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Abstract 39 

 40 

Background 41 

Chronic kidney disease (CKD) is responsible for large personal health and societal burdens. 42 

Screening populations at higher risk for CKD is effective to initiate earlier treatment and 43 

decelerate disease progress. We externally validated clinical prediction models for unknown 44 

CKD that might be used in population screening. 45 

 46 

Methods 47 

We validated six risk models for prediction of unknown CKD using only non-invasive 48 

parameters. Validation data came from 4,185 participants of the German Heinz-Nixdorf-Recall 49 

study (HNR), drawn in 2000 from a general population aged 45-75 years. We estimated 50 

discrimination and calibration using the full model information, and calculated the diagnostic 51 

properties applying the published scoring algorithms of the models using various thresholds for 52 

the sum of scores.  53 

 54 

Results 55 

The risk models used four to nine parameters. Age and hypertension were included in all 56 

models. Five out of six c-values ranged from 0.71 to 0.73, indicating fair discrimination. 57 

Positive predictive values ranged from 15% to 19%, negative predictive values were >93% 58 

using score thresholds that resulted in values for sensitivity and specificity above 60%.  59 

 60 

Conclusions 61 

Most of the selected CKD prediction models show fair discrimination in a German general 62 

population. The estimated diagnostic properties indicate that the models are suitable for 63 

identifying persons at higher risk for unknown CKD without invasive procedures. 64 

65 
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Background  66 

Prevalence of chronic kidney disease (CKD), defined by a chronically impaired renal function, 67 

is growing worldwide and a challenge for public health. In Germany, prevalence of a decreased 68 

renal function is up to 11.5 %1 . Patients with CKD are at higher risk of cardiovascular 69 

comorbidities, hospitalization, end stage renal disease (ESRD) and premature death2. As a CKD 70 

cannot be cured, treatment aims at monitoring CKD risk factors – especially hypertension and 71 

blood glucose – to decelerate its progression and to prevent the incidence of secondary 72 

diseases3. Early diagnosis of a prevalent CKD can support these efforts. Despite the high 73 

prevalence and relevance for public health, public and patient awareness for CKD is low. The 74 

main reason for the low awareness is that CKD remains asymptomatic until reaching more 75 

serious stages. Moreover, a declining renal function is a physiological sign of older age, which 76 

often hinders physicians to designate an impaired renal function in older age as CKD.4,5 77 

In Germany, fewer than 50% of patients with CKD -even with hypertension or cardiovascular 78 

disease - knew about their condition 6,7. In the USA, CKD unawareness is even more 79 

prevalent8. The high unawareness for CKD is astonishing, as regular monitoring of renal 80 

function should be mandatory for patients with hypertension, diabetes or of older age3,9-11. 81 

However, in general practice, even in patients with diabetes or hypertension, renal function, 82 

blood glucose or blood pressure are not regularly monitored 12,13 and risk factors are 83 

inadequately controlled 14,15.  84 

According to Tonelli et al. most of the principles for population screening -formulated in a 85 

Delphi process among experts- fit to screening for CKD16. Screening for CKD has already been 86 

shown to be cost-effective in detecting unknown cases in population subgroups at higher risk 87 

for CKD 17-19. In a simulation study, it was shown that CKD prediction scores can be cost-88 

effectively used to initially identify people at higher risk for incident CKD, and to screen these 89 

subsequently for CKD by testing for albuminuria 20. Prediction models suitable for identifying 90 
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people at higher risk for CKD should be easy to apply, preferentially using non-invasive 91 

parameters only. Many CKD risk models of different complexity have already been developed 92 

– regarding the prediction of incidence, prevalence and progression to ESRD 21. However, 93 

missing external validation might frequently hinder the implementation into practice 22,23.  94 

The aim of this study was, to externally validate prediction models, that estimate the probability 95 

of a prevalent unknown CKD using non-invasive parameters only in a German general 96 

population. 97 

Material and methods  98 

CKD prediction models 99 

Starting with a review on CKD prediction models from 2012 21, we searched the literature for 100 

further models that comprise only clinical information for estimating the risk of prevalent CKD. 101 

We identified five models that meet these criteria 24-28. Among these, Bang reported two 102 

versions of a model developed in the same population: SCORED and modified SCORED 103 

