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ABSTRACT: 13 

A droplet of blood, when evaporated on a surface, leaves dried residue—the fractal patterns 14 

formed on the dried residues can act as markers for infection present in the blood. Exploiting 15 

the unique patterns found in the residues of a naturally dried droplet of blood, we propose a 16 

Point-of-Care (POC) diagnostic tool for detecting broad-spectrum of bacterial infections 17 

(such as Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, 18 

Acinetobacter baumannii, and Pseudomonas aeruginosa, Salmonella Typhi) in blood. The 19 

diagnosis process we propose is straightforward and can be performed with the following 20 

steps: A droplet of blood (healthy or infected) of volume range 0.5 to 2 μl is allowed to dry 21 

on a clean glass surface and is imaged using a conventional optical microscope. A computer 22 

algorithm based on the framework of convolution neural network (CNN) is used to classify 23 

the captured images of dried blood droplets according to the bacterial infection. In total, our 24 

multiclass model reports an accuracy of 92% for detecting six bacterial species infections in 25 

the blood (with control being the uninfected or healthy blood). The high accuracy of 26 

detecting bacteria in the blood reported in this article is commensurate with the standard 27 

bacteriological tests. Thus, this article presents a proof-of-concept of a potential futuristic tool 28 

for a rapid and low-cost diagnosis of bacterial infection in the blood.  29 

INTRODUCTION: 30 

Antimicrobial resistance (AMR) has become a cause of global concern, aggravated by a 31 

lack of data on the different mechanisms and factors causing its emergence and spread. 32 
According to a WHO report, bacterial infections alone cause nearly 1 million deaths per year 33 

worldwide; this number is estimated to increase to 10 million per year by 2050, owing to 34 
AMR1. Entero-pathogens (such as Salmonella Typhi) and ESKAPE (Enterococcus faecium, 35 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 36 
aeruginosa, and Enterobacter aerogenes)  pathogens are the deadliest, and every passing 37 
year they cause millions of infections and thousands of deaths worldwide2–6. These bacteria 38 
are clinically relevant strains causing ~42% bloodstream infection and have been associated 39 
with significant mortality and morbidity7,8. The WHO report lists these pathogens as priority 40 

antibiotic-resistant pathogens as they are associated with a significant amount of mortality 41 
and morbidity due to the emergence of multiple drug resistance (MDR) and extensive drug 42 
resistance (XDR) strain6. Even developed economies like the United States9 and other 43 
European countries10 are finding it difficult to cope with the increasing AMR; an estimated 44 
cost of billions of dollars is attributed to the health care expenditure of hospital-acquired and 45 
community-acquired AMR infections9. The first step to stop the spreading of infection would 46 
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be to diagnose it. Timely diagnosis of the causative organism and subsequent treatment of 47 

bacterial infection can save millions of lives and inhibit the generation of various drug-48 
resistant strains. “Test, isolate (the person infected), and treat” is the primary formula used by 49 
advanced countries to stop the spread of infection, as evidenced during the Global COVID-19 50 

pandemic11. Thus, it is crucial to test rapidly to prevent the further spread of infection and any 51 
possible outbreak.  52 

Since the abovementioned bacterial strains (Enteropathogens and ESKAPE pathogens) 53 
majorly cause bloodstream infections12,13 and can mainspring changes in the composition and 54 
fluid properties of the blood, it is prudent to test blood for diagnosis of these infections. 55 
Moreover, blood profile indicates the overall health of the individuals; thus, it is a general 56 
practice to test blood for several abnormalities, including bacterial infections. 57 

Conventionally, various tests and investigations are undertaken to diagnose diseases in 58 
blood—such as a complete blood count, chemistry profiling of urea and electrolytes, level of 59 

C-Reactive Protein (CRP), glucose, and coagulation screen, to name a few. Several 60 

biomarkers have been reported in the literature to diagnose sepsis14, such as pro-61 
inflammatory and anti-inflammatory cytokines and chemokines, altered cell surface marker 62 
of immune cells. One of the main drawbacks of these markers is that they have low 63 
specificity and high cost associated with high-end technique requirements for the detection15. 64 

The gold standard for bacterial infection diagnosis is bacteriological culture and staining16. 65 
Infectious agents are isolated and identified using various selective and differential culture 66 

media. However, bacteriological culture diagnosis of the infection is often time-consuming 67 
(require up to 48 hours). Alternatively, polymerase chain reaction (PCR) based diagnostics 68 

are faster than standard bacteriological culture-based methods. Nonetheless, due to high 69 
sensitivity, it often can give false-positive results. Another major disadvantage for PCR-based 70 
detection involves too high cost and specialized instrumentation and setup requirement, 71 

which may not be feasible in semi-urban or rural areas17–20. Therefore, there is an urgent need 72 

for innovative solutions to create accurate, low-cost, rapid diagnostic tools to detect bacterial 73 
infections in the blood.  This article addresses the above problems by providing a simple 74 
method to rapidly detect a broad spectrum of bacterial infections in the blood (with a 75 

turnaround time of less than 15 minutes) by leveraging the unique patterns formed on the 76 
residue of the dried blood droplets.  77 

