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Abstract: We use a linear mixed model in order to estimate the effect of the number of 

people vaccinated against COVID-19 on the overall death toll on a monthly basis. We limit 

our analysis for the duration of the year 2021 and within 25 countries which are current or 

former (UK) members of the EU since these countries follow similar approaches to testing 

and reporting different COVID-19 related statistics. We explored the effect in question by 

comparing the total number of people vaccinated up to the end of each month and the total 

number of deaths occurring during the next month while controlling for several measures 

including number of new COVID-19 cases, diabetes prevalence, cardio vascular death rates 

and time trends among others. Our results indicated that one percentage point monthly 

increase in the total number of vaccinated people was associated, on average, with a decrease 

of two deaths per general population of 1 million for the next month with the effect being 

highly significant. An Individual Growth Curves Analysis further corroborates these findings 

and suggests that vaccination rates may possibly exert additional indirect effects unaccounted 

for by our main model. 

1. Introduction. The beginning of the year 2021 marked the beginning of the massive 

COVID-19 vaccination campaign within the EU. Currently, vaccines’ effectiveness with 

respect to disease prevention is coming into question (two possible reasons being anti-bodies 

waning over time and/or new variants exhibiting greater vaccine resistance); still, however, 

most analyses show that vaccines continue to provide significant protection with respect to 

serious complications, hospitalization and death (e.g. Pouwels et al., 2021; Hyams et al., 

2021; Levin et al., 2021; see also COVID-19 Vaccine Surveillance Report Week 38 by Public 

Health England for a review). In order to investigate this last claim further, we chose 25 

countries, current and former (UK) members of the EU with populations exceeding 1 million 

and analyzed the data for their cumulative vaccination trends and the effects of said trends on 

the deaths attributed to COVID-19 on a monthly basis.  
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Our inclusion criteria were based on the fact that EU countries tend to follow similar 

procedures and guidelines with respect to testing and reporting novel COVID-19 cases and 

mortality rates with their respective infrastructures presumably being capable of achieving 

relatively reliable estimates. The United Kingdom was also included in our analyses since its 

protocols and procedures don’t appear to diverge significantly from the ones employed in the 

EU, despite the country’s recent departure from the union. Countries with small populations 

(i.e. countries with less than 1 million people such as Luxembourg, Malta, etc.) were excluded 

in order to avoid biases with respect to population dynamics which may show aberrant trends 

in small and/or relatively isolated communities.  

At least some analyses indicate that while in mild cases COVID-19 symptoms’ 

duration appears to be between one and two weeks, for severe and critical cases symptoms 

tend to last up to six weeks after their onset1. At the same time, most vaccines appeared to 

have measurable effects in reducing the risk of COVID-19 contraction 15 weeks after the first 

dose (e.g. Amit et al., 2021; Pilishvili et al., 2021) with the effects, presumably, being even 

larger with respect to complications and death. In that context, we judged it appropriate to 

conduct our analyses on a monthly basis, i.e. we tried to investigate the effect of the 

cumulative percentage of vaccinated people (i.e. people who had received at least one dose of 

any EU-approved vaccine) up to and including a given month on the total number of deaths 

due to COVID-19 for the next month (only) of the year2. In other words, we judged that a one 

month lag was a suitable interval for detecting the effect in question. For example, we 

recorded the total number of vaccinated people up to and including January 2021; then we 

recorded the total number of deaths due to COVID-19 which had occurred only during 

February 2021. The relationship between the predictor (cumulative percentage of vaccinated 

people) and the 1 month lagged outcome (the total number of deaths occurring only during the 

next month of 2021) is the primary focus of this study. 

                                                           
1 See “Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19): 
https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-
(covid-19) 
2 Note that the decision to use a monthly lag in this study was based on theoretical considerations and prior 
studies only, i.e. we made no attempt to find a lag which maximized the investigated relationship. In that sense, 
it may be expected that our estimates may be somewhat conservative since, in all likelihood, there are different 
lags which show more pronounced effects than the ones reported below. In that sense, it is probably a good idea 
to conduct an exploratory study which explicitly tries to find the time period which best exemplifies the 
relationship between vaccination and mortality rates and subsequently to validate the observed results across an 
independent sample. Since currently we focus only on EU countries and since the vaccination program only 
really took off at the beginning of 2021, we regard the above proposition as a future research goal. 
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2. Materials and Methods. The data used in this study was retrieved from the 

ourworldindata repository3. We organized the data on a monthly basis. We organized the data 

from 25 European countries in a long format with each country encompassing 11 rows (i.e. 

we had 11.25=275 data points for our dependent measure across the entire dataset). The 

cumulative percentage of vaccinated people (i.e. this variable included only monotonically 

increasing values) up to and including the last day of each month (from January to November) 

was our main predictor (first column). Our second (control) predictor was the total number of 

new cases of COVID-19 (per 10 000) which had occurred during a given month only (up to 

and including November). We also included a linear and a quadratic time trend in order to 

model basic and seasonal time variations in our outcome measure. The linear time variable 

(column 3) coded each successive month with numbers ranging from 0 to 10 (February=0, 

March=1, etc.); the quadratic time trend (time2) included the same numbers squared (i.e. it 

included eleven values ranging from 0 to 100) and was placed in the 4th column4. Our 

dependent measure (column 5) was the total number of deaths (per million) occurring during 

a particular month only. The cumulative number of vaccinated people as well as the total 

number of new cases per month were recorded from January to November, while the time 

covariates and the dependent measure (total number of deaths per Million for a given month 

only) were recorded from February to December. In that way we had a dataset which 

comprised the whole 2021 year with a one month lag between our two main predictors 

(cumulative percentage of vaccinated people and number of new cases for a given month) and 

our outcome measure (total number of deaths due to COVID-19 during a given month). 

