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Abstract

Social gatherings can be an important locus of transmission for many pathogens includ-

ing SARS-CoV-2. During an outbreak, restricting the size of these gatherings is one of several

non-pharmaceutical interventions available to policy-makers to reduce transmission. Often these

restrictions take the form of prohibitions on gatherings above a certain size. While it is generally

agreed that such restrictions reduce contacts, the specific size threshold separating “allowed”

from “prohibited” gatherings often does not have a clear scientific basis, which leads to dramatic

differences in guidance across location and time. Building on the observation that gathering

size distributions are often heavy-tailed, we develop a theoretical model of transmission during

gatherings and their contribution to general disease dynamics. We find that a key, but often

overlooked, determinant of the optimal threshold is the distribution of gathering sizes. Using

data on pre-pandemic contact patterns from several sources as well as empirical estimates of

transmission parameters for SARS-CoV-2, we apply our model to better understand the rela-

tionship between restriction threshold and reduction in cases. We find that, under reasonable

transmission parameter ranges, restrictions may have to be set quite low to have any demonstra-

ble effect on cases due to relative frequency of smaller gatherings. We compare our conceptual

model with observed changes in reported contacts during lockdown in March of 2020.
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1 Introduction1

Social gatherings in which people meet and interact provide a conducive environment for the spread2

of pathogens. During an outbreak, restricting the size of such gatherings is one of several nonphar-3

maceutical interventions (NPIs) available to policymakers. An advantage of these restrictions is4

that they are simple to articulate and easy for the public to understand and, in some circumstances,5

for authorities to enforce. Indeed, during the COVID-19 outbreak, gathering size restrictions were6

among the most commonly used NPIs globally (Hale et al., 2021). Some have claimed that these7

restrictions were among the most effective at reducing transmission (Brauner et al., 2021; Haug8

et al., 2020; Li et al., 2021; Sharma et al., 2021); however, given the rapid and often haphazard9

nature of their rollout and the methodological challenges of proper indentification, estimates of the10

causal effects of specific NPIs may be severely biased (Haber et al., 2021).11

Theory and intuition suggest that, when properly followed, gathering size restrictions should12

lower transmission by limiting the number of contacts between individuals and thus reducing the13

opportunity for the pathogen to spread. Yet, it’s often unclear precisely how low restrictions should14

be set to achieve a certain disease control target, be it a stable number of cases or the elimination15

of the pathogen from the population. Indeed, evidence suggests, policymakers have taken a variety16

of approaches in practice to set gathering size thresholds, which may reflect different goals or local17

disease dynamics, but also might reflect ambiguity in the optimal strategy. As a case in point,18

in the UK the government first banned gatherings above 500 in March 2020 before initiating a19

lockdown on March 23. Then after restrictions eased in the late summer a ban on gatherings above20

30 was declared, but then this was famously revised down to the “rule of six” in September to21

prevent gatherings with more than six people. In this paper, we use epidemiological theory to22

better understand the relationship between gathering size and general disease dynamics. We also23

attempt to enumerate the necessary elements to quantify or predict the impact of a given threshold24

on the incidence of new cases.25

We emphasize restrictions on gathering sizes for several reasons. Firstly, we note that a signifi-26

cant proportion of the superspreading events in the literature, including some of the most spectac-27

ular accounts, have occurred during social gatherings. Given the outsized role these events seem to28

play at the start of outbreaks, some have hypothesized that control and/or suppression of an emerg-29
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ing pathogen could largely be achieved via targeted reduction in mass gatherings. Secondly, several30

retrospective reports comparing confirmed COVID-19 cases and test-negative controls (COVID-31

19: Note by the Chief Medical Officer, Chief Nursing Officer and National Clinical Director, 2020;32

Fisher et al., 2020) have found an association between attending family and friends gatherings and33

infection with SARS-CoV-2, suggesting that gatherings may be important source of new cases.34

Thirdly, social gathering restrictions seem to be among the first and most frequent measures to35

be implemented, which perhaps can be explained by a perception that social gatherings have less36

social value than other gatherings that occur in venues such a schools and hospitals. Finally, while37

both the United States and European Centers for Disease Control recommended limiting the size38

and duration of gatherings (Center for Disease Control and Prevention (CDC), 2020; European39

Center for Disease Control (ECDC), 2020), the specific timing of when to implement restrictions40

and the numeric threshold separating “allowable” from “prohibited” gatherings generally did not41

have a clear scientific basis. This lead to dramatic differences in guidance across location and time.42

For instance, while most countries implemented limitations in the spring of 2020, the intensity and43

duration of these restrictions varied extensively from country to country (Roser et al., 2020) with44

maximum gathering sizes permitted ranging from 2 to 5000 and subject to frequent and somewhat45

erratic changes as the epidemic progressed.46

2 Theory47

As in the standard compartmental model, we consider the epidemic spread of a pathogen in a48

population which can be divided into three disjoint sets of individuals: susceptible and not yet49

infected (S), infected and infectious (I), or recovered, no longer infectious, and immune (R). As50

time passes, individuals in the population come into contact with one another and the pathogen51

spreads through contacts between susceptible and infectious individuals. Gathering size restric-52

tions limit the number of contacts that individuals have, but apply only to a subset of contacts53

that occur during social gatherings. Therefore, we categorize all contacts between individuals as54

either occurring during “gatherings”, i.e. non-household settings that are presumably affected by55

gathering size restrictions, or at home or other settings not affected by gathering size restrictions,56

and we focus on the former as the source of the contribution of gatherings to disease dynamics.57
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At each time point, individuals attend M gatherings of size K, where K is a random variable58

defined by some distribution f(k). To simplify matters here we include the possibility that an59

individual does not attend a gathering in f(k) through defining it as a gathering size of 1 so that60

the same distribution applies to everyone. We define X to be the number of incident cases. We61

assume for now that policies target the expected number of new infections that can be attributed62

to gatherings, E(X), which, using the law of total probability, can be written as:63