With the advent of fundamental research on droplet evaporation and colloidal self-78 

assembly in droplets in the past few decades, the dried precipitates of biological fluids have 79 
been deeply studied21–30. A few of these studies have found applications in biomedical 80 

diagnostics31–34. The competitive interaction of multi-component elements in biological fluid 81 
like blood leads to the formation of rich patterns on the dried droplet precipitate35 such as 82 
distinctive radial, spiral, and tangential cracks, color variations, varying thickness of the 83 

coffee rings, finger formations, etc. (Refer to image S1 in the supplementary information for 84 

the image of a dried droplet of blood taken from a healthy volunteer). These features depend 85 

on the properties of the fluid (and thereby the components present in it), which in turn can be 86 
related to the health of a person. Notably, in blood droplets, it has been shown previously that 87 

the flow inside the droplet is driven by Marangoni, wettability, and natural evaporation leads 88 
to the formation of distinctive patterns on the dried residues of the drop for anemic and 89 
hyperlipidemic blood samples36–38. Besides, the final dried blood droplet pattern is 90 

susceptible to drying conditions such as temperature39 and humidity40, placement of blood 91 
droplet41 (gentle or with impact), and depends on several other factors such as blood groups42, 92 
ethnicity43, age44, gender43, size,  shape, and mobility of cells45. Further, blood infection leads 93 
to cellular changes such as Leucocytosis63 or leukopenia, and biochemical changes include 94 
markers released upon red blood cell lysis or white blood cell lysis63. Thus, the blood 95 
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carrying the infection would also exhibit different properties (compared to the healthy blood), 96 

leading to a unique pattern formation on the dried blood drop46; for example, it is possible to 97 
detect malaria in dried blood droplets using a simple light microscope imageing47.  98 

 However, the differences in the final pattern on the blood droplet residue could be due to 99 

several reasons, and markers for an infection in these patterns can be subtle. Thus, the human 100 

interpretation of optical images of dried blood droplets for disease diagnosis can be prone to 101 

errors; it is inevitable to use computer-assisted diagnosis. Also, the use of computers for the 102 

diagnosis will lead to a rapid and more accurate diagnosis. Bio-Medical diagnostics have 103 

extensively used Deep learning (DL) and Convolutional Neural networks (CNN). For 104 

example, with the help of images generated by CT scans, breast cancer, lung nodule, and 105 

segmentation can be detected using CNN and DL19-27. These computer models reported 63- 106 

85% accuracy (AlexNet 63.98% 28, DenseNet 80.7% 29, and Wang et al. 85% 30), but the 107 

training data set had very few runs (less than five runs). Recently, Machine Learning (ML) 108 

analysis was used to discriminate dried blood droplet patterns with varying physiological 109 

conditions, i.e., changes in dried blood droplet patterns before or after physical exercise of the 110 

volunteers were detected using ML with a 95% prediction accuracy48. This demonstrates that 111 

ML is a potent tool to classify patterns formed by blood droplets with even slight changes in 112 

blood chemistry induced by the physical exercise of volunteers. However, it remains unclear 113 

if the ML or DL can detect a wide variety of bacterial pathogens in the blood.  114 

The current article presents a proof-of-concept of an alternative low-cost and rapid point-of-115 

care diagnostic tool by imaging a dried droplet of blood using simple optical microscopy. It 116 
has been demonstrated that a wide range of deadly pathogens such as (Enterobacter 117 
aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and 118 

Pseudomonas aeruginosa, Salmonella Typhi) present in the blood can be detected using the 119 

framework of CNN. The diagnostic procedure is described as follows: An image of a dried 120 
blood droplet (that may contain the target infection) on a glass substrate is captured using an 121 
optical microscope. The captured image is fed into an in-house developed computer 122 

algorithm that predicts the possible infection based on CNN architecture. Our model reports 123 
an accuracy of 92% for distinguishing the infection of the abovementioned bacterial species 124 

in the blood. The computer algorithm for this application is developed by training and testing 125 
the algorithm in a supervised learning environment with a large number of images of blood 126 

droplets (~35,000 images), whose status of infection is known apriori. The model accuracy 127 
remains invariant over the large dataset.  128 

RESULTS AND DISCUSSION: 129 

         Blood collection from the volunteers is detailed in the experimental procedure section. 130 

The blood is spiked with bacteria in-vitro (individual bacterial species are spiked in different 131 

vials of blood (Fig.1 (a) and (b)) - Enterobacter aerogenes (EA), Staphylococcus aureus 132 

(SA), Klebsiella pneumoniae (KP), Acinetobacter baumannii (AB), Pseudomonas aeruginosa 133 

(PA)), Salmonella Typhi (ST)). The unspiked blood sample is used as a control (C) against 134 

the abovementioned spiked samples, i.e., it does not contain any bacteria and is considered a 135 

healthy blood sample. These samples are incubated for 24h at 37oC.  Each blood sample in 136 

the vials (including the control) is considered an individual class and labeled accordingly (see 137 

Fig. 1(b)). Several hundred droplets (of volume 0.5 to 2 μl) of blood samples 138 

(spiked/unspiked) are deposited on a clean glass slide on a given day and allowed to 139 

evaporate in the controlled atmospheric condition (26 ±5 oC and 45 ±10% RH) (Fig.1 (c) and 140 
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(d)). The droplets are imaged using a conventional optical microscope—a total of 35000 141 

images are acquired (number of images in each class (~5000 images of each class). Sample 142 

images of the dried blood droplet of the glass slide spiked with different bacteria, and the 143 

control (unspiked) is shown in Fig.1 (e). The blood droplet evaporates in constant contact 144 

radius (CCR) mode as the droplet remains pinned throughout evaporation (irrespective of any 145 

class). The droplets generally assume the shape of a spherical cap as the Bond number (Bo) is 146 