In addition to our time-varying covariates described above, we also recorded several 

fixed covariates (i.e. variables which didn’t change in time within countries) which served as 

additional (fixed) controls. This data was obtained for 2019 and was comprised of the 

following variables: population density, percentage of people over the age of 65, gross 

domestic product per capita, cardio-vascular death rate, diabetes prevalence, hospital beds 

per 1000 people, and life expectancy.  

The 25 European countries included in the analysis (in alphabetical order) were: 

Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, 

                                                           
3 https://ourworldindata.org/covid-vaccinations 
4 Note that the time covariates are supposed to reflect seasonal trends and thus the time codes designate months 
of the year rather than simply increasing time periods. In that sense, extrapolations beyond the current dataset 
should involve repeating the time codes for the upcoming months (e.g. January 2022 should be coded as 0 rather 
than as 11). 
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Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland, Portugal, 

Romania, Slovakia, Slovenia, Spain, Sweden, and the UK.  

The vaccination rates for these countries varied between 0.41% (Bulgaria) and 13.63% 

(UK) for January and between 27.61% (Bulgaria) and 90.5% (Portugal) for December. In 

other words, it is clearly the case that 2021 provides us with enough variance in terms of 

vaccination rates both temporally and geographically in order to justify the analyses that 

follow. 

Several linear mixed effects models were fitted to the data by the lme4 package for the 

open source R environment (Bates et al., 2015).  

3. Analyses and Results. A linear mixed effects model (LMEM) fits a random 

intercept and random slopes for each unit of measurement for the different predictors which 

vary across the different measurement units. The random intercept/slopes suggest particular 

variance-covariance structures across different measurements within a unit (e.g. Singer & 

Willett, 2003).  

In order to specify an appropriate covariance structure for our dependent measure we 

began by fitting a baseline model which included all our time-varying covariates – cumulative 

percentage of vaccinated people (%vac), number of cases per 10 000 (#cases), time and time 

squared (time2), as well as an interaction term for %vac and #cases (all covariates involved in 

interaction terms were centered5). The baseline model also specified a random intercept and 

random slopes for %vac and #cases within an unstructured covariance matrix (i.e. the 

variances of all random effects as well as the covariances between them were freely 

estimated). The total number of deaths by COVID-19 during a particular month (from 

February to December) was our dependent measure.  

The results indicated a significant effect of %vac (b=-2.78, χ2(1)=34.75, p=3.75.10-9), 

a significant effect of #cases (b=0.90, χ2(1)=30.94, p=2.66.10-8), a significant effect of time2 

(b=1.58, χ2(1)=9.51, p=0.002), and a significant effect of the interaction between %vac and 

#cases (b=-0.01, χ2(1)=34.46, p=4.36.10-9); the effect for the linear trend (time) wasn’t 

significant (b=0.54, χ2(1)=0.01, p=0.937). We retained the time covariate for its 

complementary effect (with respect to time2) on the quadratic polynomial trends in the 

                                                           
5 More concretely, the means for the entire dataset (rather than for individual countries) were subtracted from a 
variable involved in an interaction term prior to analysing the data.  
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following models. It should be noted, however, that excluding the time covariate leaves all 

other effects intact with respect to their directions, magnitudes and significance levels.  

Note that the fixed effects for %vac and #cases make sound theoretical sense: the 

number of deaths decreases as the percentage of vaccinated people increases while the 

number of deaths increases with the increase of the total number of COVID-19 positive cases 

occurring during the previous month. 

The variances/covariances of our random effects are given in table 1: 

 Intercept %vac #cases 

Intercept 2984   

%vac -41.40 0.73  

#cases 24.42 -0.30 0.21 

 

Table 1. Variances (main diagonal, bold) and covariances (below the main diagonal) 

between the 3 random effects specified for our baseline model. The error variance for the 

whole model was equal to 3411.08. AIC=3118.8. 

We investigated the covariance structure of the baseline model by means of both 

Likelihood Ratio (LR) Tests and Akaike Information Criteria (AIC). Results indicated that all 

random effects included in the baseline model were highly significant: all ps from LR Tests 

were <0.0003 and all ∆AICs were ≥13 in favor of the baseline model being compared to a 

trimmed version of it. 