E(X) =
∑
k

E(X | K = k)f(k) (1)

where E(X | K = k) is the expected incidence of new infections at a given gathering size of K = k.64

This expression suggests that we could write the expected rate under an idealized restriction, that65

is a restriction that is strictly enforced such that no one attends a gathering with k > kmax as:66

E(Xkmax) =

kmax∑
k=1

E(X | K = k)fkmax(k) (2)

where the sum is now over the restricted range of gathering sizes and fkmax(k) is the distribution67

of gathering sizes after the restriction has been applied recognizing that it could differ from simply68

a truncated f(k) as people may respond to the restriction in different ways. Therefore, in order to69

estimate the potential impact of a gathering size restriction, we need two essential inputs: (1) the70

distribution of gathering sizes and (2) the relationship between gathering size and expected number71

of infections. Then, given a range of kmax values, policymakers could ideally target a specific72

reduction in new cases X∗, and select k∗ = max(kmax) such that X < X∗, perhaps weighing them73

against the cost of imposing the restriction.74

Starting with the second input, as we show in section A.1.1 of the Appendix, the expected75

number of incident cases X that occur at a gathering of size K = k is :76

E(X | K = k) = kps(1− (1− τ)kpi) (3)

where τ is the probability of transmission given contact, and ps and pi are the population propor-77

tions of susceptible and infectious individuals respectively. We assume susceptible, infectious, and78
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Figure 1: Plots of necessary components of effect of gathering size restriction. In panel
(a), we fix transmission parameters to following values pi = 0.01, ps = 0.99, τ = 0.08 and assume
power law behavior starts at kmin = 1.

recovered individuals attend gatherings at rates roughly equivalent to their population proportions79

and that everyone who attends a gathering comes into contact with all other attendees. Figure 1a80

plots this expression for example values of τ , pi, and ps. As intuition might suggest, it shows that,81

for a single gathering, larger gatherings produce more secondary infections than smaller gatherings82

and that this relationship is nonlinear as larger gatherings both increase the number of potential83

contacts and as well as the expected number of infectious individuals in attendance. Indeed, as84

shown in section A.1.2 of the Appendix, for small values of τ and pi that are typical of an infectious85

disease outbreak, i.e. |τkpi| � 1, we can use a Binomial approximation to simplify this to:86

E(X | K = k) ≈ k2pspiτ (4)

which is quadratic in the size of the gathering.87

As for the other input, the distribution of gathering sizes, empirical studies suggest that human88

contact distributions may be subexponential, or even scale-free or heavy-tailed, with considerable89

probability mass in the extreme tail of the distribution (Bansal et al., 2007; Barabási & Albert,90

1999; May & Lloyd, n.d.; Pastor-Satorras & Vespignani, 2001). This observation applies equally91

to distributions of gathering size, i.e. f(k), as most gatherings are small, but gatherings of tens92

or hundreds of thousands of individuals are possible. Several generative models of human social93
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interaction have been proposed to explain this phenomena based on random walks (Kelker, 1973)94

or attracting sites (Barabási & Albert, 1999). Figure 1b shows a few common examples of heavy-95

tailed distributions. In the extreme case, the limit or asymptotic behavior of these distributions96

can be characterized by a discrete power law of the form97

f(k) =
k−α

ζ(kmin, α)
, ∀k ≥ kmin (5)

where ζ(kmin, α) =
∑∞

n=0 (n+ kmin)−α is generalized zeta function and kmin is the threshold for98

power-law behavior. This has important implications as moments of power law distributions may99

not be finite under some parameterizations as the extreme mass in the tail leads to infinite sums or100

integrals. For instance, it is well known that the number of finite moments of power-law distributions101

is determined by the value of α, when α < 3 the distribution has finite mean but infinite variance102

and when α < 2 the distribution has no finite moments. Many observed phenomena exhibit power-103

law behavior with 2 ≤ α ≤ 3 (Clauset et al., 2009).104

Assuming that, in the range of kmax restrictions considered, a power law is a good approximation105

for the distribution of gathering sizes, and combining this with the results in equation 3 and 4, the106

expected rate of new infections under restriction simplifies to:107

E(Xkmax) =

kmax∑
k=1

kps(1− (1− τ)kpi)
k−α

ζ(kmin, α)

≈ pspiτ

ζ(kmin, α)

kmax∑
k=1

k2−α

(6)

Viewing the
∑kmax

k=1 k2−α as a weighted sum denoting the contribution of gatherings of size between108