<<1 and the dried residue is of a circular shape. However, few droplets show a shape 147 

disparity due to errors in dispensing the drop from the micropipette. Thus, amongst the nearly 148 

47,000 images taken, about 13,000 images are discarded to disregard the shape disparity of 149 

the droplet. The analysis in this article is based on 34469 images considered after filtration. It 150 

is evident from Fig.1 (e) that it is difficult to classify the blood droplet residues according to 151 

the bacteria present in them from a visual inspection of the images. Hence, we have 152 

developed an image classification computer algorithm using CNN to recognize different 153 

classes.  154 

 155 

Figure 1. Evaporation triggered pattern formation in infected and healthy blood 156 

droplets. (a) 15 ml of blood is collected from a healthy volunteer in vacutainer tubes. (b) 157 

the collected blood is infected with bacteria (in-vitro) and is labeled as follows: 158 

Enterobacter aerogenes - EA, Staphylococcus aureus - SA, Klebsiella pneumoniae - KP, 159 

Acinetobacter baumannii - AB, Pseudomonas aeruginosa - PA, Salmonella Typhi -ST. 160 

The blood sample that does not contain any infection is considered as a control and is 161 

labeled as - C . All the samples are incubated for 24h at 37o C. The individual labels are 162 

referred to as “class”. (c) A few hundreds of droplets of 0.5-2 μl of a known sample (as 163 

labeled in (b)) are gently placed on clean glass slides using a micro-pipette. The 164 
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individual droplets are placed far apart (Lc) such that there is no vapor-mediated 165 

interaction between them. (d) The deposited droplets are allowed to evaporate in an 166 

enclosed chamber. The evaporation profile is shown in the zoomed-in image of the 167 

droplet, with the evaporation flux being maximum at the edge and minimum at the 168 

center of the drop. (e) Sample images of dried blood droplets labeled according to their 169 

class (the respective label is on top of the image). The label at the top of the image 170 

indicates the species of bacterial infection in the blood. The last image in the row is not 171 

infected with bacteria and thus is the control. 172 

The algorithm is developed in Python programming language and uses seven libraries to 173 

analyze the data set: NumPy49, Keras50, Matplotlib51, Seaborn52, Scikit53, Tensorflow54, and 174 

OpenCV55 (Refer to Fig. 2(a), Matplotlib, Seaborn are for plotting the data). The data set 175 

(captured images of blood droplets) is imported and labeled according to the given class. 176 

Prior to analysis, the image data set is segregated in the ratio of 80:20 for training and testing, 177 

respectively (see Fig. 2(b)). This segregation is done randomly to avoid any bias. The images 178 

are further pre-processed using a series of operations using the ImageDataGenerator function 179 

in the Keras library to maintain uniformity for variables like contrast, color, and positioning 180 

of the drop in the image. The processed images are discretized and equalized into an array of 181 

numbers (vector). However, analyzing this data on traditional computing infrastructure (the 182 

hardware used is Intel(R) Core i7 2.90 GHz 64 GB RAM) is a challenge as the volume of 183 

data generated by the images is very large. 184 

 185 

Figure 2. The overall design of the CNN algorithm used to train the computer to classify 186 

images of the residues of dried blood droplets according to their classes. (a) The 187 

algorithm imports standard libraries used for CNN. Importantly, NumPy49, Keras50, 188 

Tensorflow54, OpenCV55, and Seaborn52 are imported libraries, to name a few. (b) The 189 

imported image data set consisting of ~35000 images are labeled as per their respective 190 
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classes. The image dataset is divided into the training and testing sets in the ratio 80:20, 191 

respectively. The model is trained using the training data set and is validated using the 192 

test dataset. The test dataset is not used during training, thus ensuring no data leakage 193 

from the test dataset. (c) The image data set is converted to a number array (vector) and 194 

analyzed using multiple layers. Model parameters such as epochs, kernel size for 195 

convolutional layers, image size, and learning rate are fed into the model, and the model 196 

is trained using the training set. The model makes a prediction using the testing dataset. 197 

Iterations are repeated with a new set of values for model parameters until the highest 198 

possible accuracy is achieved.  199 

Hence the algorithm is developed in a two-step process. First, the model is optimized 200 

for binary classes, i.e., the algorithm is trained to distinguish between any two classes with 201 

high accuracy. Since there are seven classes, the model for 7C2 binary classes is optimized 202 

(see Fig. 3). Second, the parameters used for optimizing the binary classes (such as epochs - 203 

the number of times the algorithm iterates the whole dataset for training, kernel size for 204 

convolutional layers51, image size, and learning rate - the variation in the model with updated 205 

weights) are used in the multiclass model with all the classes included, as shown in Fig. 3 (7 206 

classes including the control case). While the basic structure of the algorithm remains the 207 

same, the parameters optimized for binary classes are used as a template for the multiclass 208 

model with all the classes.  209 

To examine the algorithm for its ability to distinguish between the binary classes, the 210 

vector output of the processed images from any two classes is input into the CNN Model. The 211 