Next, we investigated the usefulness of including time and time2 as random factors in 

the model. The results were as follows: 

• Including time as a random effect did not improve the overall model 

significantly (p=0.141, ∆AIC=1.1 in favor of the baseline model); 

• Including time2 as a random effect did not improve the overall model 

significantly (p=0.111, ∆AIC=0.5 in favor of the baseline model); 

• Including both time and time2 as random effects did not improve the overall 

model significantly (p=0.446, ∆AIC=9.1 in favor of the baseline model); 

• Finally, we entered time and time2 as random effects but separately, i.e. they 

were allowed to covary between themselves but not with the random effects 

already specified within the baseline model, thereby exploring a partially 
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diagonal, partially unstructured covariance matrix. The results indicated that 

this approach also appeared not to improve over the baseline model (p=0.97, 

∆AIC=6 in favor of the baseline model). 

We should also mention that several of the above approaches resulted in convergence 

difficulties indicating once more that random effects pertaining to time and time2 were indeed 

superfluous. Also, it is worth noting that all changes of the baseline model which we 

attempted didn’t change appreciably the fixed effects of time2, %vac, #cases and their 

interaction (i.e. their directions, magnitudes and significance levels remained virtually the 

same regardless of the random effects added to the baseline model) described above.  

In summary, our baseline model seems to fit the data better than others and our main 

observation within its context is the significant effect of the percentage of vaccinated people 

on the total number of deaths recorded during the following months. The coefficient for %vac 

is -2.78 meaning that each percentage point increase in vaccination is associated with the 

decrease of more than two deaths per 1M in the general population on average across EU 

countries (holding all other variables and interactions in the model constant). We should note 

that the average number of deaths due to COVID-19 (per 1 M) across the 12 months during 

2021 for all EU countries was equal to 119.87.  Note that for most countries and for most 

months the vaccination rate increases with more than 1% per month and that the -2.78 effect 

is a cumulative one, i.e. it accumulates over all measured time points (i.e. months) so the 

overall effect of the vaccination campaign should be expected to be much higher as we try to 

illustrate below. We should also note that, consistent with all theoretical expectations, the 

number of COVID-19 positive cases recorded during a particular month correlates positively 

with the number of COVID related deaths for the following month. This observation should 

serve to increase the trustworthiness of the presented model (also the #cases effect serves as 

proper control with respect to the vaccination effect).  

Having established some usefulness of our baseline model, we will proceed to 

examine some of its specifics. After calculating each country’s specific intercept and slopes6 

(for %vac and #cases), we correlated the results and observed the following patterns: 

                                                           
6 In other words we calculated three new variables – one containing the specific intercept for each country, 
another containing the specific slope for each country with respect to #cases, and yet another containing the 
specific slope for each country with respect to %vac. These coefficients have averages equal to the fixed effects 
reported above. Their variances however are not equal to the variances of the random effects observed in Table 
1. Indeed, the variances of the actual estimates are smaller, for these estimates exhibit “shrinkage”, i.e. they are 
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• The slopes for all countries with respect to %vac were negative indicating that 

for each individual EU country the number of deaths due to COVID-19 was 

estimated to decrease with the increase of the relative number of vaccinated 

individuals. The slopes’ coefficients ranged between -5.36 (Hungary) and -

1.89 (Netherlands); 

• The slopes for all countries with respect to #cases were positive indicating that 

death rates increased with the number of infectees. These coefficients ranged 

between 0.32 (Sweden) and 2.11 (Hungary); 

• There was a significant correlation between the total number of vaccinated 

people up to and including December 2021 (vac_tot) and the intercepts 

calculated for each country: r=-0.57, p=0.003. This indicates that populations 

vaccinating at higher (and presumably faster) rates tend to experience less 

COVID-19 casualties overall. This observation corroborates the findings with 

respect to the %vac effect reported above; 

• There was a significant positive correlation between vac_tot and the slopes for 

%vac (r=0.54, p=0.005). Since all slopes for %vac were negative, this means 

that countries with higher (faster) rates of vaccination tend to benefit less from 

the vaccines than countries with lower (slower) overall rates of vaccination. 

Various explanations for this observation are possible. For example, this may 

be an artifact from highly vaccinated populations showing lower slopes of 

%vac because as the rate of vaccination approaches 100%, its variance in time 

declines and hence its explanatory power decreases (in other words, once 

nearly 100% of a population is vaccinated, its rate of vaccination stops 

changing in time and hence COVID-19 deaths or lack thereof cannot be 

predicted on the basis of vaccination rate, i.e. a constant has no predictive 

power). Another possible reason for the above observation may be that 

populations with faster rates of vaccination are those which vaccinated many 

people in the early months of 2021 and due to vaccines’ proposed waning 

effectiveness, these populations were more exposed to different COVID-19 

variants occurring in the later 2021 months, thereby exhibiting diminished 

estimates of the vaccines’ overall effectiveness. These and other possible 

                                                                                                                                                                                     

closer to their respective means than suggested by the variance estimates (Table 1) due to the hierarchical nature 
of the linear mixed model (e.g. Fitzmaurice et al., 2011). This feature automatically corrects for certain possible 
overfitting effects, including (hopefully) the ones to be described. 
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explanations for the discussed phenomenon definitely deserve further 

investigation; 

• Finally, we observed a significant negative correlation between vac_tot and the 

slopes for #cases (r=-0.57, p=0.003). This association is particularly interesting 

for it shows how the vaccination rate moderates the effect #cases exerts on our 

dependent measure (monthly mortality rates). Specifically, we see that more 

vaccinated populations exhibit diminished relationships between the number of 

newly diagnosed COVID-19 cases per month and the number of COVID-19 

casualties for the next month in comparison to less vaccinated populations. 

