
Population-based sequencing of  Mycobacterium tuberculosis reveals how

current population dynamics are shaped by past epidemics

Irving  Cancino-Muñoz1,*,  Mariana  G.  López1,*,↟,  Manuela  Torres-Puente1,  Luis  M.

Villamayor2,  Rafael  Borrás3,  María  Borrás-Máñez4,  Montserrat  Bosque5,  Juan  J.

Camarena6, Caroline Colijn7, Ester Colomer-Roig2,6, Javier Colomina3, Isabel Escribano8,

Oscar Esparcia-Rodríguez9,  Francisco García-García10,  Ana Gil-Brusola11,  Concepción

Gimeno12,  Adelina  Gimeno-Gascón13,  Bárbara  Gomila-Sard14,  Daminana  González-

Granda15, Nieves Gonzalo-Jiménez16, María Remedio Guna-Serrano12, José Luis López-

Hontangas11, Coral Martín-González17, Rosario Moreno-Muñoz14, David Navarro3, María

Navarro18,  Nieves  Orta19,  Elvira  Pérez20,  Josep Prat21,  Juan Carlos  Rodríguez13,  Ma.

Montserrat  Ruiz-García16,  Hermelinda  Vanaclocha20,  Valencia  Region  Tuberculosis

Working Group, Iñaki Comas1,22,↟

1Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), 46010

Valencia, Spain
2Unidad Mixta “Infección y Salud Pública” (FISABIO-CSISP), 46020 Valencia, Spain
3Microbiology Service, Hospital Clínico Universitario, 46010 Valencia, Spain 
4Microbiology  and  Parasitology  Service,  Hospital  Universitario  de  La  Ribera,  46600

Alzira, Spain 
5Microbiology Service, Hospital Arnau de Vilanova, 46015 Valencia, Spain 
6Microbiology Service, Hospital Universitario Dr. Peset, 46017 Valencia, Spain 
7Department of Mathematics, Faculty of Science, Simon Fraser University, V5A 1S6 BC,

Canada
8Microbiology Laboratory, Hospital Virgen de los Lirios, 03804 Alcoy, Spain
9Microbiology Service, Hospital de Denia, 03700 Denia, Spain 
10Bioinformatics and Biostatistics Unit, Centro de Investigaciones Príncipe Felipe, 46012

Valencia, Spain
11Microbiology Service, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain 
12Microbiology  Service,  Hospital  General  Universitario  de  Valencia,  46014  Valencia,

Spain 
13Microbiology Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.22269736doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.01.24.22269736
http://creativecommons.org/licenses/by/4.0/


14Microbiology  Service,  Hospital  General  Universitario  de Castellón,  12004 Castellón,

Spain
15Microbiology Service, Hospital Lluís Alcanyis, 46800 Xativa, Spain
16Microbiology Service, Hospital General Universitario de Elche, 03203 Elche, Spain
17Microbiology Service, Hospital Universitario de San Juan de Alicante, 03550 Alicante,

Spain
18Microbiology Service, Hospital de la Vega Baixa, 03314 Orihuela, Spain 
19Microbiology Service, Hospital San Francesc de Borja, 46702 Gandía, Spain
20Subdirección General de Epidemiología y Vigilancia de la Salud y Sanidad Ambiental

de Valencia (DGSP), 46020 Valencia, Spain
21Microbiology Service, Hospital de Sagunto, 46520 Sagunto, Spain 
22CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain 

*I. C-M and M.G.L contributed equally to this work

↟corresponding authors: 

Mariana Gabriela López. Instituto de Biomedicina de Valencia, Calle Jaume Roig 11,

46010,  Valencia,  Spain.  (+34)  96  339  17  60.  Email:  mglopez@ibv.csic.es,

mglopez76@gmail

Iñaki  Comas.  Instituto  de  Biomedicina  de  Valencia,  Calle  Jaume  Roig  11,  46010,

Valencia, Spain. (+34) 96 339 17 60. Email: icomas@ibv.csic.es

Valencia Region Tuberculosis Working Group

14Manuel Belda-Álvarez, 
14Aurora Blasco,  
13Avelina Chinchilla-Rodríguez, 
3Ma. Angeles Clari, 
4Olalla Martínez-Macías, 
13Rafael Medina-González, 
14Fernando Mora-Remón,

2

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.22269736doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269736
http://creativecommons.org/licenses/by/4.0/


Keywords: Tuberculosis, transmission, genomic epidemiology, whole-genome 

sequencing

This PDF file includes:

Main Text

Figures 1 to 4

Tables 1

3

58

59

60

61

62

63

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.22269736doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269736
http://creativecommons.org/licenses/by/4.0/


Abstract 

Background.  Transmission  has  been  proposed  as  a  driver  of  tuberculosis  (TB)

epidemics in high-burden regions, with negligible impact in low-burden areas. Genomic

epidemiology can greatly help to quantify transmission in different settings but the lack of

whole genome sequencing population-based studies has hampered its use to compare

transmission dynamics and contribution across settings.

