which likely resulted from segmentation errors. Finally, binarized tissue class masks 248 

were in turn applied on the MPM maps to extract voxel values inside them. 249 
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2.4 Brain volume change 250 

Volumetric changes were investigated using the USwL a posteriori tissue probability maps. The 251 

following measures of brain volume were computed for each session of each participant: (1) 252 

Total intra-cranial volume (TIV) = volume (NAWM + GM + CSF + lesions), (2) brain parenchymal 253 

fraction (BPF) = volume (NAWM + GM + lesions)/TIV, (3) Gray matter fraction (GMF) = volume 254 

(GM)/TIV, and (4) lesion fraction (LF) = volume (lesion)/TIV. The percentage of change 255 

between both scanning sessions was evaluated for each volumetric measurement, then 256 

annualized changes were computed by dividing these measures by scan intervals (in years). 257 

Results were directly analysed with a t-test (testing if significantly different from 0 at 𝑝 <  .05), 258 

but also in the same way as the normal appearing tissues MR parameters in relation to the 259 

patients’ clinical status (see next section). 260 

 2.5 Analysis of normal appearing tissues  261 

The median value of quantitative MRI parameters was extracted from the three normal 262 

appearing tissues (NAWM, NACGM and NADGM), and an individual annual rate of change 263 

(ARoC) was computed for each parameter in each tissue class, based on the initial and final 264 

values and accounting for the time interval (in years) between scans. This rate of change in 265 

qMRI parameters served as dependent variable in a general linear model testing the effect of 266 

clinical status: 267 

𝑌 =  𝛽0 + 𝛽1𝑋𝑠𝑡𝑎𝑡𝑢𝑠 + 𝜖 268 

 269 

𝑌 is the ARoC for a qMRI parameter and tissue class, 𝛽’s are the regression parameters 270 

corresponding to the associated regressor (with 𝛽0 the intercept), and 𝜖 the residuals.  𝑋𝑠𝑡𝑎𝑡𝑢𝑠   271 

is a binary categorical variable representing the patient’s disease activity status: a status score 272 

of 1 was assigned to patients stable or improving from T0 to T1.  273 
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This patient status 𝑋𝑠𝑡𝑎𝑡𝑢𝑠 was derived from one score of disease activity: NEDA-3 (No 274 

Evidence of Disease Activity [64]), a composite of three related measures of disease activity. 275 

A score of 0 was assigned in the presence of new clinical relapses (only concerning RRMS 276 

patients) and/or MRI activity (new or enlarged lesions visible on FLAIR T2 or Gadolinium-277 

enhanced images) and/or sustained disability progression over six months based on Expanded 278 

Disability Status Scale (EDSS). For both RRMS and PMS patients, disability progression was 279 

defined as a 1.0-point increase if the EDSS score was  4.0 at baseline and as a 0.5 point 280 

increased if the baseline EDSS score was > 4.0. The threshold of 4.0 was proposed in this study 281 

because it is considered as a milestone regarding ambulatory performance.  282 

NEDA-3 and was evaluated at mid- and end-scanning interval, and a final status score of 0 was 283 

given only to patients for which disease activity or progression was noted in both cases, 284 

indicating a clear progression of the disease over the whole interscan interval. 285 

The influence of several clinical measurements such as 25 FWT, 9HPT and SDMT was also 286 

considered to refine the evaluation of disease activity. However complete data were lacking 287 

for several patients. Moreover, when available, these additional clinical parameters did not 288 

modify the final  𝑋𝑠𝑡𝑎𝑡𝑢𝑠. Longitudinal clinical information allowing to derive the disease 289 

activity status for each subject appears in Table 2. Additional clinical information concerning 290 

annual relapse rate and treatment administration appears in Supplementary material. 291 

Permutation tests were employed for inferences [65].  R-squared value was tested against 292 

computed statistics after permutation of the data. For a number n of permutations, the 293 

𝑋𝑠𝑡𝑎𝑡𝑢𝑠 values were randomly shuffled (constructing a new regressor written 𝑋𝑠𝑡𝑎𝑡𝑢𝑠
𝜋 ), tested 294 

against the unchanged response 𝑌, and generating each time a permuted R-squared value 295 