Thus, the rate of vaccination appears not only to reduce casualties directly, but 

also indirectly, through breaking down the dependence of casualties on the 

number of infections. This is exactly what one would expect to see if 

vaccination reduces the risk of complications and death due to COVID-19. 

Please compare this effect to the negative covariance between the random 

slopes for #cases and %vac reported in Table 1 and to the significant 

interaction between the fixed effects of %vac and #cases described at the 

beginning of this section. 

3.1. An illustrative case study. Let’s illustrate the effect of vaccination by a case 

study involving the most vaccinated and the least vaccinated countries in the EU. Fig. 1 

illustrates the time trajectories for Bulgaria (the least vaccinates country in the EU with 

vaccination rate of 27.61% by December 31st, 2021) and Portugal (the most vaccinates 

country with 90.5% vaccination rate by the same date). 
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Figure 1. Time trajectories for Bulgaria (Bg) and Portugal (Pt) with respect to 

COVID-19 monthly mortality rates. The dense lines represent the values fitted by our baseline 

model; the dots represent the actual data points. The fitted trends (dense lines) were based on 

each country’s individual slopes and intercepts calculated by the baseline LMEM. 

Fig. 1 illustrates the very different outcomes for the two countries. It should be noted 

that Bulgaria’s extraordinary death rate doesn’t appear to be due to more infected cases per 

month on average. On the contrary, for Portugal, the total number of infectees (calculated 

from January to November for this is the data used for predicting the dependent measure) is 

equal to 721 (per 10K) while for Bulgaria the same number equals 715. Obviously the two 

rates are almost identical (with Portugal actually showing more infected patients per capita 

than Bulgaria). At the same time, Bulgaria’s total mortality rate from February to December 

(data points included in our dependent measure) equals 3177 while Portugal’s number 

amounts to only 637 (per million). To illustrate this point further we present another figure 

(Fig. 2) which uses the same data with the sole exception that Bulgaria’s monthly vaccination 

rate is replaced by Portugal’s (all other data points for the two countries remains intact).  

 

Figure 2. The predictions of our baseline model for the hypothetical case where 

Bulgaria’s vaccination rate is exactly as Portugal’s. #cases and all other variables/interactions 

are kept intact. The individual slopes and intercepts for both countries are also the ones 

obtained from the original analysis. The dashed line (Bg pred’) gives prediction for Bulgaria’s 

mortality rates based on Portugal’s vaccination dynamics and Portugal’s individual slope 

while all other data points are kept intact. 
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With our actual data, the baseline model predicts total mortality rates (February to 

December) of 3185 and 642 per million for Bulgaria and Portugal, respectively (compare with 

the actual values of 3177 and 637). Replacing Bulgaria’s vaccination values for the first 11 

months of 2021 with Portugal’s however, causes our model to predict only 1485 COVID-19 

casualties for Bulgaria for the same period. It may be argued that since we are using 

Portugal’s vaccination rates in this simulation, we should also adopt Portugal’s slope for 

%vac. The dashed line in Fig. 2 shows the results when we do so; this time the mortality rate 

predicted for Bulgaria is 1709, still much lower than both the actual number and the model 

prediction based on Bulgaria’s actual vaccination values. We see that %vac appears to have a 

pronounced cumulative effect with respect to mortality rates. 

3.2. Additional controls. In order to explore the robustness of the above model we 

entered several fixed (i.e. not changing through time but only from country to country) 

covariates. More specifically, we entered the following as fixed control measures: population 

density, percentage of people over the age of 65, gross domestic product (gdp) per capita, 

cardio-vascular death rate, diabetes prevalence, hospital beds per 1000 people, and life 

expectancy. None of these additional control measures seemed to exert any significant 

influence on the dependent variable (all ps>0.40). Also, AIC seemed to favor our baseline 

model over the one including the control variables in question: ∆AIC=8.7 in favor of the 

baseline model; the LR Test also suggested that including the seven control measures doesn’t 

improve the baseline model as a whole significantly: χ2(7)=5.373, p=0.615. That is not to say 

that the fixed variables don’t influence the dependent one, what the analysis shows is that the 

additional controls don’t seem to exert significant influence over the dependent measure once 

%vac, #cases and their interaction have been taken into account. It may well be the case that, 

say, gdp (per capita) as an indicator for quality of life influences the number of infected cases 

(#cases) which in turn influence mortality rates. However, once #cases has been accounted 

for, gdp has little if anything to add in terms of additional (i.e. over and above #cases’) 

explanatory power. 