Methods. We  generated  an  additional  population-based  sequencing  dataset  from

Valencia Region, a low burden setting, and compared it  with available datasets from

different  TB settings  to reveal  heterogeneity  of  transmission dynamics and its public

health implications. We sequenced the whole genome of 785 M. tuberculosis strains and

linked  genomes  to  patient  epidemiological  data.  We  applied  a  pairwise  distance

clustering approach and phylodynamics methods to characterize transmission events

over the last 150 years, in Valencia, Spain (low burden), Oxfordshire, United Kingdom

(low burden) and a high-burden (Karonga, Malawi).

Results.  Our results revealed high local transmission in the Valencia Region (47.4%

clustering),  in  contrast  to  Oxfordshire (27% clustering),  and similar  to  a high-burden

setting like Malawi (49.8% clustering). By modelling times of the transmission events, we

observed  that  settings  with  high  transmission  are  associated  with  uninterrupted

transmission of strains over decades, irrespective of burden. 

Conclusions. Our results underscore significant differences in transmission between TB

settings  even with  similar  burdens,  reveal  the role  of  past  epidemic  in  on-going  TB

epidemic and highlight the need for in-depth characterization of transmission dynamics

and specifically-tailored TB control strategies.
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Main Text

Introduction

Tuberculosis (TB) is one of the top 10 most deadly infectious diseases according to the

World Health Organization (WHO). In 2019 were reported 10 million new TB cases and

1.4 million deaths, with these numbers likely to increase due to the COVID-19 pandemic

(Glaziou,  2020).  Recognizing  heterogeneity  across  settings  in  the  population-level

dynamics of tuberculosis is key to advance to new stages in local and global TB control

(Mathema et al., 2017).  Recent transmission significantly contributes to the global TB-

burden mostly in the high incidence regions and its control is imperative to achieve the

goal  of  the  End  TB  Strategy  (Guerra-Assunção  et  al.,  2015;  “The  transmission  of

Mycobacterium tuberculosis in high burden settings,” 2016). On the contrary, in many

countries close to the pre-elimination phase (<5/100,000 cases) ongoing transmission

plays a minor role and control strategies focused on latent TB infection (LTBI) mostly

from imported cases (Menzies et al., 2018). However, whether burden can be used as a

proxy of recent transmission is not clear and understanding transmission dynamics for

each country is key for tailor-made strategies. 

Measuring  transmission  is  still  challenging,  it  can  be  achieved  by  comparing  the

pathogen  genomes  of  culture  positive  cases  with  some  limitations,  for  example  all

transmission  cases  associated  with  LTBI  or  those  with  negative  culture  cannot  be

analyzed.  However,  it  allows  us  to  compare  transmission  clustering  rates  across

countries in  a standard way.  Whole-genome sequencing (WGS) represents a widely

applied tool in the study of TB epidemiology and transmission based on the pairwise

single nucleotide polymorphisms (SNPs) distance  (Gardy et al., 2011; “Whole-genome

sequencing  to  delineate  Mycobacterium  tuberculosis  outbreaks:  a  retrospective

observational study,” 2013). WGS displays higher resolution, provides accurate results
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tracking recent transmission  (“Aiming for zero tuberculosis transmission in low-burden

countries,” 2017, “Role and value of whole genome sequencing in studying tuberculosis

transmission,”  2019;  Jajou  et  al.,  2018;  Meehan  et  al.,  2019) and  reports  greater

agreement  with  epidemiological  results  (Nikolayevskyy  et  al.,  2016;  Roetzer  et  al.,

2013). Despite WGS reliability,  there exists controversy regarding the SNP threshold

employed to delineate genomic clusters. A cut-off of 5 SNPs has been widely accepted

for the clustering of recently linked cases (Meehan et al., 2019; “Role and value of whole

genome sequencing in studying tuberculosis transmission,” 2019) while an upper value

of 12 SNPs also incorporates older transmission events (“Whole-genome sequencing to

delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study,”

2013);  however,  the  extent  to  which  the  identification  of  those  cases  can  aid

epidemiological investigations remains controversial (Bjorn-Mortensen et al., 2016; Jajou

et al., 2018). It is also unclear the extent to which those cutoffs apply to all settings given

differences  in  social,  host  and  pathogen  factors  across  settings.  Even  if  universal,

understanding transmission dynamics goes beyond recent transmission events, which

have  an  actionable  value  for  public  health,  but  that  do  not  capture  the  long-term

dynamics in a population.