(noted 𝑅𝜋, 𝑅𝑜𝑏𝑠 being the true R-squared value computed without permutation of the data). 296 
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The condition 𝑋𝑠𝑡𝑎𝑡𝑢𝑠  ≠ 𝑋𝑠𝑡𝑎𝑡𝑢𝑠
𝜋  is verified at each permutation. After n permutations (with n 297 

= 5000 in this study), a p-value was computed based on the following formula: 298 

𝑝 =  
#(𝑅𝜋 > 𝑅𝑜𝑏𝑠) 

𝑛 + 1
 299 

which estimates the probability of obtaining 𝑅𝑜𝑏𝑠 under the null hypothesis that Y is not 300 

correlated to 𝑋𝑠𝑡𝑎𝑡𝑢𝑠. The null hypothesis is rejected if 𝑝 <  .05 FDR-corrected for multiple 301 

comparisons [66], for the 12 tests performed (3 tissue classes with 4 qMRI parameters). 302 

Two-tailed t-tests were applied post-hoc on the significant results of permutation tests to 303 

compare the ARoC distribution between disease status, i.e., 𝑋𝑠𝑡𝑎𝑡𝑢𝑠 = 0 against 𝑋𝑠𝑡𝑎𝑡𝑢𝑠 = 1. 304 

Inferences were conducted at a significance level of .05. 305 

The same pipeline was applied to the brain volumetric changes (BPF, GMF and LF) to test their 306 

correlation to the disease activity status. 307 

 2.6 Analysis of lesions and peripheral tissues  308 

For white matter lesions analysis, we did not use ARoC but exploited directly the qMRI 309 

parameters voxel values. Importantly, with USwL segmentation, the prior lesion mask is only 310 

used in a probabilistic way and the estimated posterior lesion map, obtained using MTsat, PD, 311 

R1 and FLAIR images, typically showed more extended lesion than clinically visible on the 312 

FLAIR image alone. Therefore, we separated focal lesions detected on FLAIR images, with LST 313 

segmentation and visual inspection, from their peripheral regions detected on qMRI maps. 314 

Two different peripheral regions were considered: one for each time point (T0 and T1). 315 

Therefore, at T0, three distinct lesion-related regions were isolated:  316 

 The lesions, as clinically defined, pertaining to hyperintensity on the conventional FLAIR 317 

MR image acquired at T0. These are referred to as ‘focal FLAIR lesion’. 318 

 The peripheral region detected on qMRI maps at T0, at the borders of (but not including) 319 

the focal FLAIR lesion. Those are referred to as ‘initial peripheral lesion’. 320 
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 The peripheral region, detected on qMRI maps at follow up, bordering (but not including) 321 

the initial peripheral lesion, further referred to as ‘later peripheral lesion’. This was 322 

computed by masking out the T1 lesion mask with the T0 lesion mask. This region allows 323 

us to determine whether its microstructure at T0 forebodes a full-blown plaque, 324 

detectable during follow up. Those sometimes appear hyperintense on FLAIR images. 325 

The three areas were compared between each other and with NAWM, in order to characterize 326 

them on a microstructural basis (Figure 2). For an accurate lesion-by-lesion analysis, only 327 

enlarging lesions, i.e., present in the three masks, were considered for these comparisons. 328 

NAWM region consisted of all white matter voxels which did not belong to any of the three 329 

lesion-related regions. The four areas are not overlapping as no voxel could belong to more 330 

than one class at the same time. 331 

For all participants, MTsat, PD, R1 and R2* median values were extracted from each lesion 332 

area, considering lesions individually (between 2 and 66 measurements per subject). Similarly, 333 

the median qMRI values within NAWM were also extracted (one measurement per subject). 334 

These values were extracted from T0 and T1 scans separately. Statistical analyses were 335 

performed in SAS 9.4 (SAS Institute, Cary, NC). None of the qMRI parameter was normally 336 

distributed, therefore we applied a log transformation on each of them prior to statistical 337 

analysis. For each qMRI parameter, a separate Generalized Linear Mixed Model (GLMM) 338 

tested the effect of areas (NAWM and the three lesion-related areas), and time points (T0 and 339 

T1), as well as their interaction (i.e., area*time), on the median qMRI parameter value, with a 340 

first-order autoregressive variance/covariance model and participants as a random factor 341 