CNN model consists of the following layers: convolution layer51, pooling layer56, dropout 212 

layer52, flattening layer53, and fully connected layer54 (Refer to Figure 2(c)). The modeling 213 

parameters such as filters used and kernel size in the convolution layer, the prevention of 214 

overfitting the data in the dropout layer, and units in the dense layer50 have a crucial role in 215 

improving the overall accuracy of detection. The values of epochs, learning rate, kernel and 216 

image size for which the highest accuracy of prediction is achieved are considered optimized 217 

values. Using the trial and error method, the optimization of the model (for the given vector) 218 

is achieved by setting the values of epochs, learning rate, kernel size, and image size -  50, 10-219 
4, 9×9, and 256 pixels, respectively. The trained model is tested using the test image data set 220 

(20 % of the segregated image data set for testing) and the results of accuracy, precision, and 221 

recall for 21 binary classes are given in table 1. 222 
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 223 

Figure 3. Schematic representation of the two-step development of the model used in the 224 

article. Optimal model parameters such as the epoch, learning rate, image size, and 225 

kernel size for the convolution layer obtained from the 7C2 binary classes are adopted 226 

into the multiclass model consisting of seven classes.  227 

Table 1: Accuracy, precision, and recall values for 7C2 Binary classes 228 

Binary class Accuracy Precision Recall 

AB/ EA 0.97 0.97 0.96 

AB/KP 0.84 0.96 0.92 

AB/PA 0.89 0.96 0.95 

AB/SA 0.91 0.95 0.93 

AB/ST 0.92 0.99 0.98 

AB/C 0.85 0.91 0.92 

EA/ KP 0.98 0.98 0.98 

EA/PA 0.88 0.95 0.96 

EA/SA 0.92 0.92 0.92 

EA/ST 0.94 0.98 0.97 

EA/C 0.98 0.98 0.98 

KP/PA 0.92 0.93 0.92 

KP/SA 0.91 0.9 0.92 

KP/ST 0.93 0.94 0.94 

KP/C 0.80 0.85 0.81 

PA/SA 0.96 0.96 0.96 

PA/ST 0.92 0.98 0.97 

PA/C 0.92 0.94 0.93 

SA/ST 0.98 0.98 0.98 

SA/C 0.88 0.9 0.88 

ST/C 0.92 0.93 0.92 

The performance of the model is gauged importantly by the following output parameters: 229 

accuracy, loss, precision, and recall. The accuracy of the model is the ratio of correctly 230 
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predicted to the total samples. The loss is the summation of errors made in prediction by the 231 

model on the training and test image datasets (see Fig. 5 (b)). The precision is the percentage 232 

of actual positive samples to the predicted positive samples (which may be correct or 233 

incorrect). Recall (sensitivity) is the ratio of correctly predicted positive samples out of total 234 

positive samples. As shown in Table 1 (for binary classes), the accuracy, precision, and recall 235 

range from 80- 98% to 85-98% and 81-98%, respectively. The model parameters used for the 236 

binary classes are considered to be optimized as the accuracy achieved for binary classes is 237 

maximum for the given image data set. The optimized parameters used by the model for 238 

binary classes are introduced into the multiclass model containing all the classes. The 239 

algorithm is iterated for the multiclass model with the optimized parameters.  240 

 241 

Table 2: Accuracy, precision, and recall values of a multiclass model consisting of 7 242 

classes 243 

Class Accuracy Precision Recall 

EA 

 

0.92 

0.97 0.96 

SA  0.94 0.99 

KP 0.96 0.9 

AB  0.91 0.88 

PA  0.91 0.91 

ST  0.95 0.99 

C  0.81 0.98 

Since the model is trained with the training image dataset, it (the training image 244 

dataset) should fit the model accurately upon validation. Fig. 4 (a) shows that this model has  245 

97% accuracy when validated with the training image dataset. Subsequently, if the training 246 

image dataset of only one of the classes fed to the algorithm is correct, the accuracy of the 247 

model is stunted to 1/7 (refer to Fig. 4(b)). Thus, the model predicts appropriately for the 248 

trained image dataset. The test image data set is unknown to the trained model. Thus, the 249 

model is validated using the test image data set to mimic a real-life scenario. Upon validation, 250 

the precision and recall values range from 88 to 99% and 81 to 97%, respectively, for 251 

different classes (see table 2). The overall accuracy of the multiclass model achieved is 92 % 252 

(see table 2). The overall accuracy of the model is calculated by averaging the values of 253 

precision of the individual classes through their equal shared weights. The loss curve in Fig. 254 

5(b) signifies the reduction of signal noises as the training proceeds.  255 
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 256 

Figure 4. Plots of validation curve for the multiclass model using training image dataset. 257 

(a) accuracy of the model validated using a training image set inclusive of all seven 258 

classes. (b) The accuracy of the model with only one dataset out of seven classes is 259 

correct. Thus the accuracy of the model is ~1/7 (blue line in the graph). 260 

 261 

 262 

Figure 5. Plots of (a) Accuracy curve and (b) loss curve of the multiclass model 263 

The precision of the multiclass model varies widely and can be classified based on its range. 264 