The lack of WGS studies at the population level represents the main limitation to the

validation of these thresholds across clinical settings and to understand the transmission

dynamics in different settings. Here we use available datasets from a low burden setting

(Oxfordshire, incidence 8.4 cases per 100,000) and from a high burden setting (Malawi,

incidence 87 cases per 100,000) and compare to a newly generated dataset.

Spain  is  a  low-incidence  country  (9.3/100,000)  where  the  contribution  of  recent

transmission  to  local  TB  burden  remains  largely  unknown.  We  applied  WGS  to

investigate the epidemiology and dynamics of TB transmission in the Valencia Region,
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the fourth most populated region of the country,  over three years, and evaluated the

general use of an SNP threshold in cluster definition in this particular setting. Compared

with similar population-based studies from locations with different TB burdens (Guerra-

Assunção et al., 2015; Walker et al., 2014), transmission in Valencia has a prominent

role in the current epidemics, with a genomic clustering rate higher than the other low-

burden and closer to high-burden settings. Furthermore, our results demonstrate that

current TB incidence in Valencia and Malawi mainly derives from sustained transmission

over time, with the majority of the linked cases currently observed coming from long-term

transmission chains established around 30 years ago.

Results

M. tuberculosis population structure and demographic characteristics in Valencia

Region

We sequenced  77% of the TB culture-positive cases reported between 2014-2016 in

Valencia  Region  (Supplemental  Table  1).  10  samples  were  removed  as  non-MTBC

isolates  or  likely  mixed  infections  (Supplemental  figure  1).  We  identified  6  different

lineages(L) circulating in the region  (Coll et al., 2014; Stucki et al., 2016), with L4 the

most frequent (92.1%) (Figure 1A). 

Characteristics of  TB cases are summarized in  Supplemental  Table  2,  reporting  the

sequenced  samples  as  a  representative  subset  of  the  total  culture-positive  cases.

Detailed  epidemiological  analysis  is  presented  in  Supplemental  Table  3,  remarkably

63% of  all  cases  were  Spanish-born  patients,  while  30% came from high-incidence

countries and 7% from other low-incidence countries. 14% of residents are foreign-born,

thereby  accounting  for  a  TB  incidence  of  23.6  vs.  6.9  cases  per  100,000  among

Spanish-born patients.  When observed risk factors,  we found that  12.4% of  patients
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suffered social exclusion, which was more prevalent among foreign-born patients (OR

3.1, CI 1.9-5.1, p<0.001). Diabetes was present in 10.4% of cases; although this was

more prevalent  in  Spanish-born patients  (OR 2.7,  CI  1.5-5.4,  p<0.001),  values were

similar to disease prevalence in the general population. 

Figure 1.  Genomic characterization of the study region.  A. Phylogeny of  775 TB isolates collected

during 2014-2016. Each ring represents genomic clusters detected by different SNP thresholds (0, 5, 10,

and 12 SNPs).  M.canneti was used as an outgroup.  B. Clustering percentage, i.e. percentage of samples

within clusters for different SNP thresholds. C. Number of genomic clusters by different cluster sizes. A 12-

SNP threshold was used as a standard. Cluster sizes of 8 to 11 samples were not detected. *Nomenclature

proposed by Comas et al. (Comas et al., 2013).

Epidemiological and genomic clustering

Classic  contact  tracing  identified  66  epidemiological  clusters,  including  97  cases,

accounting for 12.5% of transmission in the Valencia Region (Figure 1B). Spanish-born

and foreign-born patients equally formed part of an epidemiological cluster. Considering

a pairwise distance threshold of 12 SNPs, we identified 112 genomic clusters, including

331  (42.7%)  patients,  with  clusters  including  from  2  to  12  cases  (Figure  1C,
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Supplemental Table 4). Although these clusters included foreign-born patients, Spanish-

born patients were more likely part of genomically-linked groups (OR 2, CI 1.44-2.79,

p<0.001).  In  this  regard,  42  genomic  clusters  exclusively  comprised  Spanish-born

patients  and  8  included  only  foreign-born  patients.  Besides  Spanish  origin  and

pulmonary localization of TB (OR 2.5, CI 1.60-3.98, p<0.005), no social or risk factor

appeared associated with  transmission (Supplemental Table 3). In addition, 90% of TB

cases  in  Valencia  Region  are  susceptible  to  all  antibiotics  used  in  treatment,  so

resistance mutations do not have an impact in the clustering.