(intercept). The degrees of freedom were estimated using Kenward-Roger’s method. 342 

Statistical significance was estimated at 𝑝 <  .05 after adjustment for multiple comparison 343 

using Tukey’s procedure.  344 
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3. Results 345 

 3.1 Volume changes 346 

Brain parenchymal fraction (BPF) annually decreased between T0 and T1 by -0.67 ± 1.12% 347 

(significantly different from zero; paired-sample t-tests; 𝑡(16) = 2.57; 𝑝 =  .0204) whereas 348 

lesion fraction (LF) increased by 22.88 ± 26.13% (𝑡(16) =  −3.70; 𝑝 =  .0019). GM fraction 349 

(GMF) non-significantly decreased by -0.30 ± 1.44%.  350 

 3.2 Analysis of normal appearing tissues  351 

As expected, changes in MTsat and R2* within normal appearing brain tissues (NABT) between 352 

T0 and T1 varied across subjects (Figure 3). PD and R1 exhibited similar behaviors, see 353 

Supplementary data.  354 

At the group level, with the regression analysis and permutation inference, we observed that 355 

the annual rate of change (ARoC) of MTsat and R2* positively regressed with disease status as 356 

follows (Table 3):  MTsat in NAWM and NACGM and R2* in NAWM significantly increased in 357 

patients who fare well (𝑋𝑠𝑡𝑎𝑡𝑢𝑠 = 1).  358 

Post-hoc t-tests applied on these significant results for a clearer illustration of the difference 359 

in disease status (Figure 4) were all significant at a level of .05. 360 

Regarding BPF and LF, their correlation to the disease activity status was not significant (Table 361 

3), suggesting that qMRI parameters are more sensitive to subtle microstructural changes in 362 

normal appearing tissues over time than global morphological measurements 363 

 3.3 Analysis of lesion microstructure  364 

The number of enlarging WM lesions between T0 and T1 varied from 2 to 66 across patients, 365 

for a total of 741 identified enlarging lesions among all subject, corresponding on average 366 

among patients to 63% (31%) of the amount of initial focal lesions. The number of enlarging 367 
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lesions did not significantly differ between patients’ disease status groups (𝑡(15) = .244, 𝑝 =368 

.811).  369 

GLMMs found a significant effect of areas (3 lesion regions and NAWM) for MTsat, R1, R2* 370 

and PD median (MTsat: 𝐹3 = 35.34, 𝑝 <  .0001, PD: 𝐹3 = 68.03, 𝑝 <  .0001, R1: 𝐹3 =371 

40.26, 𝑝 <  .0001, R2*: 𝐹3 = 32.32, 𝑝 <  .0001). By contrast, neither time effect (T0 vs T1; 372 

MTsat: 𝐹3 = 0.36, 𝑝 = .5481, PD: 𝐹3 = 1.20, 𝑝 = .2735, R1: 𝐹3 = 2.05 , 𝑝 =  .1520, R2*: 373 

𝐹3 = 2.86, 𝑝 =  .0911), nor the area*time interaction (MTsat: 𝐹3 = 0.09, 𝑝 =  .9671, PD: 374 

𝐹3 = 0.14, 𝑝 =  .9346, R1: 𝐹3 = 0.14, 𝑝 =  .9331, R2*: 𝐹3 = 0.40, 𝑝 =  .7565) were 375 

significant, suggesting the microstructural stability of the initial lesion core. Post-hoc tests 376 

confirmed significant differences between the four tissue areas. 377 

At times T0 and T1, MTsat, R1 and R2* values were significantly larger in the initial peripheral 378 

lesion than FLAIR lesion, in the later peripheral lesion than the initial one, and in the NAWM 379 

than later peripheral lesion. The reverse was observed for PD. The significant difference in 380 

parameters between initial and later peripheral lesion at T0 suggests that subtle 381 

microstructural changes appear in the periphery of the initial lesion, months before their 382 

detection as focal FLAIR lesions at T1. Adjusted p-values appear in Figure 5. Detailed statistical 383 

results of the GLMM’s appear in Supplementary data.   384 

4. Discussion 385 

This longitudinal study followed up volumetric data and qMRI brain metrics (MTsat, PD, R1, 386 