(1) The precision of class C is low <90%. (2) The precision of classes AB, PA, SA, and ST is 265 

between 90% to ≤95%. (3) EA and KP have precision >95%. The values of precision 266 

obtained in binary classes have a similar range for the given bacteria. For, e.g., binary classes 267 

of - EA and KP, PA and SA, and SA and ST have has 98%, 96%, and 98% precision, 268 

respectively. Therefore, it can be concluded that accuracy values are dependent on the 269 

individual bacteria and the extent of change they cause in the blood properties by their 270 

presence. Our investigation found that Enterococcus faecium (EF) (one of the ESKAPE 271 

pathogens) did not cause sufficient change in the blood properties, and the algorithm failed to 272 

distinguish the blood droplet residues that were infected with EF. Hence, the bacterial species 273 

EF has not been considered for investigation in the article.     274 
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In conclusion, we have demonstrated a technique to detect six bacterial species in the blood 275 

by recognizing the patterns found in the dried residue of blood droplets using CNN. The 276 

detection process is cost-efficient as it does not require any biomarkers/chemicals or high-end 277 

equipment. Since the detection procedure involves only capturing an optical image, this can 278 

be performed by a non-professional with minimal expertise in the healthcare sector. The 279 

trained algorithm developed into a mobile application with a user interface has the potential 280 

to revolutionize POC diagnostics. Moreover, the promising results with high accuracy 281 

obtained in this article are equivalent to the accuracy of standard bacteriological tests57–59. 282 

Besides, the technique has added benefits such as rapid turnaround time (less than 15 283 

minutes), low cost, and is suitable for POC.  284 

EXPERIMENTAL PROCEDURE: 285 

All bacterial cultures, namely, Enterobacter aerogenes, Staphylococcus aureus, Klebsiella 286 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Salmonella Typhi, 287 

were grown in Luria Bertani medium. Briefly, a single colony of bacterial culture from a 288 

freshly streaked LB agar plate was inoculated in LB broth overnight at 37℃ at 170 rpm 289 

shaker incubator. Next, the bacteria are normalized with OD600nm. The blood was collected in 290 

a lavender vacutainer (K3-EDTA, Quantum Biomedicals) from five healthy volunteers, age 291 

24-30 years, with diverse blood groups (O +ve, O -ve, AB +ve, B +ve,  B -ve), and it was 292 

stored at 4℃ and used for experiments up to a week. These storage conditions do not 293 

influence the blood properties (for a week), and thus the drying process is unaffected due to 294 

storge36. Bloodstream infection diagnosis ranges from 1-10 CFU/mL60,61 to 103-104 295 

CFU/mL62; blood collected from the donor was thus spiked with bacterial culture to a final 296 

concentration of 103 CFU/mL to mimic tangible infection in real-life patients, and un-spiked 297 

blood is used as a control (C). Since equal volumes of phosphate-buffered saline (PBS- 137 298 

mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO4) is added to normalize all the 299 

bacterial numbers to a constant of 1000 CFU/mL, an equal volume of PBS without any 300 

bacteria was added as a control. To observe bacterial-induced changes in the blood (as per the 301 

model of bloodstream infection), we incubated the blood at static conditions 37℃ for 24 302 

hours64 before drop-casting it. Subsequently, the control sample (C) is also placed in the same 303 

static conditions for 24 hours before drop-casting the same.   304 

 Experimental setup for droplet evaporation and imaging:   305 

Optically flat plain glass slides procured from Blue Star© are cleaned using the following 306 

procedure: the glass slides are immersed in an ultrasound bath sonicator (from RivotekTM) 307 

containing isopropyl alcohol (commonly known as isopropanol) and are sonicated for 15 308 

minutes. This is followed by a de-ionized (DI) water rinse and blow-dry. The average surface 309 

roughness (Ra) is ~40 nm (measured using the optical profilometer tool by The TalySurf CCI 310 

). As shown in Figures 1 (b) and (c), the incubated samples from the vials are drop cast gently 311 

onto the clean glass slides using a micropipette (Finnpipette®). The volume of the droplets 312 

ranges from 0.5 to 2 μl. Hundreds of droplets are placed on the glass slide in linear 313 

arrangements separated at least by the distance of 2 times the droplet diameter (LC), ensuring 314 

no vapor-mediated interactions between the individual droplets65 (refer to Fig.1 (c)). The 315 

glass slides are labeled as the sample deposited on a particular slide is known. The droplets 316 

are allowed to evaporate under controlled atmospheric conditions (26 ±5 oC and 45 ±10% 317 

relative humidity measured by TSP-01, Thorlabs) in an acrylic enclosure to minimize the 318 
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external convection disturbances. All experiments are conducted inside a bio-safety hood 319 

with HEPA filters following the biosafety laboratory -II protocols. The bacterial samples and 320 

other plastic wares were discarded with 10% bleach, followed by double autoclaving all the 321 

waste. 322 

The blood drops generally evaporate in 10-12 minutes; they are imaged using an optical 323 

microscope (Olympus microscope). The droplet is illuminated by an LED light source in-line 324 

with the objective lens of the microscope—a digital camera (Nikon D7200) attached to the 325 

microscope captures the reflected light and images of the droplet. The captured images were 326 

manually filtered for uniformity and shape (as the Bo<<1, the droplet assumes a spherical 327 

shape). The background of the images (other than the droplet region) is removed to reduce 328 

the redundant information. The captured images constitute the image data set to be processed 329 

through the CNN algorithm. 330 

 331 

Credit statement 332 

Conceptualization: SB, DC; Methodology: OH, RC, DR; Investigation: OH, RC, VJ, 333 