1 and kmax to the rate of new infections yields the following insight: when α < 2 the contributions109

are increasing suggesting that larger gatherings contribute more to the rate of new infections than110

smaller gatherings and by extension there are diminishing returns to imposing lower restrictions;111

while, on the other hand, when α ≥ 2 contributions are flat or decreasing suggesting that smaller112

gatherings contribute more to the rate of new infections than larger gatherings and by extension113

there are increasing returns to imposing lower restrictions.114

In Figure 2 we plot an example of the relative rate of incident cases under a restriction which115
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Figure 2: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax for different power law distributions. Here we fix transmission parameters
to following values pi = 0.01, ps = 0.99, τ = 0.08 and assume power law behavior starts at
kmin = 1. We truncate the power law above gatherings of size 500 both to make the sum tractable
and given that gathering sizes must at minimum be less than population size. The figure shows the
relative rate of incident cases calculated using equation 6 and comparing restrictions with kmax-
level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident
cases at time t relative to unrestricted rate).

prohibits gatherings above size kmax for power law distributions of gathering size with different α116

values. Here, we see that when α is 2 or below, restrictions of larger gatherings quickly leads to a117

large reduction in cases; however, as α increases vastly more stringent restrictions are required to118

achieve meaningful reductions. This suggests that the empirical distribution of gathering sizes and119

the tail-behavior specifically, i.e. the frequency of very large gatherings relative to small ones, are120

important parameters in determining the optimal threshold for gathering size restrictions. As shown121

in section A.2.1 and A.2.2, these results are robust to variations in τ and pi and pr, respectively. In122

A.2.3 we relax the assumption that the distribution of gatherings follows a power law, and instead123

consider a log-normal distribution.124
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3 Application125

In the previous section, we showed the distribution of gathering sizes, and the tail-behavior more126

specifically, is an important determinant of the degree to which smaller or larger gatherings con-127

tribute to epidemic dynamics. In this section, we use observational data on the size of human128

gatherings from multiple sources to estimate the empirical power law behavior of gathering size129

distributions. We use data collected both during “normal” times and during the COVID-19 pan-130

demic as a reference for f(k) an fkmax(k) respectively. We estimate the effect of gathering size131

restrictions during the COVID-19 pandemic using the results from the previous section and empir-132

ical estimates of transmission parameters.133

Our data on gathering size distributions in the pre-pandemic period are from two primary134

sources: the BBC Pandemic study (Klepac et al., 2018) and the Copenhagen Networks Study135

(CNS) of university sources (Sekara et al., 2016). Both are described in more detail elsewhere.136

Briefly, the BBC Pandemic study is a citizen science project in which UK citizens self-reported137

daily contacts using a mobile app in 2018. We extracted the number of contacts made in a day138

by setting (home, work/school or other) for over 38,000 participants (Kucharski et al., 2020) and139

then divide by the gathering size to account for the over selection of large gatherings. In the140

Copenhagen Networks Study, the movement and contacts among approximately 1000 university141

students were intensively tracked and measured via Bluetooth, telecommunication networks, online142

social media contacts and geolocation over a 5 month period in 2014. In the supplement to the143

original study the authors report the distribution of 23,231 gatherings observed during the study144

period. A gathering was defined as groups of individuals in close physical proximity that persists145

for at least 20 minutes. We extracted the raw data for the probability of observing gatherings of146

different sizes (Supplementary Figure S9a) using WebPlotDigitizer, an online tool that allows the147

extraction of numerical data from graphs (Rohatgi, 2020).148
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Table 1: Descriptive statistics for empirical distributions of gathering size.

Data source N mean variance q90 q99 min max

BBC Pandemic

Home 16,524 2.3 1.4 4 6 1 10

Work / school 19,044 2.0 10.0 4 15 1 235

Other 19,459 2.0 5.5 4 12 1 201

Total 55,026 2.1 5.8 4 12 1 235

Copenhagen Networks Study 58,227 4.9 103.1 7 46 2 315

Table 1 provides the descriptive statistics for the empirical distributions of gathering sizes149

extracted from both sources. In all cases except for household sizes the variance is much greater150

than the mean which is indicative of overdispersion or a “heavy tail”. The maximum gathering sizes151

outside the household were between 200 and 315. The 90th and 99th empirical quantiles similarly152

suggest extreme skewness.153

Figure 3 plots the full distribution of gathering sizes from both sources using a log-log scale.154

In all contexts the majority of individuals have very few contacts. For work/school and social155

gatherings, a very long tail of individuals have very large number of encounters (up to 234 daily156

contacts at work). We plot both the empirical mass function and the complementary cumulative157

distribution function (CCDF), also often referred to as Zipf plot, noting that the second is generally158

preferred for distinguishing power-law type behavior. Typically, a CCDF plot from a power law159

should be linear on a log-log scale. Here we see that most contexts exhibit approximately linear160

behavior over significant range; however at the extreme right there may be some nonlinearity161

which may suggest the presence of an upper bound (for instance the gathering size cannot exceed162

population size). Interestingly, the distributions of gathering size reported in the Copenhagen163

Networks Study (CNS) and number of contacts reported in the BBC Pandemic study are similar164

in range and shape, despite having been measured using completely different methodologies at165

different times and locations.166

Next, we find the best fitting power law for the observed distributions using maximum likelihood.167