(Table 1). For these models, a scored version as self-completing questionnaire is published 25. 104 

The intercepts for the SCORED models and the models by Kwon and Thakkinstian had not 105 

been published. For the SCORED and the Kwon model, we were able to get the missing 106 

information about the intercept from the authors. For the Thakkinstian model we used the 107 

intercept published in a validation study 23. As the Kearns model estimated an unrealistic high 108 

risk for CKD in our validation population, we contacted the author and learned that the age-109 

parameter should have had been centered (by subtracting the value 46.72) prior to the division 110 

of age by 10). This had not been reported in the manuscript. Further, no cutoffs or scoring rule 111 

for the Kearns-Model had been described, although sensitivity and specificity information had 112 

been estimated in the paper. As we could get no information on the applied rules for scoring 113 
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the model parameters, we were not able to estimate the diagnostic properties of the Kearns 114 

model in our validation cohort.  115 

The number of parameters used in the CKD prediction models ranged from four (Thakkinstian) 116 

to nine (SCORED) (Table 1). Age and hypertension were the only predictors used in all models. 117 

The Kearns model relies heavily on age, using age as interaction term with other parameters as 118 

well. History of kidney stones and history of ischemic heart disease were used only once. 119 

 120 
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Table 1. Identified prediction models for CKD: included parameters and their coefficients. 121 

 Bang 
SCORED 

Bang „modified 
SCORED“ 

Kearns Kshirsagar Kwon Thakkinstian 

No of parameters 9 7 5 8 7 4 
Intercept -5.40a -5.38a -3.63 -3.30 -6.53a -2.8b 
Age (yrs) 1.55 [50-59] 

2.31 [60-69] 
3.23 [>=70] 

1.55 [50-59] 
2.29 [60-69] 
3.29 [>=70] 

1.075 [Per 10 yrsc] 
-0.01 [age²/10 yrsc] 
0.104 [age < 50]  

0.63 [50-59] 
1.33 [60-69] 
1.46 [>=70] 

1.16 [50-59] 
1.91 [60-69] 
2.71 [>=70] 

0.6 [50-59] 
1.4 [60-69] 
2.1 [>=70] 

Sex  – Female 0.29 0.34 0.73 0.13 0.4  
Anemia 0.93   0.48 0.94  
Hypertension  0.45 0.47 0.74 

+ age <50: 0.56 
0.55 0.48 0.8 

Diabetes  0.44 0.47  0.33 0.73 0.9 
Ischemic heart disease or stroke (Hx)* 0.59 0.67  0.26 0.60  
Heart failure (hx) 0.45 0.51 0.86 

CHF + age <50: 0.29 
0.50   

Ischemic heart disease (Hx)   0.51 
+ age<50: 0.13 

   

Peripheral vascular disease (Hx) 0.74   0.41   
Proteinuria 0.83 0.88   0.48  
Kidney stones (Hx)      1 

a Intercept according to personal information by H. Bang. 122 

b Intercept estimated using the prevalence of CKD in the validation population 123 

c age per 10 yrs = (age -46.72) / 10yrs 124 

 125 
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Validation population 126 

We used the German Heinz Nixdorf Recall Study (HNR), a population based cohort, 29 for 127 

external validation. Baseline data from 4,814 participants drawn from the general population 128 

aged 45-75 years in 2000 were available. We included all participants with a valid measurement 129 

of serum creatinine (N=4,789). 130 

Measurement of variables  131 

In HNR, all laboratory data had been analyzed centrally in the laboratory of the university 132 

hospital of Essen. Serum creatinine (according to Jaffé) was determined on a Siemens 133 

Healthcare Diagnostics ADVIA Chemistry. Serum creatinine was not standardized to isotope 134 

dilution mass spectrometry. Hypertension was defined as either a blood pressure of at least 135 

140mmHg systolic or at least 90mmHg diastolic or taking antihypertensive medication. Blood 136 

pressure cut-offs were selected according to the cut-offs used to define hypertension in the 137 

validated risk models. Diabetes was defined according to the respective definitions used in the 138 

risk models: either self-reported prevalent diabetes 25,26 or using a combination of known 139 

diabetes or taking antidiabetic drugs 27,28. Albuminuria was defined as albumin/creatinine ratio 140 