We also assessed genomic clusters considering different SNP thresholds, and observed

that  independently  of  the  cut-off  considered,  the  clustering  rate  obtained  by  contact

tracing was always lower than the genomic estimates (Figure 1B). A high number of

genomic  links  were  not  detected  by  epidemiological  inspection,  while  some

epidemiological links were not corroborated by any genomic clustering threshold (Figure

2A). Comparison of both approaches revealed that only 15.4% of the 331 patients within

genomic  clusters  (12  SNPs)  had  an  identified  epidemiological  link  (Supplemental

Results, Supplemental Table 5).

We benchmarked WGS as a tool to quantify transmission against contact tracing (Diel et

al., 2019), using the latter as the gold standard (Supplemental Table 6). In general, as

the  SNP  threshold  decreases,  sensitivity  diminishes,  but  specificity  and  accuracy

increase. By a ROC curve, we established 11.5 SNPs as the optimal value for the SNP

cut-off  that  maximizes  the  agreement  between  epidemiological  investigation  and

genomic data, and genomic clustering appears as an adequate approach to discriminate

transmission, as the area under the curve is higher than 0.9 (Figure 2B). Then, we used

12 SNPs threshold to define clusters in the following analyses.
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Figure  2.  Comparison  between  epidemiological  and  genomic  clustering.  A.  Clustered

samples using different pairwise distance thresholds, bars denote the number of cases within

clusters for each SNP threshold. Grey dashed line separates the genomically linked samples

(clustered) from those unlinked. B. ROC curve for different pairwise distance thresholds between

0 and 2,000 SNPs, indicating the optimal SNP cut-off values with its correspondent specificity and

sensitivity values, the area under the curve (AUC), and its confidence intervals.

Genetic thresholds for transmission are not universal across settings

We calculated the percentage of Spanish-born cases clustered by a range of pairwise

distances (0-150 SNPs) and compared with the clustering of local cases in other settings

(Guerra-Assunção  et  al.,  2015;  Walker  et  al.,  2014),  where  most  of  the  70% of  all

culture-positive cases were sequenced. We observed a bimodal pattern for Oxfordshire,

with the transmission groups clearly differentiated from the other unlinked cases with

distances higher than 50 SNPs. These findings agree with the 12-SNP value proposed

as a means to identify transmission in datasets from low-burden countries (Walker et al.,

2014). For the Valencia Region and Malawi, strains group in a large range of distance

thresholds  (SNPs  0-150).  Thus,  there  exists  a  continuous  clustering  throughout  the
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distance values. The results strongly suggest that a strict transmission threshold of 12

SNPs (or  any other  threshold)  does not  apply  to  all  settings,  particularly  those with

higher transmission burdens (Figure 3A) and particularly if we want to understand long-

term transmission dynamics. 
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Figure 3. Transmission dynamics analysis. A. Distribution of Spanish-born cases clustered by

different pairwise distance SNP thresholds. Cases are expressed as the percentage of the plotted

samples.  Pie  charts  represent  the proportion  of  Spanish-born (color)  and foreign-born (gray)

cases in each dataset.  B.  Age of local transmission events over time in each setting. Circles

represent  median  time,  and  lines  95%  high  probability  density  for  each  transmission  event

counted. Circle size represents the number of samples included in the corresponding event. Red

denotes those transmission events including only samples within the same genomic transmission

clusters  (gClusters),  green  denotes  events  involving  samples  from  different  gClusters,  blue

denotes samples within gClusters and unique, and purple denotes unique cases.

Age of local genomic clusters at different SNP thresholds and impact on public

health

Next, we evaluated how old are the genomic clusters identified by the standard 12 SNP

threshold. Thus, we inferred the age of the local genomic clusters (gClusters) for the

three settings. Dating results of the youngest and the oldest gClusters are summarized

in Table 1, while complete results are detailed in Supplemental Tables 7-9. We can trace

gClusters 31 years back from the most recent sample collected for both the Valencia

Region and Malawi; however, we only retrieved samples that formed part of gClusters,

19 years before the most recent Oxfordshire sample. The alternative calibration samples

included  (Supplemental  Methods)  displayed  similar  results,  thereby  allowing

comparisons among datasets. Thus many gClusters based on 12 SNP thresholds are

beyond the action of public health interventions. In fact, when looking at epidemiological

linked cases in the Valencia Region, most of them have a common ancestor less than

10 years before the most recent sample, and the distance between samples typically

ranged between 0-4 SNPs, with only one cluster separated by 11 SNPs (Supplemental

Table  5).  While  the  ROC  curve  indicated  a  12  SNP  threshold  to  capture  most
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epidemiological links the reality is that strains linked by more than 5 SNP are beyond the

action  of  public  health  interventions  as  they  involve  too  old  transmission  links.  Our

results imply that events useful for public health investigations are better captured by a 5

SNP threshold even though some epidemiological links are missing. But the reverse is

also true, and more dramatic. Even when using a 5 SNP threshold public health only

identifies around 15% of the cases in genomic clusters. This holds true even for pairs of

isolates with 0 SNP differences. As seen in high-burden countries, when transmission

has a prominent role, many transmission events occur outside the traditional household

or work settings.  