More importantly, all of the effects which were significant within the baseline model 

retained both their significance and their directions of influence (i.e. signs) in the presence of 

the seven additional control variables. For example, %vac was estimated as b=-2.27, 

p=1.21.10-5 within the augmented model. 
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3.3. HDI as an Additional Control. Having discarded the augmented model in favor 

of the baseline, we proceeded to investigate the Human Development Index7 (HDI) as an 

additional control measure. HDI is defined as the geometric mean of Life Expectancy at Birth, 

Education Index, and Gross National Income per capita (very similar to gdp). As can be seen, 

two of the three variables comprising the HDI were present within the 7 controls introduced 

above. HDI is supposed to reflect an aggregate level of a society’s well-being as well as the 

functional adequacy of various institutions (education and healthcare systems, different 

economic organizations, etc.). With entering HDI to our predictors we hoped to provide a 

more general explanatory framework with respect to societies’ preparedness to cope with the 

COVID-19 crisis. Also, at a more technical level, including an integrated measure instead of 

its subparts was an attempt at reducing multicollinearity (e.g. Life Expectancy and gdp 

correlated 0.625, p=0.000 for 2019). So, our next model contained HDI as a fixed predictor 

alongside the predictors already present in the baseline model. 

Results indicated that HDI failed to reach significance (b=-3.3, p=0.137) although it 

appeared more promising than all fixed covariates described above (entering HDI into the 

equation didn’t change the significance of any of the time-varying predictors already present 

in the baseline model). Here, however, an interesting observation occurred: HDI correlated 

significantly with the random slopes for #cases for different countries calculated within the 

baseline model, r=-0.86, p=2.47.10-8. In other words, for countries with higher HDI’s the 

relationship between infection and mortality rates was smaller than for countries with lower 

HDI’s. This makes intuitive sense: countries with more developed infrastructure probably 

have greater capacity to cope with the burden COVID-19 imposes on their healthcare systems 

than countries with less social and economic resources. As we already saw above, this is a 

classic symptom of an interaction. Hence, we retained the HDI variable in the current model 

and included an interaction term for HDI and #cases. The results confirmed our speculations 

and are summarized in Table 2. 

We see that both HDI and its interaction with #cases are now highly significant while 

the effects inherited from the baseline model remain unchanged8. In other words, the 

                                                           
7 See http://hdr.undp.org/en/content/human-development-index-hdi. Here we used the data available for 2019. 
Also, we transformed the raw data (varying between 0 and 1) into a scale varying between 0 and 100 in order to 
match the measure’s variance to the variance of our other variables; finally we centered the variable (i.e. 
subtracted the overall mean from each observation) before entering it to the analysis.  
8 We should also emphasize that this model also suggests that the slopes for all EU countries with respect to 
%vac are negative and that all slopes of #cases are positive, i.e. the general pattern observed within the baseline 
model remains unchanged. 
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interaction term between HDI and #cases appears to play a crucial role in the model as a 

whole (e.g. including this interaction term renders the main effect of HDI highly significant as 

opposed to the case when only the HDI effect was present in the model). It appears that 

indeed HDI moderates the relationship between #cases and mortality rates with countries 

exhibiting higher HDI’s showing lower dependence of mortality rates on infection rates than 

countries with lower HDIs, presumably because more developed countries have the resources 

to withstand the burden COVID-19 poses on their healthcare systems and other social 

infrastructures9.  

 Estimate 
(b): 

Standard 
Error: 

t-value: p:   Intercept %vac #cases 

Intercept 62.224 21.119 2.946 0.005  Intercept 1290   

%vac -2.438 0.438 -5.565 3.54.10-7  %vac -24.744 0.599  

#cases 0.849 0.081 10.465 3.87.10-12  #cases 8.302 -0.140 0.057 

time -3.383 6.619 -0.511 0.619      

time2 1.749 0.500 3.494 0.001  Residual 3391   

HDI -9.895 2.040 -4.850 5.37.10-5  AIC 3100.8   

%vac*#cases -0.011 0.002 -5.098 8.53.10-7      

HDI*#cases -0.101 0.019 -5.378 8.24.10-6      

 

Table 2. Fixed and random effects for the model including the HDI and its interaction 

with #cases. The first (left) half of the table shows the estimates of the fixed predictors and 

their interactions (signified by *), their standard errors and associated t-values and their 

significance levels (based on LR Tests). The second (right) half of the table shows the 

variance/covariance estimates of the random effects included in the model as well as the AIC 

value.  

We should point out that HDI correlates significantly (r=0.69, p=1.25.10-4) with the 

total number of vaccinated people up to and including December 2021 (vac_tot) which was 

discussed in (3). Several reasons might lay at the heart of this phenomenon including richer 

countries finding it easier to obtain enough vaccines during the early periods of the pandemic 

(this, however, is unlikely to be the case since the EU employed a common policy for 

ordering, buying and distributing the vaccines), better education increasing the probability of 

people taking the shot, and better functioning institutions finding better ways of convincing 

(or even coercing) citizens to take the shot among others. Whichever the case, it appears that 

                                                           
9 The possibility that the Education part of the HDI is related to people’s willingness to follow different safety 
protocols (e.g. wearing masks, keeping social distance, etc.) should also be considered in future studies. 
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HDI explains a large portion of the variance between countries with respect to vaccination 

rates (this might be the subject of a separate analysis). Our current data supports the above 

conclusion in the following way: as we saw in (3) vac_tot correlated significantly with all 

random effects (intercepts, slopes for %vac and slopes for #cases) within the baseline model. 