(ACR) ≥30mg/dl. In all models except the Kwon model, anemia was coded if hemoglobin levels 141 

were <12 g/dl. In the Kwon model, the threshold for hemoglobin was <12 g/dl for women and 142 

<13 g/dl for men. Peripheral vascular artery disease was defined according to clinical 143 

information. 144 

Definition of chronic kidney disease in development and validation populations 145 

In all validated risk models, CKD was defined as an estimated glomerular filtration rate (eGFR) 146 

<60ml/min/1.73m² calculated by the Modification of Diet in Renal Disease (MDRD) equation. 147 

All models had been developed to estimate the risk of unknown prevalent CKD stages 3 or 148 

more. Therefore, we defined CKD as eGFR <60ml/min/1.73m² accordingly. We used the CKD-149 
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Epi equation for calculating eGFR, as recommended by the Kidney Disease Improving Global 150 

Outcomes (KDIGO) 30. In Germany, the CKD-Epi equation is widely used to report eGFR with 151 

laboratory results. As sensitivity analysis, we calculated the eGFR with the MDRD and the new 152 

Full-Age-Spectrum (FAS) equation (equations listed in supplement S2+S3) 31. We used the 153 

respective creatinine-based equations, because cystatin c measurements are not widely 154 

available in general practice.  155 

Handling of missing values 156 

We did a complete case analysis regarding all predictors used in the identified models, leaving 157 

4,185 participants in HNR. The Thakkinstian score was validated in a subsample of HNR with 158 

information on the parameter ‘history of kidney stones’ that is used in this model only 159 

(N=3,433).  160 

Statistical analysis 161 

The models’ discrimination was estimated by the c-value and the Tjur coefficient 32. The Tjur 162 

coefficient is the difference between the mean predicted probability in cases and in non-cases. 163 

The higher this difference the better the discriminative ability of a score. Calibration was 164 

assessed graphically. 165 

As measures for overall performance, we estimated the mean average prediction error (MAPE) 166 

and the Scaled Brier Score 23,32. MAPE averages the deviations between the prediction (ranging 167 

between 0 and 1) and the respective true value of zero or 1. The smaller the MAPE, the better 168 

the prediction. The Scaled Brier Score is calculated by the squared difference between the 169 

prediction and the true value of outcome (=Brier Score) divided by the product of the mean 170 

prediction value and 1- mean prediction value 33. It ranges from 0 to 1 representing 0% to 100% 171 

and is similarly interpreted as Pearson’s R², indicating the rate of variability explained by the 172 

model. 173 
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We estimated sensitivity, specificity and predictive values of the models after scoring the model 174 

parameters using the cut-offs reported by the authors. The optimal threshold for the validation 175 

population was identified with the Youden index.  176 

Additionally, we calculated the rate of expected to observed cases (E/O-proportion) for the 177 

thresholds used. An E/O-proportion close to 1 indicates agreement between the number of 178 

expected cases according to the models’ cut-offs and observed cases, an E/O-proportion >1 179 

indicates overestimation of CKD risk.  180 

All statistical calculations were done using SAS 9.4. 181 

 182 
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Table 2. Characteristics of the validation and development populations of the CKD risk models (means and standard deviation (SD) or percent (%)). 183 

 
 
 

 Development populations for identified CKD prediction models 
Heinz-Nixdorf-
Recall-Study 

Bang (SCORED, modified 
SCORED) 2007 

Kearns 2013 Kshirsagar 2008 Kwon 2011 Thakkinstian 2011 

Country Germany  USA, 72% white UK, 30% white, 
 53% unknown 

USA, 78% white Korea Thailand 

Size of population (N) 4,185 8,530 743,935 9,470  6,565 3,459 
CKD defined by GFR<60 GFR<60 GFR<60 GFR<60 GFR<60 KDIGO CKD1-5 
Prevalence of CKD  8.6% (MDRD) 