Table 1. Dating of local genomic clusters (gCluster). Times of the oldest and youngest local

gClusters obtained by a Bayesian analysis are presented, with values in years (AD) and 95%

highest posterior density given in brackets. The number of gClusters and clustering percentage is

provided for each dataset. The median distance ranges for all gClusters are also detailed.

   

Dataset
Sampling

period
Local

samples
N local

gCluster
Local

clustering
Median distance

range
Oldest gCluster

Youngest
gCluster

Oxfordshire 2006-2012 74 6 27% 0-7 1993 [1982-2003] 2009 [2003-2012]

Malawi 2008-2010 106 40 49.80% 0-14 1979 [1968-1988] 2009 [2004-2010]

Valencia
Region

2014-2016 456 65 47.40% 0-11 1985 [1972-1996] 2015 [2012-2016]

Transmission events over  time and between clinical  settings highlight  distinct

epidemic dynamics 

In order to evaluate transmission dynamics over time, we traced transmission events

back to 150 years before 2016 (yB 2016) by using genomic data from local-born patients
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to avoid the influence of imported genotypes. In the case of Oxfordshire, we identified 14

events between 5-25 yB 2016, with the next transmission event being inferred between

100-150 yB 2016 (Figure 3B, Supplemental figure 2, Supplemental Table 10). Thus, a

gap of 75 years occurs between the most recent and the oldest transmission events,

explaining why the 12 SNP threshold performs well  in this setting as a transmission

marker. However, even in this setting, genomic transmission clusters defined by a 12

SNP threshold can be traced back to up to 19 years (Table 1), which calls into question

whether  the  12  SNPs represent  recent  transmission  in  some cases.  In  the  case of

Malawi, we counted 70 events dating back 50 yB 2016 and 46 dated between 50-150 yB

2016  (Figure  3B,  Supplemental  figure  3,  Supplemental  Table  11).  For  the  Valencia

Region, we counted 143 events dated back 50 yB 2016 and 43 between 50-150 yB 2016

(Figure  3B,  Supplemental  figure  4,  Supplemental  Table  12).  The  gap  detected  in

Oxfordshire is not observed in Malawi or Valencia. 

The sampling of strains that shared a link decades ago in the Valencia Region can be

explained in two ways; that the uninterrupted transmission of those strains until today or

that the cases represent the progression of decades-old (latent) infections. We reasoned

that if old reactivations contribute to strains in the Valencia region sampled during 2014-

2016, we should see an increment in the age of the TB patients belonging to the older

clusters (i.e., patients infected 20 years ago and have reactivated recently). We found no

difference when comparing the age of  the patients  belonging to a gCluster  with the

inferred age of  the cluster,  (Welch two-samples t-test,  p-values > 0.1,  Supplemental

figure 5, Supplemental Table 13), suggesting that the strains included in this study do

not  represent  reactivations,  and  that  uninterrupted  transmission  is  the  most  likely

explanation for the old links observed. 

Discussion 
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Here, we present the first national population-based study in the Valencia Region. We

sequenced the whole genome of a representative proportion of all the TB notified cases

that  provides  an  accurate  picture  of  the  bacterial  population  structure,  during  three

years. We exhaustively researched TB transmission linked to local epidemiological data

and,  by  comparing  to  other  settings,  highlighted  four  main  characteristics  defining

dynamics and influence on TB incidence. 

(I)  Transmission can play a significant role in low-burden countries, especially among

local-born patients. The percentage of genomically-linked cases (12 SNPs) of around

43% increases to 47% among the Spanish-born population -being 31% among imported

cases-, suggesting that transmission among locally-born patients majorly contributes to

burden. Percentages remain high when considering a stricter threshold of 5 SNPs for

clustering (35% and 39%, respectively). We found higher transmission in the Valencia

Region when compared to other low-burden settings, where clustering ranged between

14-16% (Jajou et al., 2018; Walker et al., 2014) and somewhat closer to that reported in

high-burden TB countries (39-66%) (Guerra-Assunção et al., 2015; López et al., 2020).