Here, however, it appears that once HDI and its interaction with #cases were accounted for, 

the correlations between vac_tot and the random effects for each country disappear – all 

ps>0.10. In other words, it appears that the correlations found in (3) were the result of a 

common cause (HDI) being excluded from the model. Once HDI was included and both its 

moderation effect on the relationship between #cases and mortality rates and its relationship 

to vaccination rates were accounted for, the interrelations between vaccination rates and the 

random effects tend to diminish appreciably. This observation suggests that more developed 

countries tend to vaccinate their populations at higher (faster) rates while also being capable 

of withstanding the burden COVID-19 places on different institutions to higher extents. These 

two tendencies are, in all likelihood, related for higher vaccination rates appear to reduce the 

number of hospitalizations, length of hospital stay and ICU admissions (e.g. Whittaker et al., 

2021). Also, the somewhat puzzling negative correlation between vac_tot and the slopes for 

%vac reported in (3) disappears once HDI is included in the model. 

Fig. 3 shows the predicted mortality trends for 10 EU countries based on our HDI-

containing model. 

 

Figure 3. Predicted monthly deaths by COVID-19 for 10 EU countries on the basis of 

the model containing HDI and its interaction with #cases. The data is for Bulgaria, France, 
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Germany, Portugal, Denmark, Poland, Italy, Netherlands, Finland and Estonia. The 

trajectories were calculated taking into account the individual intercepts and slopes (for 

#cases and %vac) for each different country. 

 Finally, we included the effect of the total number of deaths due to COVID for the 

previous month as a predictor to the mortality rates during the next month. This approach 

brings us as closer to a genuine longitudinal approach as possible in the current context and 

involves a new control variable which should be strongly related to the dependent measure 

(for the two measure the same thing with a time lag of one month).  

The results indeed indicated that mortality rates for the previous month had significant 

predictive power: b=-0.27, p=1.1.10-4. The negative sign of the parameter estimate shows that 

mortality rates for the next month are negatively influenced by previous mortality rates. This 

may result from natural fluctuations in the virus spreading (including seasonal variations, 

acquired immunity, etc.), institutional reactions to heightened mortality rates (e.g. quarantine 

measures) or it can be an artifact from the so called negative suppression (e.g. Maasen & 

Bakker, 2001) which is occasionally encountered in regression analyses. 

More importantly, the inclusion of previous months’ mortality rates didn’t change any 

of the effects discussed so far either in terms of their significance or with respect to their 

directions (e.g. for %vac we have b=-2.82, p=1.32.10-7), thus reinforcing the notion that the 

effects discussed so far are indeed robust. 

4. Discussion. Several mixed-effects models indicated that the cumulative percentage 

of vaccinated citizens within a country is negatively related to mortality rates.  

All models produced estimates for the linear effect of %vac ranging between -2 and -3 

deaths per million per month on average. As we saw in (3.1) however, the overall effect of 

vaccination through time can be quite dramatic. 

We should again emphasize that different results may be observed in the context of 

different time lags. It also remains unclear the extent to which our approach has been able to 

adequately account for the obvious nonlinearities in the time trends. Including time squared as 

a covariate as well as several interaction terms obviously produces nonlinear time trajectories 

but we should be cautious in our interpretation because of the obvious complexity of mortality 

rates’ dynamics.  
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It is also questionable whether our findings will extend to countries outside the EU. 

It is clear that two models appear to provide good fits to our data – the baseline model 

and the model adding HDI as a fixed covariate alongside its interaction with the monthly 

number of newly diagnosed cases. Both models appear to fit the data well, both models 

include the same random parameters (random intercepts as well as random slopes for %vac 

and #cases included in an unstructured variance/covariance matrix). It is also the case that the 

two models make very similar predictions with respect to countries’ individual time 

trajectories (i.e. the two models provide very similar estimates for the random intercepts and 

slopes for the different countries). While it is true that HDI appears to be involved in two 

significant effects, we should be cautious about possible overfitting. Currently, we would like 

to refrain from definite conclusions in that respect until more data is collected, analyzed and 

cross-validated. 