R2*) in 17 patients with multiple sclerosis for a median time interval of 30 months. The main 387 

results are threefold. First, the microstructure of normal appearing brain tissues changes over 388 

time and these modifications concur with, and potentially drive, clinical evolution. This critical 389 

finding suggests that repair mechanism and edema resorption can be monitored in vivo. 390 

Second, the microstructure within WM plaques is remarkably heterogeneous. Importantly, at 391 
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their periphery, microstructural alterations foreshadow their expansion, as detected by 392 

conventional MRI. Third, as expected, we observed a small but significant brain atrophy and 393 

lesion load increase with time.  394 

Quantitative MRI parameter time course within NABT 395 

In this study, we used a multiparameter mapping protocol that was gradually optimized and 396 

validated for multi-centric studies [67]. It provides high-resolution maps of multiple qMRI 397 

parameters from data acquired during a single scanning session of acceptable duration. A 398 

number of cross-sectional studies using a combination of MT, R1, R2* or PD parameters 399 

reported significant changes in the microstructure of NABT in MS [24-32]. By contrast, 400 

longitudinal analyses of multiparameter qMRI data are scarce. A progressive shortening of 401 

T2/T2* [68] or increase in R2* [33-35] was reported within the basal ganglia, suggesting 402 

increased of myelin and/or iron contents as well as edema resorption. Likewise, PD and T1 403 

increased within a year, suggesting a demyelination and/or axonal loss [36]. MTR progressively 404 

decreases in NAWM of MS patients over one [37] or two years [38]. These abnormalities tend 405 

to be more pronounced in progressive phenotypes [69] and were associated to a slow, diffuse 406 

and global myelin pathology.  407 

Here, we showed that MTsat within NAWM and NACGM and R2* values within NAWM 408 

increase in clinically stable or improving patients. Because MTsat and R2* both correlate with 409 

myelin content [11, 47, 70-73], our results suggest repair mechanisms within NABT of patients 410 

who are responding to disease modifying treatments, despite the initial myelin/axonal loss 411 

and independently from WM focal lesion evolution. Such increases could also be explained by 412 

an edema/inflammation resorption, but less likely than myelin/axonal density changes since 413 

MTsat is the least dependent to water content among the four qMRI parameters. These 414 

results echo cross-sectional analyses showing that healthy controls (HC) have higher MTsat 415 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.01.26.22269806doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.26.22269806
http://creativecommons.org/licenses/by/4.0/


and R2* values within the same tissue classes compared to MS patients [24].  Annual rates of 416 

change of R1 and PD within NABT were not significantly associated with the individual clinical 417 

status in this study, although R1 reduction within NABT has already been reported in cross 418 

sectional [24, 29, 30] and longitudinal [36] studies comparing MS subjects to HC. 419 

Lesion microstructure 420 

Focal inflammatory demyelinating lesions have been extensively characterized and are 421 

traditionally classified as active, chronic active (smoldering) or inactive plaques according to 422 

the presence and distribution of plaque-infiltrating macrophages/microglia [74-76]]. Focal 423 

WM pathology is a constantly evolving process including episodes of demyelination and 424 

remyelination but also accumulation of irreversible axonal damage. Age, disease duration, 425 

clinical phenotype as well as disease modifying treatment all contribute to the dynamic nature 426 

of focal WM pathology [75, 77]. This accounts for the large inter- and intra-individual 427 

heterogeneity of MS, which conventional MRI is largely unable to capture. By contrast, 428 

quantitative MRI parameters are sensitive to myelin, axonal as well as iron contents and 429 

appear as promising markers of plaque dynamics.  For instance, MTR was shown to sharply 430 

decrease within gadolinium enhancing lesions before recovering during the subsequent 431 

months [39-41]. Likewise, reduction of MTR within NAWM, days to weeks before the 432 

formation of a new active lesion was also demonstrated [42, 43], and long-term MTR changes 433 

in WM plaques were observed in relation with disease progression [69, 78]. The present study 434 

broadens the quantitative characterization of plaque dynamics, in keeping with previous 435 

longitudinal studies [68, 79]. Two important findings emerge from the results. First, qMRI 436 

refines lesion segmentation, as compared to the processing based on the sole FLAIR image. In 437 

consequence, the initial lesion revealed by qMRI is typically wider that the plaque detected in 438 