Visualization: OH, RC, DR, VJ; Funding acquisition: SB, DC; Project administration: OH, 334 

VJ; Supervision: SB, DC; Writing original draft: OH; Editing and revision: OH, RC, VJ, DC, 335 

SB.  336 

Acknowledgments  337 

The authors acknowledge Suraksha Sunil, Amey Agharkar, Ankur Chattopadhyay, Srinivas 338 

Rao S, Rovin Pinto, and Gannena K.S. Raghuram for assistance in drop-casting and imaging 339 

of blood droplets. The authors acknowledge all the volunteers who participated in blood 340 

donation - Amey, Anmol, Vivek, Omkar, Durbar. SB: DRDO Chair Professorship, 341 

DC: Infrastructure support from ICMR (Center for Advanced Study in Molecular Medicine), 342 

DST (FIST), UGC-CAS (special assistance), DAE-SRC fellowship, ASTRA-Chair 343 

fellowship, TATA Innovation grant, DBT-IOE partnership grant. RC duly acknowledges 344 

CSIR-SRF for financial assistance. 345 

Ethics declarations and approval 346 
Human Ethical Review Committee of the Indian Institute of Science, Bangalore, approved 347 
the experimental protocols. 348 

Informed consent 349 
Informed consent was obtained from all participants/volunteers. 350 

Data availability statement 351 

All relevant data are within the paper and its Supporting Information files. All materials and 352 

additional data are available from the corresponding author upon request. 353 

References  354 

1. W. H. O. New report calls for urgent action to avert antimicrobial resistance crisis. Jt. 355 
News Release 29, 2019–2022 (2019). 356 

2. Bloom, D. E. & Cadarette, D. Infectious disease threats in the twenty-first century: 357 
Strengthening the global response. Frontiers in Immunology vol. 10 549 (2019). 358 

3. Biggest Threats and Data | Antibiotic/Antimicrobial Resistance | CDC. 359 
https://www.cdc.gov/drugresistance/biggest-threats.html. 360 



12 
 

4. El-Mahallawy, H. A., Hassan, S. S., El-Wakil, M. & Moneer, M. M. Bacteremia due to 361 

ESKAPE pathogens: An emerging problem in cancer patients. J. Egypt. Natl. Canc. 362 
Inst. 28, 157–162 (2016). 363 

5. Gandra, S. et al. The Mortality Burden of Multidrug-resistant Pathogens in India: A 364 
Retrospective, Observational Study. Clin. Infect. Dis. 69, 563–570 (2019). 365 

6. Chatterjee, A. & Duerkop, B. A. Beyond bacteria: Bacteriophage-eukaryotic host 366 

interactions reveal emerging paradigms of health and disease. Front. Microbiol. 9, 367 
1394 (2018). 368 

7. Collignon, P. J. & McEwen, S. A. One Health—Its Importance in Helping to Better 369 

Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, Vol. 4, Page 22 4, 22 370 
(2019). 371 

8. Marturano, J. E., Ave, H., Marturano, J. E. & Lowery, T. J. ESKAPE Pathogens in 372 
Bloodstream Infections Are Associated With Higher Cost and Mortality but Can Be 373 
Predicted Using Diagnoses Upon Admission. Open Forum Infect. Dis. 6, (2019). 374 

9. Centers for Disease Control, U. Antibiotic Resistance Threats in the United States, 375 
2019. doi:10.15620/cdc:82532. 376 

10. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging 377 

strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A 378 
review. Front. Microbiol. 10, 539 (2019). 379 

11. Mercer, T. R. & Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. 380 
Genet. 2021 227 22, 415–426 (2021). 381 

12. Birru, M. et al. Bacterial profile, antimicrobial susceptibility patterns, and associated 382 

factors among bloodstream infection suspected patients attending Arba Minch General 383 

Hospital, Ethiopia. Sci. Reports 2021 111 11, 1–13 (2021). 384 

13. Infectious disease: Battling bacterial blood infection. Nat. 2010 4677316 467, 637–637 385 
(2010). 386 

14. O’Sullivan, S. et al. Developments in transduction, connectivity and AI/machine 387 

learning for point-of-care testing. Sensors (Switzerland) 19, (2019). 388 

15. Faix, J. D. Biomarkers of sepsis. https://doi.org/10.3109/10408363.2013.764490 50, 389 

23–36 (2013). 390 

16. Giuliano, C., Patel, C. R. & Kale-Pradhan, P. B. A Guide to Bacterial Culture 391 
Identification And Results Interpretation. Pharm. Ther. 44, 192 (2019). 392 

17. Freeman, W. M., Walker, S. J. & Vrana, K. E. Quantitative RT-PCR: Pitfalls and 393 
potential. BioTechniques vol. 26 112–125 (1999). 394 

18. Gibson, U. E. M., Heid, C. A. & Williams, P. M. A novel method for real time 395 
quantitative RT-PCR. Genome Res. 6, 995–1001 (1996). 396 

19. Louie, M., Louie, L. & Simor, A. E. The role of DNA amplification technology in the 397 
diagnosis of infectious diseases. CMAJ vol. 163 301–309 (2000). 398 

20. Yang, S. & Rothman, R. E. PCR-based diagnostics for infectious diseases: Uses, 399 
limitations, and future applications in acute-care settings. Lancet Infectious Diseases 400 
vol. 4 337–348 (2004). 401 