While high transmission burden in Valencia is associated with higher disease incidence

in Spanish-born, reactivation of infections in imported cases from high-burden settings

seem  to  be  the  significant  drivers  in  other  low-burden  settings  (Jajou  et  al.,  2018;

Kamper-Jørgensen  et  al.,  2012;  Walker  et  al.,  2014).  Thus  our  results  highlight  the

heterogeneity of the TB epidemic even among countries with similar burden.

(II)  Community transmission majorly contributes to transmission burden. High genomic

clustering suggests that many infections occurred outside the traditional household or

work  environment.  In  high-burden  countries,  which  suffer  from  rampant  community

transmission (“The transmission of Mycobacterium tuberculosis in high burden settings,”
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2016), epidemiological links are only identified in 18% of all genomically-clustered cases

(Yang et al., 2018), a similar value to that observed in Valencia (15.4%), despite contact

tracing occurring in 78% of cases. In those settings, studies have suggested that contact

tracing among close contacts will  not  have a significant  effect  on TB incidence at  a

community  level  (McCreesh  and  White,  2018;  Surie  et  al.,  n.d.),  as  transmission

associates more with social drivers (Mathema et al., 2017). This likely explains the lack

of agreement between genomic and epidemiologic  clusters observed in the Valencia

Region (62%) compared to other low-burden settings(Diel et al.,  2019; Walker et al.,

2014).

(III)  Genomic links are older than epidemiological links.  The Valencia Region's oldest

genomic  clusters  dated  to  around  30  years  before  the  sampling  period.  When

considering only strains epidemiologically-linked, the oldest MRCA can be traced less

than 10 years. Thus, a 12 SNP threshold identifies both recent and older transmission

events. A 5 SNP threshold dates clusters between 1999-2015 in agreement with recent

transmission rendering more actionable  results  for  public  health.  However,  a 5 SNP

threshold still  misses a percentage of cases linked by epidemiological  data and vice

versa,  highlighting  transmission  complexity  and  the  relevance  of  understanding  its

dynamics in each setting.  Thus, a strict threshold has limitations and communicating a

range,  incorporating  degrees  of  confidence,  will  be  more  valuable  for  public  health

interventions. This is particularly true in settings where transmission still has a prominent

role.

(IV) Continuous pairwise genetic distance distributions reflect decades-old transmission

chains.  The evaluation of local-born cases in the Valencia Region revealed continuous

clustering across genetic distances,  similar  to Malawi.  In both settings,  differentiation
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between linked and unlinked cases seems arbitrary, as a clear SNP cut-off to delineate

genomic transmission could not provide precise results (Figure 4A). This contrasts with

the results of Oxfordshire,  where clustering does not  change in the range of 12-150

SNPs  (Figure  4B).  In  this  sense,  the  SNP  threshold  choice  used  to  differentiate

transmission from unrelated cases remains challenging even in low-burden settings and

provides  only  tentative  information  (Meehan et  al.,  2019).  An  in-depth  evaluation  of

clustering is needed to understand the particular transmission dynamics. Furthermore,

the Valencia Region and Malawi  also display continuous and sustained transmission

events over time (Figure 4C). Those events outside the genomic transmission clusters

likely  reflect  older  contagion  chains  that  still  contribute  to  TB incidence  today,  as  a

consequence, clustering is continuous in settings exhibiting this transmission dynamics.

The  lack  of  effective  past  efforts  to  halt  transmission  may  represent  a  plausible

explanation.  Epidemiological  data demonstrates that Spain will  likely  attain a country

profile similar to the UK and other low-burden, high-immigration countries. The higher

transmission and the older age of transmission chains likely reflects a situation in which

Spain suffered from higher disease incidence for most of the 20 th century, reflecting its

lower socioeconomic status than neighboring countries. The current control strategies in

place in the Valencia Region meet the WHO's targets to reduce TB, including active

case  findings  of  close  contacts  since  the  1990s.  Improve  TB  control  has  led  to  a

continuous drop in case numbers and to an incidence from 22 to 6.4 in the last 20 years.