FLAIR. Its periphery is characterized by a decrease in MTsat and R2* as compared to NAWM, 439 
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suggesting an incipient demyelination, reminiscent of the so-called ‘periplaques’ [80]. 440 

Moreover, MTsat, R2* and R1 values progressively decrease from NAWM to plaque core, 441 

suggesting a centripetal loss of myelin content. Second, plaque microstructure is altered in 442 

plaque periphery before any observable change in conventional MRI signals. This finding 443 

suggests, in keeping with neuropathological observations [75, 77, 81, 82] that subclinical 444 

ongoing inflammation and/or demyelination takes place in the periphery of an active plaque, 445 

well before it is detectable on FLAIR or T1 post-gadolinium sequences. If confirmed on larger 446 

population samples, this finding might significantly modify treatment management in MS 447 

patients. 448 

Another plausible hypothesis explaining the progressive decrease of R2* in initial and later 449 

peripheral regions is that iron-containing macrophages could be removing iron from the 450 

lesions through perivascular drainage into the extracellular compartment. Previous 451 

neuropathological studies have reported an iron loss at the edges of a subset of MS lesions, 452 

depending on their type (active, inactive, smoldering, etc.) as well as the patient’s age and 453 

disease duration [83, 84]. Due to the limited sensitivity of R2* to local iron concentration as 454 

compared, for example, to the combined use of R2* and quantitative susceptibility mapping 455 

(QSM) [18], validating this theory would require additional measures which can better 456 

describe iron dynamics in MS lesions and NAWM. 457 

Volumetric Data 458 

CNS atrophy occurs in all stages of MS, since the preclinical phase of the disease and 459 

progresses throughout its course, at a much higher rate than one reported in normal aging 460 

[85-88]. In this study, the annual brain percentage volume loss at the group level was 0.67%, 461 

which is in line with previous publications [89]. We also showed a significant increase in lesion 462 

fraction. Volumetric data (ARoC’s) were highly variable across subjects: changes in BPF range 463 
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from -2.52 to 1.17% and LF from -0.78 to 103.06%. This variability arises from a large number 464 

of factors which do not necessarily relate to MS: age, disease duration, disease phenotype, 465 

disease modifying treatment, circadian rhythm, hydration… [87, 88]. 466 

Moreover, annual changes in brain parenchymal fraction as well as lesion fraction only 467 

partially correlated to patients’ disease status, in accordance with a large amount of 468 

publications [36, 90]. This highlights the lack of specificity and sensitivity of volumetric 469 

measurements, at least at the individual level.  470 

It can appear odd that brain atrophy progresses in parallel to repair mechanisms, as suggested 471 

by qMRI parameters. However, BPF reduction is minimal, and is not significant (see Table 3) 472 

between T0 and T1. One should keep in mind that cortical atrophy is an irreversible 473 

phenomenon. Given the inter- and intra-individual heterogeneity of MS progression, it is 474 

possible that patients who have undergone neuron- axonal loss at some point in the disease 475 

might be able to remyelinize their remaining axons, hopefully through therapeutic 476 

intervention or lifestyle changes. Besides, axonal remyelination is not always effective. Here 477 

we showed that variations in MTsat and R2* correlated to the disease activity status, but our 478 

clinical evaluation based on EDSS is undoubtedly imprecise. Once again, the size and 479 

heterogeneity of our cohort limits the interpretation of such results. 480 

Study limitation 481 

As mentioned here above, the small size and heterogeneous aspect of the present dataset 482 

constitute major limitations of this study. Indeed, it is composed of only 17 patients, with a 483 

rather broad range of characteristics such as age, disease duration, disease phenotype, 484 

disease modifying treatment, etc., which are known to influence the disability state of the 485 

patient and thus their ability to put together repair mechanisms within cerebral tissues [1, 75-486 

77, 91, 92]. In addition, the time interval between two scanning sessions varied rather widely 487 
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across patients (between 14 and 61 months), although it was brought back to an annual rate 488 

where possible. All of these parameters were imposed by standard clinical follow up. 489 

Therefore, these results should not be over-interpreted but are nevertheless promising and 490 

call for a replication with a larger and more homogeneous or controlled set of MS patients. 491 