It is also possible that our analyses underestimate the effect of the vaccines due to 

another reason. Although we included #cases in all analyses and therefore partialled out its 

effect from the vaccines’ effects, we didn’t control for the fact that vaccination, in all 

likelihood, reduces #cases across certain time lags. Our analyses focused on predicting 

mortality rates one month after particular %vac and #cases had occurred. In other words, 

#cases and %vac as predictors are measured for the same time period. It may well be the case, 

however, that vaccines have indirect effects on mortality rates through their influence on the 

infection rates. For example, it may be the case that %vac at time t influences #cases at time 

t+1, which in turn influences mortality rates at time t+2; since mortality rates at time t+2 are 

obviously influenced by %vac at time t+1, it may be suspected that the total effect of %vac 

(i.e. the direct effect of %vac at time t+1 on mortality rates at time t+2 plus the indirect effect 

of %vac at time t on #cases at time t+1 which influences mortality rates at time t+2)  be 

higher than the effects reported above. A preliminary analysis attempting to address this issue 

is presented in the next section. 

5. Growth Curves Analysis. We used an Individual Growth Curves Analysis (IGC) 

in order to test for potential indirect effects of vaccination rates on mortality rates through 

infection rates. Also, this approach is similar to LMEM (e.g. Bollen, 2005). 

IGC typically models individual intercepts and time related slopes as latent variables 

with fixed loadings on the actual measurements; time-varying covariates are specified at the 

next levels of the analysis with the overall structure resembling classical LMEM. 
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The relatively small sample size with respect to measurement units (25 countries) 

precluded us from making use of our entire dataset. Hence, we decided to choose 4 waves of 

measurements to include into the analysis. Concretely, we chose measurements ranging from 

August to October with respect to %vac and #cases and from September to November with 

respect to monthly mortality rates (thus we employed the same one-month-lag procedure 

present in our previous analyses). The choice of this particular time period reflected the 

following considerations: 

• The variance for %vac was highest for September and we decided to include 

this point in the analysis because, all else being equal, variables with larger 

variances have (potentially) higher explanatory power. In hindsight, this 

particular reasoning may have resulted in some problems as we shall see 

shortly; 

• We wanted to concentrate on months towards the end of 2021 whereby most 

countries had achieved vaccination rates capable of making a measurable 

impact on the substantial infection rates present during the period; 

• We decided to exclude December since during this month the OMICRON 

variant became dominant in several (former) EU countries. Since OMICRON 

appears to exhibit marked deviations from previous variants (e.g. larger 

capacity to bypass the vaccines, milder course of the disease, reduced 

incubation period), we didn’t include December in the analysis in order to 

avoid potential sources of confounding. 

Prior to the analysis we specified the causal structure shown in Fig. 4. As will be 

shown shortly, this basic structure underwent some changes necessary for the model to fit the 

data adequately.  

We began by testing the intercept/slope structure of the model with respect to 

mortality rates (the top two levels of Fig. 4). The model was estimated via the standard 

Maximum Likelihood algorithm and results indicated a very good fit – χ2(1)=1.05, p=0.306, 

CFI=0.999, RMSEA=0.044 (95% CI=[0.000 – 0.534]), SRMR=0.052. We see that a random 

intercept/slope with a linear time trend only fits the three monthly mortality measurement 

waves very well. Since we included only three time points in this analysis, it is hardly 

surprising that we didn’t have to include the polynomial time trend necessary in the context of 

the LMEMs described above.  
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After having established the viability of the measurement portion of the model, we 

proceeded to including the lower levels time changing covariates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The intended causal structure of our IGC. "v”, “c” and “d” denote %vac, # 

cases and monthly death rates respectively. The numbers (8 to 11) denote the data for 

particular months (e.g. 8=August, etc.). Observed variables are represented as rectangles 

while the latent intercept and slope (i and s at the top) are encircled. Fixed parameters are 

denoted by numbers representing the values parameters were fixed on. Double arrows denote 

(unanalyzed) variances; single arrows denote path coefficients. The two indirect effects which 

we were primarily interested in were the ones from v8 to d11 through c9 (i.e. v8->c9->d10) 

and from v9 to d11 through c10 (i.e. v9->c10->d11). 

Fig. 4 shows the structure which was initially proposed. Note that save for the latent 

random intercept/slope structure (top), the rest of the variables were involved in a pattern 

resembling typical longitudinal path analyses (e.g. Kline, 2010). As the caption below Fig. 4 

explains there were two indirect effects which we intended to test – from %vac up to and 

including August (v8) to mortality rates for October (d10) through infection rates (September) 

d9 d10 d11 
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1 1 
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and from %vac September (v9) to mortality rates November (d11) through infection rates 

October. 

Our initial results suggested a medium fit to the data and inspection of the 

modification indices clearly showed that there were a few sources of noticeable strain on the 

model. After adding three coefficients suggested by the largest fit indices (Fig. 5) we obtained 

an excellent fit to the data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graphical representation of some results obtained from our IGC analysis. 

The grey lines represent error covariances and a path coefficient suggested by the 

modification indices; all of these were significant, ps<0.05. The dense lines (grey and black) 

represent significant (all ps<0.05) path coefficients and (error) covariances. The dashed lines 

represent originally specified relationships which didn’t reach significance within the final 

model depicted in the figure. All significant path coefficients were in the expected directions. 

The “a” and “b” signify the significant indirect effect of cumulative vaccinations up to and 

including August on monthly mortality rates for October through November infection rates. 