Using the poweRlaw (Gillespie, 2014) package in R, we estimate α as well as kmin representing the168
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Figure 3: Distribution of gathering sizes from the CNS and the BBC Pandemic study
by setting. Empirical distribution of gathering size from the CNS as well as the BBC Pandemic
study by setting (home, work/school, other and total). Panel (a) is a log-log plot of the empirical
probability that each size is observed. Panel (b) is the empirical complementary cumulative dis-
tribution function, i.e. the probability of observing size greater than or equal to k, and is often
preferred for understanding tail behavior.
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size beyond which the distribution exhibits power law behavior. For the latter, we use the approach169

of Clauset et al. (Clauset et al., 2009) and estimate it by finding the value which minimizes the170

Kolmogorov-Smirnov statistic. We estimate the standard errors for both using the bootstrap.171

Figure 4 shows the resulting power law fits for each of the data sources. The α values estimated172

range from 2.28 to 6.94, with all settings other than households between 2 and 4. The estimate173

for the Copenhagen Network study in particular is consistent with infinite second moments (i.e.174

infinite variance). However, visual inspection suggests that a single power law might not fit well175

in the extreme tail, with most settings exhibiting considerably lower observed frequencies than176

suggested by the best-fitting power law. This may be partially due to low cell counts or sampling177

variability in these extreme quantiles, or as discussed previously may be reflective of the fact that178

the true distribution is truncated with an upper bound on gathering size.179

Next, we attempt to estimate the effect of a hypothetical gathering size restriction by replicating180

the analysis shown in Figure 2 but substituting the empirical gathering size distributions. This181

would represent an idealized intervention in which everyone followed the restriction by not attending182

a gathering over the threshold, but their other gathering-seeking behavior is otherwise unaffected.183

Figure 5 shows the results for the distributions in each of the data sources. Here we see that,184

to achieve reduction in cases of 50% or more, restrictions must be set below 30 in most settings.185

Compared with the results in Figure 2, however, we see that the empirical distributions suggest186

a larger impact of restrictions on medium to large size gatherings, likely because the empirical187

distributions have slightly less mass in the extreme tail than would be suggested by a true power188

law. As shown in A.2.2, these results remain mostly unchanged when allowing values of pi and pr189

to vary.190

Finally, while taking the pre-restriction (and pre-outbreak) distribution such as in the analysis191

above can help one plan for extreme scenarios, it is clear that humans react to restrictions in192

complex ways that may not mirror the ideal discussed above. Therefore, we also extracted data193

from the CoMIX study (CMMID COVID-19 working group et al., 2020), which was designed as194

a deliberate follow on to the BBC Pandemic during the COVID-19 pandemic. In this study, a195

representative sample of 1,240 adults in the UK were asked about their contact patterns in the first196

week of the government-imposed ‘lockdown’ in March 2020. As before, we extracted the number197

of contacts made in a day by setting (home, work/school, or other). This additional data provides198
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Figure 4: Estimates of power law parameters for the Copenhagen Networks Study
(CNS) and the BBC Pandemic study by setting. Plot is complementary cumulative distri-
bution function versus gathering size with lines showing fitted power law distribution. Estimates for
α and kmin obtained using maximum likelihood for discrete power law using the poweRlaw package
in R.
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Figure 5: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax using different data sources for the distributions of gathering sizes.
Again we fix transmission parameters to following values pi = 0.01, ps = 0.99, τ = 0.08 but use
draws from empirical distributions in Figure 3. The relative rate of incident cases calculated using
equation 6 and comparing restrictions with kmax-level thresholds to unrestricted rate (e.g. a value
of 0.5 implies a 50% fewer per capita incident cases at time t relative to unrestricted rate) is shown.
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insight into the distribution of contacts under strong social distancing measures.199

Figure 6 shows the full distribution of gathering sizes on a log-log scale comparing CoMIX to200

the pre-pandemic “normal” recorded in the BBC Pandemic study. Although sample sizes were201

considerably lower in CoMIX, several interesting patterns emerge. First, the distribution of house-202

hold contacts under lockdown is almost identical to its pre-pandemic baseline, which is reassuring203

given household composition is largely unaffected by lockdown. Next, gatherings at work/school204

and other settings appear “clipped” relative to their pre-pandemic baseline and there now appears205

to be a preference for lower gathering sizes with a few outliers. This seems consistent with most206

people complying with order and a few who can’t (for instance because their occupation is among207

those deemed “essential”) or who refuse.208

4 Discussion209

As the COVID-19 pandemic has demonstrated, non-pharmaceutical interventions are an essential210

tool to limit the spread of infectious diseases, both in the absence of vaccines or effective ther-211

apeutics, and when facing surges that test capacity of health systems or the emergence of new212

variants. We have shown that, when considering limitations on gathering size, decision-makers213

should consider the distribution of gathering sizes in addition to local conditions when determining214

the optimal threshold. While a lot of attention has focused on large gatherings, we show that215

small gatherings, due to their frequency, can be important contributors to transmission dynamics.216

Using empirical data from previous studies, we find that gathering size distributions are in fact217