Larger longitudinal studies are currently being held and will probably confirm these 492 

preliminary results. 493 

A second limitation is the absence of longitudinal MRI data acquired in a control group of 494 

healthy subjects. However, we considered that literature of longitudinal studies of healthy 495 

subjects that analysed tissue microstructure could constitute a solution for comparison with 496 

MS patients. For example, in Bonnier et al. (2017) [68], the control group did not show any 497 

significant differences regarding T1, T2* or MTR measurements over two years, and the 498 

median age of their group is quite similar to ours (34,3 vs 36 years). Also, in Elkady et al. (2018) 499 

[33], they found no longitudinal R2* effect in their control groups, even with an age range 500 

superior to ours.  Moreover, the median age of our population (< 60 years), as well as the 501 

short period between two scanning sessions (median of 14 months), suggests that 502 

microstructural alterations would not be noticeable in a healthy participants group, as many 503 

quantitative ageing studies detected differences over much larger time periods [44, 70, 93]. 504 

5. Conclusion 505 

These preliminary results highlight the relevance of multiple qMRI data in the monitoring of 506 

MS disease, highlighting subtle changes within NABT and plaque dynamics in relation with 507 

repair or disease progression. Of course, large scale longitudinal study would be needed to 508 

reproduce these findings and better exploit the full potential of qMRI parameters.  509 

  510 
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Tables 975 

 All Patients (n = 17) 

Age, y, median (range) 36 (25-65) 

Sex, F/M 7/10 

MS phenotype (RRMS/MS) 11/6 

Baseline disease duration, y, median (range) 3.4 (0.3-28) 

Baseline EDSS, median (range) 2.5 (1-6.5) 

Baseline number of relapses, median (range) RRMS: 2 (1-5) PMS: N/A 

Disease-modifying treatment 

RRMS: 

First line, n: 5 

Second line, n: 6 

PMS: 

Ocrelizumab, n: 2 

None, n: 4 

 976 

Table 1: Demographic data of the study sample 977 

  978 
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 979 

 
EDSS 

T0 
EDSS 
T1/2 

New 
lesion 
T1/2 

Relapse 
T1/2 

NEDA 
T1/2 

EDSS 
T1 

New 
lesion 

T1 

Relapse 
T1 

NEDA 
T1 

Time 
period 
T0-T1 

Score 

sub-001 2 2 None None YES 2 None None YES 30 1 

sub-002 1.5 1.5 None None YES 1.5 None None YES 27 1 

sub-003 2 2 None None YES 2 None None YES 27 1 

sub-004 3 3 None None YES 3.5 None None YES 25 1 

sub-005 1 1 None None YES 1 None None YES 24 1 

sub-006 1.5 1.5 None None YES 1.5 None None YES 24 1 

sub-007 2 2 None None YES 2 None None YES 22 1 

sub-008 3.5 4.5 None N/A NO 5 None N/A NO 51 0 

sub-009 2 2.5 None None YES 2.5 None None YES 57 1 

sub-010 6 6 Yes N/A NO  6.5 None None NO 14 0 

sub-011 6 6 None N/A YES 6.5 None N/A NO 14 1 

sub-012 1 1.5 None None YES 1.5 None None YES 55 1 

sub-013 5.5 6 None N/A NO 6.5 None N/A NO 60 0 

sub-014 2.5 3.5 Yes Yes NO 3 None None YES 57 1 

sub-015 4 4.5 None N/A NO 5 None N/A NO 51 0 

sub-016 5 4.5 Yes N/A NO 4.5 None N/A YES 61 1 

sub-017 2 3 Yes Yes NO 3 Yes Yes NO 56 0 
 980 
Table 2: Longitudinal clinical information and derived disease status score. The time period 981 

between T0 and T1 is expressed in months. 982 

 983 

 984 

Table 3: Regression coefficients and their associated p-values (in parentheses) for the 985 

effects of 𝑋𝑠𝑡𝑎𝑡𝑢𝑠 on the individual ARoC for each qMRI parameter (MTsat, PD, R1 and 986 

R2*) and for volumetric measurements (BPF and LF). 987 

* Results significant at 𝑝 <  .05, FDR corrected. 988 

 NAWM NACGM NADGM 

MTsat 0.039 (.011)* 0.017 (.007)* 0.004 (.749) 