9.2% (CKD-Epi) 
5.4% (MDRD) 6.8% (MDRD) 16.9% (MDRD) 4.6% (MDRD) 17.5 (CKD1-5, 

MDRD) 
Handling of missings Excluded Excluded Missing BP:  

no hypertension 
Not reported Excluded Not reported 

Female 50.5% 52% 50% 56% 50% 54.5% 
Age, mean (SD) 59.6 (7.8) 46.0 (31.4) 46.7 (18.2) 57 (9) 44.2 (32.4) 45.2 (46.5) 
Age, range  45-75 20-85 ≥18 45-64 ≥19  ≥18 
BMI, mean (SD) 27.8 (4.6) 28.0 (12.9) - 27 (5) 23.6 (8.1) 24.0 (11.8) 
Smoking  23.3% 20% 20% 10% 27.5a 35.9% 
Diabetes 7.9% 8% 5% 9% 8.3%b  11.9% 
Hypertension 59.2% 34% 15% 36% 22.5% 27.5% 

Ischemic heart disease 
or stroke 

6.9% 4.9% 2% stroke, 4% IHD 8% 3.2% (IHD or 
stroke) 

3.4% (heart disease)  

Heart failure 3.5% 2.1% 1% 0.7% - - 
Proteinuria 1.7% 10% - - 10.3% - 
PVD 2.3% 2.7% 1% 4% - - 
Kidney stones 12.0% 

(N=3,398) 
- - - - 5.0% 

Serum creatinine 
mean (SD) 

0.93 (0.2) 0.89 (0.4) - 0.8 (0.2) 0.9 (8.1) 1.1 (1.18) male,  
0.8 (1.18) female 

eGFR, mean (SD) 79.1 (17.6) 
(CKD-Epi) 

94.0 (48.9) 
(MDRD) 

- - 85.9 (56.7) 
(MDRD) 

- 

Anemia 2.1% (Hb <12) 2.7%c  - - 8.1% - 

BP: blood pressure; CKD: chronic kidney disease; CVD: cardiovascular disease; IHD: ischemic heart disease; KDIGO: Kidney Disease Improving Global Outcomes; MDRD: 184 
modification of Diet in Renal Disease; PVD: peripheral vascular disease 185 
a: smoking defined as: >5 packs life time or current.  186 
b: diabetes defined as: glucose ≥126 or anti-diabetic medication or insulin therapy.  187 
c: anemia defined as: treatment of anemia.  188 
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d: history of bypass operation used as surrogate for heart failure. 189 
 190 
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Results 191 

Validation of identified risk models in the German HNR study 192 

Compared to the development populations of the validated risk models, the participants in the 193 

HNR study were older (mean age 59.6 compared to 44.2 to 57 years), and reported hypertension 194 

more often (59% compared to 15 to 36%) (Table 3). Prevalence of CKD in HNR calculated by 195 

the MDRD-equation was 8.6%. It was higher than in the development populations of the Bang 196 

(SCORED) (5.4%), Kearns (6.8%) and Kwon (4.6%) models. In the US based population used 197 

for deriving the Kshirsagar Score, CKD prevalence was 16.9%. Thakkinstian reported a 198 

prevalence of 17.5%, however, in contrast to the other studies, CKD here comprises CKD stages 199 

1-5. 200 

The mean estimated probability of prevalent CKD differed strongly and ranged from p=0.025 201 

(Kwon) to 0.317 (Thakkinstian) (Table 3).  202 

 203 
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Table 3.  External validation of identified models to predict unknown CKD; validation data set: Heinz Nixdorf Recall study (Germany). CKD is defined as eGFR 204 

<60ml/min/1.73m² using CKD-Epi equation for calculating eGFR. Measures presented with standard deviation (SD) or 95% confidence intervals (CI). 205 

1 Tjur coefficient of discrimination= difference in the mean prediction for cases and non-cases; better with larger values 206 

2 MAPE = Mean average prediction error; better with small values 207 

3 Brier Scaled = comparable to R²; better with larger values  208 

Characteristics SCORED Modified SCORED Kearns Kshirsagar Kwon Thakkinstiana 

Range of scoring points [0-12] [0-10] n.a. [0-9] [0-10] [0-16] 
eGFR equation in development  MDRD MDRD MDRD MDRD MDRD MDRD 