See the text for more details. 
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Specifically, χ2(16)=15.303, p=0.503, CFI=1.000, RMSEA=0.000 (95% CI=[0.000 – 

0.178]), SRMR=0.022.  

Several things are worth noting with respect to the final model (Fig. 5): 

• All significant path coefficients were in the expected directions, i.e. all 

significant coefficients from %vac to mortality rates were negative (ranging 

from -3.6 for the v8->d9 coefficient to -15.4 for the v9->d11 coefficient10); 

also, all significant paths from #cases to mortality rates were positive (ranging 

from 0.35 for c10->d11 to 1.07 for c9->d10); finally, there was a significant 

path from %vac to #cases (v8->c9); 

• We didn’t observe a significant indirect effect of v9 on d11 through c10. Fig. 5 

clearly shows the reason why: on one hand the effect of v9 on c10 doesn’t 

reach significance, on the other v9 appears to have a significant direct effect on 

d11 as suggested by the modification indices (the direct effect, of course, tends 

to diminish the importance of the indirect ones all else being equal); 

• Two out of the three one-month lagged effects of %vac on mortality rates are 

significant with the third effect (i.e. v10->d11) failing reach significance 

presumably because v9 appears to have a strong effect on d11 (i.e. v9 appears 

to influence d11 via a two-months lag and v10 obviously has little to add in 

terms of explanatory power once v9 is accounted for; as we already mentioned 

v9 is the %vac measurement with the highest variance for 2021 and in that 

sense the above observations are not entirely surprising). Also, it appears that 

all one-month lagged effects of #cases on mortality rates are significant and in 

the predicted direction with no additional parameters (e.g. two-months lags) 

needed in order to account for the data at hand. These observations tend to 

corroborate the findings discussed in the context of the LMEM approach; 

• Our IGC model finds significant paths from v8->c9 and from c9->d10; hence, 

it should come as no surprise that the indirect effect of v8 on d10 through c9 is 

significant (b=-1.54, p=0.011)11. Since v8’s direct effect on d9 was equal to -

                                                           
10 This effect diminishes to the somewhat more reasonable -8.3 (p=0.000) estimate if the insignificant path v10-
>d11 (Fig. 5) is discarded without any noticeable deterioration of the model fit indices. 
11 The indirect effect is found by multiplying the “a” and “b” paths shown in Fig 5 (a=-1.44, b=1.07, a.b=-1.54). 
In order to verify the indirect effect’s significance we also calculated its standard error by a standard (naïve) 
nonparametric bootstrapping procedure (Efron & Tibshirani, 1994); based on the results, its significance was 
equal to 0.017. The same procedure also attested to the good fit of our entire model – p=0.925 by the Bollen-
Stein bootstrapping procedure (Bollen & Stein, 1992). 
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3.6 (p=0.000), it seems that its indirect effect on d10 through c9 was almost 

half as large as its direct effect. 

In summary, the results from the IGC analysis seem to corroborate our previous 

findings. In general, the LMEM’s estimates of the effects in question should be regarded as 

more reliable than the ones obtained from this preliminary IGC model since the linear-mixed 

procedure makes use of our entire dataset (as opposed to the small subsample included in the 

current analysis) and deals with more data points per measurement unit (country) thereby 

making use of much more reliable information with respect to individual time trends. That 

being said, IGC suggests that both concerns of our LMEM underestimating the actual effects 

of the vaccines may have indeed been reasonable. First, it appears that the one month lag may 

not always be the optimal time period for assessing the vaccines’ effectiveness for as we just 

saw, it appears that v9 has a large significant effect on d11, i.e. an effect being carried over 

two months instead of one (b=-15.4, p=0.005). Second, it does appear that vaccines have had 

discernible indirect effects for certain time periods on mortality rates through infection rates: 

one of the indirect effects tested within the IGC model proved significant and in the predicted 

direction.  

Although the above results should be regarded as tentative due to the small sample 

size and restricted time period the analysis is applied on, it deffinately appears that the effects 

in question should be investigated further. In other words, it may well be the case that the 

vaccines’ effectiveness with respect to preventing fatalities due to COVID-19 reported in (3) 

was actually underestimated. 

6. Conclusion. It definitely appears that vaccination against COVID-19 reduces 

mortality rates in the EU.  

Our LMEM models suggested some interesting interaction effects. For example, it 

appears that HDI appears to moderate the relationship between infection and mortality rates, 

presumably at least partly due to more developed countries showing higher vaccination rates 

which in turn, in all likelihood, reduce the number of COVID-19 related complications, 

hospitalization rates and ICU admissions.  

More studies should be performed on different and preferably larger datasets (while 

still ensuring the comparability of different populations’ estimates for vaccination, infection 

and mortality rates) in order to validate the above observations.  
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An Individual Growth Curve Analysis suggested that both indirect effects of 

vaccination rates on mortality rates through infection rates and (partially) misspecified time 

lags may have led to underestimation of the vaccines’ effectiveness. More studies involving 

larger datasets should address these issues further. 

Currently it appears that the cumulative effect of vaccination in reducing COVID-19 

mortality within the EU is substantial. 
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