“heavy-tailed” but that meaningful reduction in new cases only occurs once restrictions are set218

quite low. In theory this conclusion should also apply to future emerging variants of COVID-19 as219

well as future epidemics other than COVID-19. Our conclusion aligns with that of Brooks-Pollock220

et al. (Brooks-Pollock et al., 2021) who have showed that large gatherings of 50+ individuals have221

relatively small epidemiological impact while small and medium-sized groups of 10 to 50 individuals222

contribute most to COVID-19 epidemics.223

Our work highlights the fact that more detailed data on human gathering sizes dynamics are224

needed, as datasets on this facet of social dynamics are extremely rare. This should include data on225

gathering size and duration across contexts and seasons as well as how distributions change during226
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Figure 6: Distribution of gathering sizes before/during UK lockdown from the CoMIX
study. Empirical distribution of gathering sizes by setting (home, work/school, other and total)
during UK lockdown in March of 2020 are shown in color as measured in the CoMIX study.
For comparison, the corresponding distributions as measured pre-pandemic in the original BBC
Pandemic study are shown in gray for each setting.
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the course of an outbreak. These data, if available to policy-makers, would allow for more tailored227

restrictions and potentially more effective interventions. They would also contribute to better228

understanding of micro-dynamics of transmission during an outbreak and better parameterization229

of infectious disease models. Continuously tracked, remotely sensed data from cell phones, with230

appropriate anonymization and protection of individuals, may be one avenue for collecting this231

information on a large scale. Researchers and policy-makers could gain from increased access to232

such data.233

Our model relies on multiple simplifying assumptions. Recognizing that violations are not equal234

and from the point of view of the policymaker the cautious approach is often the most prudent,235

where possible we have made effort to make conservative assumptions. First, by using a single236

probability we ignore many important heterogeneities in transmission risk (e.g indoor vs outdoor,237

use of face coverings, duration, ventilation, etc). However, as shown in A.2.1, this would only238

substantively affect our conclusions if heterogeneity varies with gathering size. For instance, if239

larger gatherings are more likely to be outdoor and people perceive them to be more dangerous240

and therefore adhere more strictly to masking and social distancing guidance then it’s possible that241

the per contact transmission risk may decrease with size of gathering, making restrictions on large242

gatherings even less effective relative to smaller ones. In this case, it would still be possible to apply243

the model presented, but specifying the transmission risk for each gathering size, which in practice244

may be hard to empirically validate.245

Second, we assume in the main analysis that the probability of transmission is constant across246

gathering sizes, which may not be reasonable for very large gatherings (except perhaps in the247

case of an airborne pathogen in an unventilated and crowded indoor space). Here our model clearly248

represents a worst case scenario where all individuals have contacts with all other attendees. It thus249

likely overestimates the contribution of large gatherings to the overall number of new infections.250

We show in a sensitivity analysis in A.2.1 how allowing τ to vary with gathering size may affects251

our conclusions.252

Third, we assume that susceptible, infected and recovered individuals are exchangeable, mix253

randomly, exhibit the same behaviour and attend gatherings at the same proportion as their propor-254

tion in the underlying population distribution. This may not be the case if, for instance, infectious255

people self-isolate upon developing symptoms or if there exists significant subsets of susceptibles256
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who avoid gathering s and significant recovereds who believe they are immune and therefore go to257

gatherings at rates above their population fraction. Again these heterogeneities in behavior will258

mostly affect our conclusions if they vary with size of the gathering. In particular, they may lead259

to substantially different conclusions if behavioral dynamics tend to favor transmission at larger260

gatherings, such as if a infectious individuals are more likely to attend large gatherings. Even if they261

vary with gathering size though, they must also overcome the relative rarity of large gatherings.262

For instance, it is plausible that for a given “super-spreader”, i.e. an individual with enhanced263

infectiousness either due to biology, timing, or sociability, their impact would scale with gathering264

size. Indeed, some of the most well-publicized super-spreading events have occurred at large gath-265

erings, such as choir practices (Hamner et al., 2020) or weddings (Mahale et al., 2020). However,266

these events are unlikely to contribute meaningfully to determination of restriction thresholds as267

they require the conjunction of two extremely rare events: a large gatherings occurring, and a very268

infectious ’super-spreader’ individual attending such a large gathering.269

Similarly, in estimating effect of a certain threshold, we assume that individuals respond to270

gathering size restrictions uniformly, with perfect compliance and that they do not adapt their271

social behaviours independently of the regulation, based on, for instance, their knowledge of local272

epidemic dynamics. This is obviously not true in practice, but most plausible deviations would tend273

to make our estimates an upper bound on the effect of restrictions above a certain size. However, if274

announcing any restriction is a sufficient signal that many opt to avoid any gatherings at all, that275

may lead to a large reduction in cases even at a relatively large threshold. This may be more likely276

at the start of an outbreak when people are still attempting to ascertain the seriousness of the risk.277

In practice, responses to restrictions have varied, both across places and at different points during278

the pandemic as enthusiasm wanes (Kishore et al., 2022; Petherick et al., 2021). Policy-makers279

should take this into account when determining the right threshold.280

Lastly, we assume all new infections to be equivalent, not considering heterogeneity in the281

impact of secondary infections. This assumption again may not be reasonable at the beginning of282

an epidemic when local transmission is not established and we might expect infections at larger283

gatherings to seed downstream cases in more diverse parts of the population/community. In this284

case although larger gatherings are less frequent they act as central nodes in the contact graph285

through which infection reaches sub-communities.286
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Our work is also subject to several limitations due to the data sources that we used. The three287

data sources (BBC Pandemic, CoMIX and CNS) had different aims, study designs and limitations.288