AUC in development (validation) set  0.88  0.87  0.90  0.69  0.83  0.77  

Results of validation in HNR       

Participants in HNR  4,185 4,185 4,185 4,185 4,185 3,433 
Mean prediction (SD) 0.084 (0.092) 0.087 (0.093) 0.148 (0.126)* 0.149 (0.081) 0.025 (0.029) 0.317 (0.189) 
Area under the curve (AUC, 95% CI) 0.72 (0.70; 0.75) 0.73 (0.70; 0.75) 0.73 (0.71; 0.76) 0.71 (0.69; 0.74) 0.72 (0.70; 0.75) 0.67 (0.64; 0.70) 

Score performance in HNR      

Tjur coefficient1 (95%-CI) 
 

0.063  
(0.055- 0.071) 

0.063  
(0.055; 0.071) 

0.116  
(0.104; 0.129) 

0.062  
(0.053; 0.070) 

0.020  
(0.018; 0.023) 

0.124  
(0.102; 0.147)  

MAPE² (SD) 0.148 (0.24) 0.150 (0.24) 0.193 (0.21) 0.203 (0.20) 0.108 (0.27) 0.329 (0.20) 
Brier Scaled³ (%)  12.0 11.6 2.7 7.3 38.0 4.2 

Examples of predicted risks for CKD 
(characteristics of ficticious persons) 

      

w, 65 yrs with hypertension and IHD 30% 17% 39% 26% 4% 25% 
w, 75 yrs with hypertension, DM, 
           proteinuria and anemia 

68% 68% 52% 15% 15% 62% 

m, 57 yrs with hypertension, DM, HF 8% 8% 16% 2% 2% 27% 
m, 72 yrs with DM and proteinuria 29% 29% 15% 18% 7% 43% 
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Discrimination 209 

Discrimination of all models but in the Kshirsagar model was lower in HNR compared to the 210 

development data sets (Table 3). C-values ranged from 0.67 (Thakkinstian) to 0.73 (modified 211 

SCORED) using CKD-EPI equation for defining CKD. With MDRD equation, c-values were 212 

<0.7 for all scores. The FAS equation yielded a better discrimination (c-values 0.74-0.80) (see 213 

supplement table S4). The Tjur-coefficient was largest and indicated best discrimination of 214 

prediction for the Thakkinstian score (0.124) and the Kearns model (0.116).  215 

Calibration 216 

The calibration plots showed reasonable fit only with the Bang models (SCORED, modified 217 

SCORED). CKD risk was overestimated in persons with lower CKD risk and overestimated in 218 

persons with higher risk. Risk of unknown CKD was generally overestimated by the Kearns, 219 

Kshirsagar and Thakkinstian model. The Kwon model underestimated the probability of 220 

unknown CKD. Calibration to the HNR population was poor in all but the SCORED models 221 

(see supplementary file).  222 

The Kwon score yielded the smallest mean average prediction error with 0.108 compared to the 223 

Thakkinstian score resulting in the largest MAPE with 0.329. The Brier Scaled which can be 224 

interpreted as R² indicated that the Kwon score prediction fitted best to the population. 225 

Applying the published scoring rules for the models to the HNR study, the E/O-proportion 226 

depended strongly on the eGFR equation used. For example, using a threshold of six points, the 227 

‘modified SCORED’ had an E/O-proportion of 1.17 (95%-CI: 1.06; 1.28) with the CKD-Epi 228 

equation, 1.55 (1.42; 1.68) with the MDRD and 0.91 (0.84; 0.99) with the FAS equation 229 

(supplement table 4, S4). 230 

Diagnostic criteria 231 
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Thresholds of the scored models that resulted in a sensitivity >60% and specificity >60% (five 232 

points for the Bang and the Kwon models, four points for the Kshirsagar model and 7 points 233 

for the Thakkinstian model) resulted in positive predictive values (PPV) between 15% and 19%. 234 

Negative predictive values (NPV) were similar for all models independent of a chosen threshold 235 

and ranged between 93% and 95% (Tab. 4). Using the FAS-equation yielded the highest 236 

sensitivity and specificity for all thresholds compared to the CKD-EPI or MDRD equation (see 237 

supplement table S3a/b).   238 
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Tab. 4 Diagnostic criteria of validated models for various thresholds (sensitivity, specificity and predictive values 239 

as well as proportions of expected to observed cases with 95%-confidence intervals) for CKD. CKD defined as 240 

eGFR <60m/min/1.73m² calculated with CKD-Epi equation; CKD prevalence 9.2%. 241 

  242 

Model Sensitivity Specificity 
Predictive values  

Positive            Negative 

Expected/Observed 
proportion (95% -

CI) 