By contrast,  Oxfordshire displays  a bimodal  distribution of  clustering across pairwise

distances,  and  also  lacked  transmission  events  other  than  those  involving  12-SNP

genomic  clusters  (Figure  4).  These  results  agree  with  the  robust  reduction  in  both

disease incidence and transmission that occurred until the beginning of the 1990s in the

UK; after  that,  increased HIV infections,  immigration and the emergence of  TB drug
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resistance  fueled  the expansion  of  the  non-eradicated  TB  (Glaziou  et  al.,  2018).  In

accordance with this data, we dated ongoing transmission in Oxfordshire back to 1993.
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Figure 4.  Hypothetical  time trees indicating transmission events.  A.  (Left) The complete

phylogeny,  including  all  bacterial  isolates and displaying multiple  and sustained transmission

events (nodes), over time. This scenario allows the reconstruction of a tree (middle) with several

tips and multiple transmission events. A continuous distribution of clustered cases by different

pairwise  distances is  retrieved (right)  as observed in  the Valencia  Region and Malawi.  B. A

complete  phylogeny  (left)  in  which  transmission  is  either  too  old  or  recent  and  few (or  no)

transmission events occurred in the middle time, led to the reconstruction of a tree (middle) in

which few samples reach the present  and fewer nodes are observed all  over  the tree.  This

scenario  provides  a  bimodal  distribution  of  clustered  cases  by  pairwise  distance  (right)  as

observed for Oxfordshire. C. Time tree with local transmission events (LTEs) over time before the

most recent sample (BMRS). The table (bottom) shows the number of events counted in each

time period and the median distance range among the samples within the events for the three

settings analyzed. For the period between the most recent sample (MRS) and 50yBMRS, events

within (gClusters) and outside genomic clusters (No gClusters) are indicated. Vertical red lines

indicate periods of time, horizontal dashed lines indicate missing samples, shaded areas indicate

sampling period, and circles indicate transmission events with colors specified in the legend.

The main limitations of our analysis are inherent to the methodology, since only cases

with positive cultures are sequenced. For the Valencia Region, cases included are an

accurate representation of the epidemiological characteristics of the populations under

study.  Transmission  is  oversimplified  by  considering  nodes  as  transmission  events,

while most transmissions will map to branches rather than nodes. However, knowing the

exact timing of transmission is only possible for recent events and a proportion of cases

(Xu et al., 2019), and not relevant for our comparative study which focuses mainly on old

transmission events. Differences in the absolute number of cases in each dataset are

irrelevant  for  comparison,  since they all  represent  population-based studies  with  the

same time-window sampling, thus the majority culture positive cases were included in

the analysis. In this sense, the distribution of cases in clusters likely reflects the whole

transmission dynamics of the settings. 
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Our  results  underscore  a  primary  role  for  continuous  transmission  rather  than  LTBI

reactivation or immigration in fueling TB incidence in the Valencia Region, as occurs in

many high-burden settings (Bjorn-Mortensen et al., 2016; Guerra-Assunção et al., 2015;

López et al., 2020; Yang et al., 2018). The opposite scenario occurs in other low-burden

countries  (Jajou et  al.,  2018;  Walker  et  al.,  2014) where transmission is  limited and

immigration  from  high-burden  countries,  also  involving  reactivation  of  the  disease,

represents  the  primary  driver  of  incidence.  In  addition,  reported  meta-analysis  from

historical epidemiological studies suggests that, contrary to current assumptions, MTB

infection may not be lifelong, and most people are able to clear it  (Behr et al., 2019).

This further suggests that the prevalence of LTBI is much lower than assumed, and most

of  the TB cases we see today are coming either from recent  contagion or imported

depending on the TB setting. Our data highlight how low-burden TB locations can entail

very distinct scenarios that require specifically-tailored management, and that general

TB  guidelines  should  not  be  applied  to  all  areas  based  solely  on  incidence  rate

(Lönnroth et al., 2015). Understanding heterogeneities in TB transmission dynamics is

essential to define tailor-made interventions to halt transmission with a population-level

impact, which is key to reducing the incidence of TB worldwide. 

Materials and Methods

Extended and detailed methods in Supplemental Information

Sample selection and study design

1,388 TB cases were reported between 2014-2016 by the Valencian Regional Public

Health Agency (DGSP), 1,019 with positive culture. All the available (785) samples were

collected from 18 regional hospitals (Supplemental figure 1). Demographic, clinical, and
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microbiological records were obtained from the routine TB surveillance system, for 724

of  the  total  samples.  All  diagnosed  TB-positive  patients  completed  a  standardized

questionnaire provided by the DGSP.  M. tuberculosis  structure and clustering analysis

were performed with the total sequences. Epidemiological and transmission dynamics

analysis were carried on with the samples with available information (724).

Approval for the study was given by the Ethics Committee for Clinical Research from the

Valencia Regional Public Health Agency (Comité Ético de Investigación Clínica de la

Dirección  General  de  Salud  Pública  y  Centro  Superior  de  Investigación  en  Salud

Pública). Informed consent was waived on the basis that TB detection forms part of the

regional  compulsory  surveillance  program  of  communicable  diseases.  All  personal

information was anonymized, and no data allowing patient identification was retained.