We assume they all provide good estimates of frequency of gathering sizes. In using the BBC Pan-289

demic and CoMIX study we approximate the size of gatherings by assuming that all daily contacts290

in a given context all took place in one gathering. The CoMIX study was conducted during the first291

week of lockdown in March 2020 in the UK and may not be representative of restrictions in other292

locations or times. The Copenhagen Networks Study studied university students in Copenhagen,293

a specific population that may not be representative of other populations. In the case of the BBC294

Pandemic and CoMIX data, a particular threat to our main conclusions might be measurement295

error that correlates with gathering size, for instance if people get worse at recalling or recording the296

size of larger gatherings we may underestimate their frequency and therefore their contribution to297

transmission dynamics. This is a major advantage of the CNS data which were remotely recorded298

by cellphone and gps devices.299
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A Appendix426

A.1 Theory427

A.1.1 Derivation of relationship between expected cases and gathering size428

Assuming fixed transmission probability τ for contacts between susceptibles and infectious indi-429

viduals, the number of secondary cases generated by a single infectious individual with Ks = ks430

susceptible contacts is binomially distributed, i.e.431

Xit | Ks = ks ∼ Binomial(ks, τ). (7)

If susceptibles, infectious, and recovered individuals attend gatherings at rates equivalent to their432

population proportions then attendance at a gathering of size K = k can be represented by a433

multinomial sampling model of the form434

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′) (8)

where ps = S(t)
N , pi = I(t)

N , and pr = R(t)
N . Under the model, the expected number of susceptibles435

is kps, the expected number of infectious is kpi, and the expected number of recovereds is kpr. To436

calculate the expected number of secondary cases, note that, on average, only the Ks susceptibles437

are at risk of infection and they are exposed to Ki infectious individuals. Then the probability that438

the Ks susceptibles “escape”, i.e. that they are not infected by any of the Ki infectious individuals,439

is (1 − τ)Ki and thus, by extension, the probability that they are infected by at least one of the440

Ki infectious individuals in attendance is 1− (1− τ)Ki . Therefore, the total number of secondary441

cases at a gathering of size K = k is442

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′)

X | Ks = ks,Ki = ki ∼ Binomial(ks, 1− (1− τ)ki)

(9)

and taking iterated expectations, the expected number of secondary cases given a gathering of size443

K = k is simply444

E(X | K = k) = kps(1− (1− τ)kpi). (10)
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For a more intuitive way to think about this equation, notice that kps is the expected number445

of susceptibles and kpi is the expected number of infectious individuals; the expression kps(1− (1−446

τ)kpi) is then just the expected number of susceptibles times the probability of being infected by447

any of the infectious individuals who attend, where the latter is equivalent to the one minus the448

“escape” probability, i.e. the probability that no susceptible is infected by any of the infectious449

individuals expected to attend.450

A.1.2 Binomial Approximation451

More specifically, when |τkpi| � 1 a Binomial approximation gives

(1− τ)kpi ≈ 1− kpiτ

and thus

kps(1− (1− τ)kpi) ≈ kps(1− (1− kpiτ)) ≈ k2pspiτ

A.2 Sensitivity analyses452

In the main analysis, for simplicity of presentation and to fix concepts, we consider fixed values of τ453

as well as ps, pi, and pr. While we attempted to use values consistent with the literature for COVID-454

19, in practice these may vary across settings and for different pathogens. Here we conduct a series455

of sensitivity analyses to explore the role that these parameters play in determining impact of456

gathering size restrictions. In the main text, we assumed that the distribution of gatherings follows457

a discrete power law distribution. Here, we instead consider another heavy-tailed distribution, the458

log-normal distribution and show it fits to the various empirical data.459

A.2.1 Varying τ460

The probability of transmission given contact, τ , can vary either in constant value —for instance,461

if a new variant emerges that is more infectious— or more often it may simply be heterogeneous462

across settings —for example, a crowded indoor gathering versus an outdoor gathering. In the case463

of the former, in Figure A.1 we range τ over a suitable range, for instance 0.01 to 0.25 and find464

that our results are not substantially changed. We chose 0.01 as a lower bound, 0.08 as a medium465
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value from the secondary attack rate during meals (Bi et al., 2020), and 0.25 as a higher bound466

from the secondary attack rate in households during the Omicron wave (Jørgensen et al., 2022). In467

the case of the latter, we can consider τ to be drawn from a distribution reflecting the population468

of gathering settings at any given time. Given that τ must be between 0 and 1, a natural starting469

point for incorporating heterogeneity in τ into our prior model is to draw it from a beta distribution,470

i.e.471

τ ∼ Beta(µ, φ)

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′)

X | Ks = ks,Ki = ki, τ ∼ Binomial(ks, 1− (1− τ)ki)

(11)

where here we’ve parameterized it such that µ is the mean of the beta distribution and φ is a472

dispersion parameter representing how concentrated values of τ are around the mean1. For now,473

we assume that τ is independent of gathering size. Figure A.2 shows example draws from beta474

distributions with same value of τ but different dispersion. As the dispersion parameter increases,475