SCORED      

4 84.9 44.4 13.4 96.7 6.33 (6.09; 6.59) 

5 61.0 72.5 18.4 94.8 3.32 (3.14; 3.51) 

6 30.6 90.3 24.3 92.8 1.26 (1.15; 1.38) 

7 11.4 97.4 13.5 96.6 0.37 (0.32; 0.44) 

Modified SCORED        

4 84.4 45.3 13.5 96.6 6.24 (6.00; 6.50) 

5 60.8 73.4 18.8 94.9 3.24 (3.06; 3.42) 

6 29.1 91.1 24.9 92.7 1.17 (1.06; 1.28) 

7 9.1 97.9 31.0 91.4 0.29 (0.24; 0.33) 

Kshirsagar     

3 84.2 44.4 13.3 96.5 6.33 (6.09, 6.59) 

4 60.8 72.8 18.5 94.8 3.29 (3.12, 3.48) 

5 29.9 90.7 24.6 92.7 1.22 (1.11; 1.33) 

Kwon      

4 84.7 45.2 13.5 96.7 6.26 (6.01; 6.51) 

5 59.7 73.7 18.7 94.8 3.20 (3.02; 3.38) 

6 27.0 91.6 24.5 92.5 1.10 (1.00; 1.21) 

7 6.2 98.6 30.4 91.2 0.21 (0.16; 0.26) 

Thakkinstian     

6 82.9 45.7 13.4 96.3 6.19 (5.94, 6.44) 

7 69.9 58.2 14.5 95.0 4.83 (4.61, 5.05) 

8 43.9 81.0 18.9 93.4 2.32 (2.17, 2.48) 

9 41.8 83.8 20.8 93.4 2.02 (1.88, 2.16) 

10 38.7 866 22.6 93.3 1.71 (1.59; 1.85) 

11 28.8 90.8 24.2 92.7 1.19 (1.09; 1.31) 
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Discussion  243 

We externally validated six prediction models which estimate the probability for prevalent 244 

unknown CKD without any laboratory measurement. Most models yielded c-values of about 245 

0.72 in the German HNR validation cohort. The calibration to the validation data set was 246 

reasonable only for the Bang (SCORED) models. A PPV of about 19% in a general population 247 

as estimated with all models but the Thakkinstian model indicates a good suitability as tools to 248 

identify patients at higher risk for whom further CKD diagnostic would be advisable.  249 

Current use of risk models in CKD 250 

Only few existing CKD prediction models are in use, such as the Kidney-Failure-Risk-Equation 251 

for prediction of renal failure. 34,35. To prevent progression to serious consequences of CKD 252 

such as ESRD or cardiovascular diseases, early diagnosis of CKD is necessary. Due to the 253 

asymptomatic progress of the disease even patients in later stages of CKD are often 254 

undiagnosed and therefore untreated 8 255 

Contrasting to screening for CKD in the general population, case finding in populations at 256 

higher risk has been proven cost-effective 36,37. Existing CKD risk models have not yet been 257 

applied in programs aiming at identifying persons at higher risk for CKD. 18,38. The Kshirsagar 258 

and the SCORED model were used in a simulation study that proved cost-effectiveness in 259 

identifying persons for screening for early stages of CKD 20, SCORED was evaluated as 260 

screening tool for CKD in a small number of participants (N=172) as alternative to regular CKD 261 

screening protocols 39. 262 

Missing external validation of published CKD risk models can hinder clinical implementation. 263 