DNA extraction and sequencing 

Clinical isolates were cultured in Middlebrook 7H11 agar plates supplemented with 10%

OADC (Becton-Dickinson) for three weeks at 37°C. After an inactivation step (90 °C, 15

min), DNA was extracted using the cetyl trimethyl ammonium bromide method from a

representative sample from each patient (four-time plate scraping). All procedures were

conducted  in  a  Biological  Safety  Level  3  laboratory  under  WHO  protocol

recommendations. Sequencing libraries were constructed with a Nextera XT DNA library

preparation  kit  (Illumina,  San  Diego,  CA),  following  the  manufacturer's  instructions.

Sequencing was performed using the Illumina MiSeq platform. 

Bioinformatics Analysis

Data  analysis  was  carried  out  following  a  validated  previously-described  pipeline

(http://tgu.ibv.csic.es/?page_id=1794,  (Meehan  et  al.,  2019).  Sequencing  reads  were

trimmed with fastp (Chen et al., 2018), and kraken software (Wood and Salzberg, 2014)
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was  then  used  to  remove  non-Mycobacterium  tuberculosis complex  (MTBC)  reads.

Filtered  reads  were  mapped  to  an  inferred  MTBC  common  ancestor  genome

(https://doi.org/10.5281/zenodo.3497110) using BWA (Li and Durbin, 2009). SNPs were

called  with  SAMtools  (Li,  2011) and  VarScan2  (Koboldt  et  al.,  2012).  GATK

HaplotypeCaller  (McKenna  et  al.,  2010) was  used  for  calling  InDels.  SNPs  with  a

minimum of  10 reads (20X)  in  both strands and minimum base quality  of  25  were

selected and classified based on their frequency in the sample as fixed (>90%) or low

frequency (10–89%). InDels with less than 20X were discarded. SnpEff was used for

SNP annotation  using  the H37Rv annotation  reference  (AL123456.2).  Finally,  SNPs

falling in genes annotated as PE/PPE/PGRS, ‘maturase,’ ‘phage,’ ‘13E12 repeat family

protein’; those located in insertion sequences; those within InDels or in higher density

regions (>3 SNPs in 10 bp) were removed due to the uncertainty of mapping.  Next,

variants were compared with recently published catalogues with validated association

between mutations and phenotypic resistance  (Ngo and Teo, 2019) in order to predict

high-confidence  resistance  profiles  to  first-  and  second-line  drugs.  Lineages  were

determined by comparing called SNPs with specific phylogenetic positions established

(Coll et al., 2014; Stucki et al., 2016). An in-house R script was used to detect mixed

infections based on the frequency of lineage- and sublineage-specific positions  (López

et al., 2020). Read files were deposited in the European Nucleotide Archive (ENA) under

the  bioproject  numbers  PRJEB29604  and  PRJEB38719  (Supplemental  Table  1).

Sequences from two population-based studies in Oxfordshire (Walker et al., 2014), with

92% of culture-positive cases sequenced, and Malawi  (Guerra-Assunção et al., 2015),

with  72%  of  culture-positive  cases  sequenced,  were  downloaded  from  ENA  and

analyzed as for the sequences generated in this study. All the custom scripts used are

available in https://gitlab.com/tbgenomicsunit. 
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Genomic clustering and phylogenetic analyses

The pairwise SNP distance was computed with the R  ape package. Genomic clusters

were constructed if the genetic distance between at least two patients’ isolates fell below

a defined threshold.  Cluster  monophyly  was confirmed in a maximum likelihood tree

(50,184 SNPs). 

Timed phylogenies were inferred with Beast v2.5.1 (Bouckaert et al., 2014). Ancient TB

DNA (Bos et al., 2014) and samples from a recent Spanish outbreak were included as

calibration data. Dating was performed using GTR + GAMMA substitution model, a strict

molecular  clock  model,  and  a  coalescent  constant  size  demographic  model,  as

previously  described  (López et  al.,  2020).  Three independent  runs  of  Markov Chain

Monte-Carlo length chains of 10 million were performed. Adequate mixing, convergence

and sufficient sampling were assessed in Tracer v1.6, after a 10% burn-in. 

Tracking local transmission events over time

Transmission  events  were  defined  as  nodes  occurring  over  time  phylogenies

(Supplemental figure 6). The rationale for this approach is based on the assumption that

if few pathogen mutations are expected to be observed during a host’s infection, as is

the case of  M. tuberculosis, lineages split  only at transmission  (Hall et al.,  2016). To

estimate the number of local transmission events, all  ancestral  nodes were counted,

including local-born tips occurring within 150 years before 2016. 
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