τ is increasingly concentrated around the mean, as it decreases τ is more variable. In practice,476

increasing variability in τ would indicate that there are a small number of gatherings with very477

high transmission and a larger number with little to no transmission.478

We show the effects of dispersion in τ on our conclusions regarding gathering size restrictions in479

Figure A.3. Given that our derivation of equation 10 relies only on the mean of τ and we assume480

that tau is independent of gathering size, we should expect that the expected reduction in incident481

cases for a kmax restriction is unchanged by varying φ as482

E(X | K = k) = kps(1− (1− E(τ))kpi) = kps(1− (1− µ))kpi). (12)

Practically, this implies that as long as τ is independent of gathering size (and the mean value of483

τ is defined) our long run conclusions about the effect of gathering size restrictions is unchanged.484

However, as highlighted by the shaded regions of the 95% simulation intervals, increasing variability485

in τ leads to greater variance in the effect of restrictions. In terms of policy-making, if there’s strong486

evidence for heterogeneity in τ decision-makers may want to consider planning with these intervals487

1The canonical definition of the beta distribution is in terms of shape parameters α and β where f(x) =
1

B(α,β)
xα−1(1 − x)β−1. Here we use the following transformation µ = α

α+β
and φ = α+ β, where φ is sometimes also

called the sample size.
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Figure A.1: Effect of different values of constant τ on relative rate of incident cases
under kmax gathering size restrictions for different power law distributions. Here we
re-create Figure 2 but vary the values of the constant τ from 0.01 to 0.25.
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Figure A.2: Examples of the beta distribution with µ = 0.08 under different values of
φ. Based on 10,000 draws from the beta distribution with µ fixed to 0.08; dashed line shows the
position of µ.
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Figure A.3: Effect of dispersion in τ on relative rate of incident cases under kmax
gathering size restrictions for different power law distributions. Here we fix transmission
parameters to following values pi = 0.01, ps = 0.99, but allow τ to vary. We draw 10,000 values
of τ from a beta distribution with µ = 0.08 and varying φ. As previously, the figure shows the
relative rate of incident cases calculated using equation 6 and comparing restrictions with kmax-
level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident
cases relative to unrestricted rate). The lines represent the mean relative rate across all simulations
while the shaded areas show the 95% simulation intervals.

in mind (e.g. using upper bound from an appropriately chosen interval such that there’s an p%488

chance that restriction leads to reduction of desired size).489

Finally, we consider what happens when τ is allowed to vary with the size of gathering. Given490

the paucity of data, it’s unclear what one might expect the relationship to be between τ and491

gathering size a priori. On the one hand, τ could increase with gathering size if larger gatherings492

tend to be longer or in settings more conducive to spread. On the other hand, one could make493

an equally compelling case that smaller gatherings, which may be in more intimate settings may494

have higher τ . In their paper describing the Copenhange Network Study data, (Sekara et al.,495

2016) find no association between the size and duration of gatherings, suggesting no relationship496

on at least one proxy for τ . Absent reliable sources, here we vary the relationship across three497

representative scenarios: (1) τ decreases with gathering size K, (2) τ independent of gathering498

size K, τ increases with gathering size K. To keep it simple, we group gatherings into three499
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Figure A.4: Effect of relationship between τ and gathering size k on relative rate of in-
cident cases under kmax gathering size restrictions for different power law distributions.
Here we consider three scenarios for how the transmission probability τ varies with gathering size
k. For τ decreasing with k, τ = 0.25 for gatherings with less than 10 people, τ = 0.08 for gatherings
with 11 to 50 people, and τ = 0.01 for gatherings with more than 51 people. For τ increasing with
k, τ = 0.01 for gatherings with less than 10 people, τ = 0.08 for gatherings with 11 to 50 people,
and τ = 0.25 for gatherings with more than 51 people. The solid line is the reference case where
τ = 0.08 at all sizes.

mostly arbitrary groupings (less than 10 people, 11 to 50 people, and larger then 51 people) and500

choose τ for each from τ ∈ {0.01, 0.08, 0.25}. Figure A.4 shows the results. Relative to our results501

presented in the main text, represented by the solid line where τ is independent of k, if τ decreases502

with gathering size our estimates are too optimistic and harsher restrictions would be required503

to achieve the same reductions. If τ increases with gathering size, then our estimates are too504

pessimistic and comparable reductions could be achieved with looser restrictions on size.505

A.2.2 Varying pi and pr506

The proportion of susceptible, infected and recovered individuals in each gathering are inputs to507

our gathering size restriction equation. In the main analysis, we fix values of ps, pi and pr to508

0.99, 0.01 and 0 respectively, which seemed reasonably illustrative for our purposes. However, in509

sensitivity analyses presented below, we vary the values of pi between 0.001, 0.01 and 0.1; and that510
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of pr between 0, 0.25 and 0.75. Across all nine combinations of pi and pr, the value of ps is equal511

to 1− (pi + pr) and thus varies from 0.15 to 0.999.512

As shown in Figure A.5, for different power law distributions, the value of pr seems to have only513

a small impact on the relative rate of incident infections comparing a scenario with restrictions514

to scenarios without. However, values of pi seem to have a larger effect, especially for power law515

distributions with smaller α values. For very high proportions in infected individuals (i.e. pi = 0.1),516

a given gathering size restriction leads to a lower relative reduction in the number of incident cases,517

when compared to lower proportion on infected individuals (i.e. pi = 0.01 or 0.001). This makes518

sense as with such high proportion of infected attendees, and under distributions of gathering sizes519

where larger gatherings are frequent, most large gatherings will lead to a substantial number of520

infections. It is only when considering distribution of gatherings where larger gatherings are rare521