The SCORED, the Kwon-, Khirsagar- and the Thakkinstian- model have already been 264 

externally validated in 2016 in a UK population, but not with regard to the probability of 265 

prevalent CKD 22. Also, models using parameters that are either unfamiliar, unusually scaled, 266 
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complicated to calculate or costly to collect (e.g. genetic information) 40 or that do not reflect 267 

the general opinion in clinic about risk factors have a low probability of being used in clinical 268 

routine. 41,42. Most of the identified models comprise familiar predictors which reflect the 269 

current knowledge about CKD risk factors. Only the Kearns and the Thakkinstian model do not 270 

use diabetes or sex for CKD prediction– parameters which usually would be regarded as 271 

relevant for estimating the risk for CKD.  272 

Validation results 273 

Although the number and type of parameters used in the identified models differed, all but the 274 

Thakkinstian model showed fair discriminative properties in the HNR cohort with c-values 275 

ranging from 0.72 – 0.74. These c-values can be judged as satisfactory regarding the non-276 

invasive and dichotomous nature of their predictors that facilitate potential implementations. 277 

Taking the small age range of the HNR cohort compared to the development populations of 278 

most of the validated scores into account, c-values could have been expected to be lower than 279 

in validation populations with full-age-spectrum 43 as, within a small age-range, it is more 280 

difficult to discriminate cases and non-cases when age is the most relevant prediction factor.  281 

Calibration plots revealed a slight underestimation of CKD risk for the two Bang models. For 282 

all other models, calibration was poor. We recommend a re-calibration of the intercept 44 if the 283 

estimated probabilities are of interest in regard to a clinical implementation of a model. In our 284 

estimation of the diagnostic properties we relied on the sum of scoring points for the parameters.  285 

Potential implementation of the risk models 286 

As the selected models do not use any laboratory or genetic information to estimate the risk for 287 

a prevalent CKD, these models can be used in screening scenarios where laboratory or genetic 288 

information would be too difficult or too expensive to get. Using the scoring rules for the models 289 

regarding the answers to the model parameters would enable to implement these models as self-290 
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completing check-list tool for patients which can easily be evaluated in a screening scenario43. 291 

However, acceptance of a prediction model is dependent on its face validity which means that 292 

the model parameters describe known risk factors. The validity of the Thakkinstian model 293 

without consideration of sex or of the Kearns model which does not imply diabetes might be 294 

questioned by physicians. On the other hand, proteinuria as a known risk factor is included in 295 

the SCORED and the Kwon model, but whether patients know for sure whether they had blood 296 

in their urine can be doubted. 297 

Nevertheless, in a German general population, the modified SCORED and the Kwon model 298 

had good external validity and diagnostic properties. We think, that both models are suitable to 299 

identify people at higher risk for CKD at low cost if implemented as web based tool or 300 

distributed as paper questionnaire on information leaflets for example in public places or at 301 

health institutions. People who learn that they have a higher risk for CKD according their 302 

answers to the questionnaire may inform their GP who can decide to initiate further CKD 303 

diagnostic. We think this pragmatic approach can contribute to higher awareness for CKD, 304 

leading to earlier diagnosis and treatment.  305 

Strengths  306 

The HNR cohort is of high data quality and has been the base for many publications so far. All 307 

relevant parameters of the models have been available for the external validation. To our 308 

knowledge we are the first to externally validate prediction models for unknown CKD. 309 

Limitations 310 

We did not intend to do a systematic review on all CKD models suitable for risk estimation for 311 

unknown CKD. Therefore it might be possible that we did not include all existing model. 312 

However, to our knowledge, we were the first to evaluate all the selected models in regard to 313 
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their ability to predict prevalent CKD. We think that we herewith support potential 314 

implementations of these models.  315 

The MDRD equation used in our sensitivity analyses has its weakness in a limited validity with 316 

eGFR levels >60ml/min/1.73m². This however does not affect our validation results, as all 317 

models estimate the risk for CKD stage 3 or more which is defined by lower eGFR levels. 318 

Conclusions 319 

External validation of risk models for unknown CKD yielded fair discrimination in a German 320 

population-based cohort. Calibration to the data was satisfactorily only for some scores. 321 

Diagnostic properties show that the models can be useful in screening scenarios to identify 322 

people at higher risk for CKD. As only non-invasive parameters are used, they can easily be 323 

implemented as tool for patient self-assessment of CKD risk.  324 

  325 
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equations ((sensitivity, specificity and predictive values and the respective proportions of expected to 

observed cases and 95%-confidence intervals). 
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