13 
 

21. Tarafdar, S., Tarasevich, Y. Y., Dutta Choudhury, M., Dutta, T. & Zang, D. Droplet 402 

Drying Patterns on Solid Substrates: From Hydrophilic to Superhydrophobic Contact 403 
to Levitating Drops. Advances in Condensed Matter Physics vol. 2018 (2018). 404 

22. Gorr, H. M., Zueger, J. M., McAdams, D. R. & Barnard, J. A. Salt-induced pattern 405 
formation in evaporating droplets of lysozyme solutions. Colloids Surfaces B 406 
Biointerfaces 103, 59–66 (2013). 407 

23. Carreón, Y. J. P. et al. Effects of substrate temperature on patterns produced by dried 408 
droplets of proteins. Colloids Surfaces B Biointerfaces 203, 111763 (2021). 409 

24. Sett, A., Ayushman, M., Desgupta, S. & Dasgupta, S. Analysis of the Distinct Pattern 410 

Formation of Globular Proteins in the Presence of Micro- and Nanoparticles. J. Phys. 411 
Chem. B 122, 8972–8984 (2018). 412 

25. Pal, A., Gope, A., Obayemi, J. D. & Iannacchione, G. S. Concentration-driven phase 413 
transition and self-assembly in drying droplets of diluting whole blood. Sci. Reports 414 
2020 101 10, 1–12 (2020). 415 

26. Davidson, Z. S. et al. Deposition and drying dynamics of liquid crystal droplets. Nat. 416 
Commun. 8, (2017). 417 

27. Song, Y. et al. Budding-like division of all-aqueous emulsion droplets modulated by 418 

networks of protein nanofibrils. Nat. Commun. 2018 91 9, 1–7 (2018). 419 

28. Gerber, J., Lendenmann, T., Eghlidi, H., Schutzius, T. M. & Poulikakos, D. Wetting 420 

transitions in droplet drying on soft materials. Nat. Commun. 2019 101 10, 1–10 421 
(2019). 422 

29. Tavana, H. et al. Nanolitre liquid patterning in aqueous environments for spatially 423 

defined reagent delivery to mammalian cells. Nat. Mater. 2009 89 8, 736–741 (2009). 424 

30. Hegde, O., Chatterjee, R., Rasheed, A., Chakravortty, D. & Basu, S. Multiscale vapor-425 

mediated dendritic pattern formation and bacterial aggregation in complex respiratory 426 
biofluid droplets. J. Colloid Interface Sci. 606, 2011–2023 (2022). 427 

31. Sefiane, K. On the Formation of Regular Patterns from Drying Droplets and Their 428 

Potential Use for Bio-Medical Applications. J. Bionic Eng. 7, S82–S93 (2010). 429 

32. Cameron, J. M., Butler, H. J., Palmer, D. S. & Baker, M. J. Biofluid spectroscopic 430 

disease diagnostics: A review on the processes and spectral impact of drying. J. 431 
Biophotonics 11, e201700299 (2018). 432 

33. Gökçe, O., Castonguay, S., Temiz, Y., Gervais, T. & Delamarche, E. Self-coalescing 433 

flows in microfluidics for pulse-shaped delivery of reagents. Nat. 2019 5747777 574, 434 
228–232 (2019). 435 

34. Mehlem, A., Hagberg, C. E., Muhl, L., Eriksson, U. & Falkevall, A. Imaging of neutral 436 
lipids by oil red O for analyzing the metabolic status in health and disease. Nat. 437 
Protoc. 2013 86 8, 1149–1154 (2013). 438 

35. Chen, R., Zhang, L., Zang, D. & Shen, W. Blood drop patterns: Formation and 439 

applications. Adv. Colloid Interface Sci. 231, 1–14 (2016). 440 

36. Brutin, D., Sobac, B., Loquet, B. & Sampol, J. Pattern formation in drying drops of 441 
blood. J. Fluid Mech. 667, 85–95 (2011). 442 



14 
 

37. Iqbal, R., Shen, A. Q. & Sen, A. K. Understanding of the role of dilution on 443 

evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic 444 
substrates. J. Colloid Interface Sci. 579, 541–550 (2020). 445 

38. Smith, F. R. & Brutin, D. Wetting and spreading of human blood: Recent advances 446 
and applications. Curr. Opin. Colloid Interface Sci. 36, 78–83 (2018). 447 

39. Pal, A., Gope, A. & Iannacchione, G. Temperature and Concentration Dependence of 448 

Human Whole Blood and Protein Drying Droplets. Biomol. 2021, Vol. 11, Page 231 449 
11, 231 (2021). 450 

40. Bou-Zeid, W. & Brutin, D. Effect of relative humidity on the spreading dynamics of 451 

sessile drops of blood. Colloids Surfaces A Physicochem. Eng. Asp. 456, 273–285 452 
(2014). 453 

41. Laan, N. et al. Bloodstain Pattern Analysis: implementation of a fluid dynamic model 454 
for position determination of victims. Sci. Reports 2015 51 5, 1–8 (2015). 455 

42. Ewald, D. R. & Sumner, S. C. J. Blood type biochemistry and human disease. Wiley 456 
Interdiscip. Rev. Syst. Biol. Med. 8, 517–535 (2016). 457 