(i.e. α = 3.5 or 4) that the proportion of infected individual attending pi matters less, as in smaller522

gatherings less individuals can be newly infected.523

As shown in Figure A.6, across all five empirical distribution of gathering sizes, the values524

of pi and pr have very limited impact on the the relative rate of incident cases under restriction525

to gatherings of size kmax compared to that in absence of restrictions. Indeed, the dashed lines526

representing the varying values of pi overlap in most plots, only showing a slight shift when using527

the distribution derived from CNS data source. Similarly, ranging values of pr also appears to have528

minor impact.529

Overall, these results suggest that the proportion of susceptible, infected and recovered individ-530

uals attending gatherings has limited to no effect on our relative reduction in incident cases when531

implementing restrictions. This suggests that our results may be robust to those parameters that532

our conclusion may hold for various stages of epidemics.533

A.2.3 Alternative gathering size distributions534

In the main text we illustrate our theoretical points using the discrete power law distribution and

then follow them up with results using empirical distributions. In practice we find that, while

informative from a theoretical standpoint, a power law may not provide the best fit empirically.

Therefore, when informing policy, rather than intuition, we encourage the use of realistic and

preferably empirically-derived distributions. However, such data may not always be available and
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Figure A.5: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax for different power law distributions and varying the values of pi and
pr. The value of pi varies between 0.001, 0.01 and 0.1. That of pr varies between 0, 0.25 and 0.75
and ps is equal to 1 − (pi + pr). τ is equal to 0.08. Similarly to Figure 2, we assume that power
law behavior starts at kmin = 1 and truncate the power law above gatherings of size 500 both to
make the sum tractable and given that gathering sizes must at minimum be less than population
size. The figure shows the relative rate of incident cases calculated using equation 6 and comparing
restrictions with kmax-level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer
per capita incident cases at time t relative to unrestricted rate).
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Figure A.6: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax using different data sources for the distributions of gathering sizes and
varying the values of pi and pr. The value of pi varies between 0.001, 0.01 and 0.1. That of
pr varies between 0, 0.25 and 0.75 and ps is equal to 1 − (pi + pr). τ is equal to 0.08. Similarly
to Figure 5, we use draws from empirical distributions. The figure shows the relative rate of
incident cases calculated using equation 6 and comparing restrictions with kmax-level thresholds to
unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident cases at time t relative
to unrestricted rate).
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Figure A.7: Examples of the log-normal distribution with µ = 0 under different values
of σ. Based on 10,000 draws from the beta distribution with µ fixed to 0.

thus for completeness here we also consider other heavy-tailed distributions. A relatively common

heavy-tailed alternative is the log-normal distribution, i.e.

f(k) =
1

k
√

2πσ2
exp

{
−(log k − µ)2

σ2

}
,

where the parameters µ and σ2 describe the mean and the variance of a log-transformed normal535

random variable. Figure A.7 provides some examples of parameter values with increasing tail mass.536

As in the main text, we fit the log-normal distribution to the empirical distributions from the537

BBC Pandemic and Copenhagen Networks Study using maximum likelihood. We again consider the538

possibility that the empirical data may only follow a log-normal distribution above a certain lower539

threshold (kmin). Figure A.8 shows the best fitting log-normal distributions and their parameter540

values. Visually the log-normal distribution seems like a better fit than the discrete power law541

considered in the main text, mostly because there does seem to be some nonlinear drop-off in542

the extreme tails. However, this could also reflect influence of measurement error2 and sampling543

variability in the extreme tail. We can test this using Vuong’s likelihood ratio test which compares544

the Kullback-Leibler criteria for the two fits. In Table A.1, we find strong evidence that the log-545

2For instance, BBC Pandemic dataset has individuals record their daily contacts. It’s likely that they are better
at estimating small group sizes relative to big ones and may lump or round estimates for larger groups.
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Figure A.8: Estimates of log-normal parameters for the Copenhagen Networks Study
(CNS) and the BBC Pandemic study by setting. Plot is complementary cumulative distri-
bution function versus gathering size with lines showing fitted power law distribution. Estimates for
α and kmin obtained using maximum likelihood for discrete power law using the poweRlaw package
in R.

normal is a better fit for all but the household contacts.546
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Table A.1: Vuong’s test comparing discrete log-normal and power-law distribution fits
to empirical data on gathering size.

Data source R-statistic p-value

BBC Pandemic

Home 1.24 0.216

Work / school 6.66 <0.001

Other 5.37 <0.001

Total 4.20 <0.001

Copenhagen Networks Study 5.89 <0.001

Notes: R-statistic is the ratio of log-likelihoods of the dis-

crete log-normal and power-law fits, positive values favor the

log-normal distribution. p-values are for two-sided hypothesis

that log-normal is a better fit.
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