PD -0.018 (.670) 0.405 (.225) 0.250 (.552) 

R1 0.009 (.139) 0.004 (.471) 0.010 (.111) 

R2* 0.295 (.002)* 0.121 (.092) 0.066 (.770) 

BPF -0.884 (.1562) 

LF 21.23 (.1082) 
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 989 

Legends of figures 990 

 991 

Figure 1: Chartflow of data creation and processing (see text). MPM maps were created with 992 

the hMRI-toolbox, FLAIR images were directly acquired for both sessions (T0 and T1). A 993 

preliminary mask was constructed based on T0 FLAIR. All images (MPM and FLAIR, T0 and 994 

T1) were co-registered to the MPM T0 space. Segmentation using USwL allowed to isolate 995 

the different tissue classes. 996 

 997 

Figure 2: Schematic illustration of the NAWM and 3 lesions-related areas: focal FLAIR lesion 998 

(dark gray area), initial peripheral lesion detected at T0 (medium gray area), later peripheral 999 

lesion detected at T1 (dashed, left, and light gray, right, area). 1000 

 1001 

Figure 3: Line plots illustrating individual ARoC’s for MTsat (left) and R2* (right) in NAWM. 1002 

Each line corresponds to one subject. Dotted lines represent increasing rates. 1003 

 1004 

Figure 4: Violin plots of significant change rates in microstructure with respect to 𝑋𝑠𝑡𝑎𝑡𝑢𝑠. 1005 

From left to right: MTsat in NAWM, MTsat in NACGM, R2* in NAWM. * 𝑃 <  .05. 1006 

 1007 

Figure 5: Microstructural parameters in NAWM and the 3 lesion-related areas, for each scanning time 1008 

T0 and T1. P-values were obtained with post-hoc tests on the tissue area effect. *  𝑃 < .05. 1009 

 1010 

  1011 
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Appendix A: Supplementary data legends 1012 

Supplementary data 1: Multi-echo 3D FLASH acquisition parameters for Siemens Magnetom 1013 

PRISMA MRI 1014 

 1015 

Supplementary data 2: Extended demographic data. Age, disease duration, EDSS and 1016 

relapses values were taken at baseline. 1017 

 1018 

Supplementary data 3: Additional follow-up clinical data for each subject. 1019 

 1020 

Supplementary data 4: Line plots illustrating individual ARoC’s for PD (left) and R1 (right) in 1021 

NAWM. Each line corresponds to one subject. Dotted lines represent increasing rates. 1022 

 1023 

Supplementary data 5:  Differences of lesion class Least Squares Means. First two columns 1024 

correspond to tissue class labels (0 = NAWM, 1 = Later peripheral lesion, 2 = Initial peripheral 1025 

lesion, 3 = FLAIR lesion). 1026 

 1027 

 1028 

 1029 
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Figure 1: Chartflow of data creation and processing (see text). MPM maps were 

created with the hMRI-toolbox, FLAIR images were directly acquired for both sessions 

(T0 and T1). A preliminary mask was constructed based on T0 FLAIR. All images (MPM 

and FLAIR, T0 and T1) were co-registered to the MPM T0 space. Segmentation using 

USwL allowed to isolate the different tissue classes. 
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Figure 2: Schematic illustration of the NAWM and 3 lesions-related areas: focal 

FLAIR lesion (dark gray area), initial peripheral lesion detected at T0 (medium 

gray area), later peripheral lesion detected at T1 (dashed, left, and light gray, 

right, area) 
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Figure 3: Line plots illustrating individual ARoC’s for MTsat (left) and R2* (right) in NAWM. 

Each line corresponds to one subject. Dotted lines represent increasing rates. 
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Figure 4: Violin plots of significant change rates in microstructure with respect to 𝑋𝑠𝑡𝑎𝑡𝑢𝑠. 

From left to right: MTsat in NAWM, MTsat in NACGM, R2* in NAWM. * 𝑃 <  .05. 
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Figure 5: Microstructural parameters in NAWM and the 3 lesion-related areas, 

for each scanning time T0 and T1. P-values were obtained with post-hoc tests on 

the tissue area effect. *  𝑃 < .05. 
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