43. Kanias, T. et al. Ethnicity, sex, and age are determinants of red blood cell storage and 458 
stress hemolysis: results of the REDS-III RBC-Omics study. Blood Adv. 1, 1132–1141 459 

(2017). 460 

44. Simmonds, M. J., Meiselman, H. J. & Baskurt, O. K. Blood rheology and aging. J. 461 

Geriatr. Cardiol. 10, 291 (2013). 462 

45. Ahmed, G., Arjmandi Tash, O., Cook, J., Trybala, A. & Starov, V. Biological 463 
applications of kinetics of wetting and spreading. Adv. Colloid Interface Sci. 249, 17–464 

36 (2017). 465 

46. Sikarwar, B. S., Roy, M., Ranjan, P. & Goyal, A. Automatic Pattern Recognition for 466 

Detection of Disease from Blood Drop Stain Obtained with Microfluidic Device. Adv. 467 
Intell. Syst. Comput. 425, 655–667 (2016). 468 

47. Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S. & Thoma, G. Image analysis and 469 

machine learning for detecting malaria. Transl. Res. 194, 36–55 (2018). 470 

48. Hamadeh, L. et al. Machine Learning Analysis for Quantitative Discrimination of 471 

Dried Blood Droplets. Sci. Reports 2020 101 10, 1–13 (2020). 472 

49. Harris, C. R. et al. Array programming with NumPy. Nat. 2020 5857825 585, 357–362 473 
(2020). 474 

50. Gulli, A. & Pal, S. Deep learning with Keras. (2017). 475 

51. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 476 
(2007). 477 

52. Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 478 
(2021). 479 

53. Pedregosa Fabianpedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. 480 
Mach. Learn. Res. 12, 2825–2830 (2011). 481 

54. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 482 



15 
 

Distributed Systems. (2016). 483 

55. Bradski, G. (2000). The openCV library. Journal of Software Tool.  484 

56. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep 485 
Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 25, (2012). 486 

57. Opota, O., Croxatto, A., Prod’hom, G. & Greub, G. Blood culture-based diagnosis of 487 
bacteraemia: state of the art. Clin. Microbiol. Infect. 21, 313–322 (2015). 488 

58. Giuliano, C., Patel, C. R. & Kale-Pradhan, P. B. A Guide to Bacterial Culture 489 

Identification And Results Interpretation. Pharm. Ther. 44, 192 (2019). 490 

59. Bergey, D. H. (David H. & Holt, J. G. Bergey’s manual of determinative bacteriology. 491 
Bergey’s manual of determinative bacteriology. (Williams & Wilkins, 1994). 492 

60. Wain, J. et al. Quantitation of bacteria in blood of typhoid fever patients and 493 

relationship between counts and clinical features, transmissibility, and antibiotic 494 
resistance. J. Clin. Microbiol. 36, 1683–1687 (1998). 495 

61. Henry, N. K. et al. Microbiological and clinical evaluation of the isolator lysis-496 

centrifugation blood culture tube. J. Clin. Microbiol. 17, 864 (1983). 497 

62. Werner, A. S., Cobbs, C. G., Kaye, D. & Hook, E. W. Studies on the bacteremia of 498 
bacterial endocarditis. JAMA 202, 199–203 (1967). 499 

63. Wester, A. L., Dunlop, O., Melby, K. K., Dahle, U. R. & Wyller, T. B. Age-related 500 
differences in symptoms, diagnosis and prognosis of bacteremia. BMC Infect. Dis. 13, 501 
(2013). 502 

64. Dong, M. et al. Standardized methods to generate mock (spiked) clinical specimens by 503 

spiking blood or plasma with cultured pathogens. J. Appl. Microbiol. 120, 1119–1129 504 
(2016). 505 

65. Shaikeea, A., Basu, S., Hatte, S. & Bansal, L. Insights into Vapor-Mediated 506 
Interactions in a Nanocolloidal Droplet System: Evaporation Dynamics and Affects on 507 
Self-Assembly Topologies on Macro- to Microscales. Langmuir 32, 10334–10343 508 

(2016). 509 

 510 













Lc

Lc

Inoculation and incubation

Blood sample collected 
from a healthy volunteer Control+Infected blood samples

(a)
(b)

(c) (d)

EA SA KP
AB PA ST C

Known sample

(e) EA

1mm

SA KP AB PA ST C



Multi 

Class 

Model

Binary 

Class 

Model

AB/EA

AB/KP
AB/PA

AB/SA

AB/ST
AB/C

EA/KP
EA/PA

EA/SA

EA/ST

EA/C

KP/PA
KP/SA

KP/ST KP/C

PA/SA

PA/ST

PA/C

SA/ST

ST/C

SA/C

EA

AB

C

PA

SA

ST

KP
• Epochs

• Learning Rate

• Image Size

• Kernel size for
convolution
layer



Numpy

TensorFlow

Keras

OpenCV

Seaborn

(a
) 

L
ib

ra
ri

es
(b) Image Dataset

EA ABSA KP PA ST C

80 % 20 %
Training Testing

Prediction 
Statement

Array of 
numbers

Convolution 
filter

Pooling

Interface

Convolution 
filter

Pooling Dropout Flatten Relu

(c) CNN Model

Low Accuracy <80% High Accuracy
End





Peripheral Ring

Peripheral cracksBlood Cell

Central deposition

(a) (b) (c)

(d)
(e)

0.36 mm

40 μm

2 μm

200 μm

100 μm




