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 7 
Abstract 8 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have 9 
been key drivers of new coronavirus disease 2019 (COVID-19) pandemic waves. To better 10 
understand variant epidemiologic characteristics, here we apply a model-inference system to 11 
reconstruct SARS-CoV-2 transmission dynamics in South Africa, a country that has experienced 12 
three VOC pandemic waves (i.e. Beta, Delta, and Omicron). We estimate key epidemiologic 13 
quantities in each of the nine South African provinces during March 2020 – Feb 2022, while 14 
accounting for changing detection rates, infection seasonality, nonpharmaceutical 15 
interventions, and vaccination. Model validation shows that estimated underlying infection 16 
rates and key parameters (e.g., infection-detection rate and infection-fatality risk) are in line 17 
with independent epidemiological data and investigations. In addition, retrospective 18 
predictions capture pandemic trajectories beyond the model training period. These detailed, 19 
validated model-inference estimates thus enable quantification of both the immune erosion 20 
potential and transmissibility of three major SARS-CoV-2 VOCs, i.e., Beta, Delta, and Omicron. 21 
These findings help elucidate changing COVID-19 dynamics and inform future public health 22 
planning. 23 
 24 
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 26 
INTRODUCTION 27 
Since its emergence in late December 2019, the severe acute respiratory syndrome coronavirus 28 
2 (SARS-CoV-2) has spread globally, causing the coronavirus disease 2019 (COVID-19) pandemic 29 
(1). In just two years, SARS-CoV-2 has caused several pandemic waves in quick succession in 30 
many places. Many of these repeated pandemic waves have been driven by new variants of 31 
concern (VOCs) or interest (VOIs) that erode prior immunity from either infection or 32 
vaccination, increase transmissibility, or a combination of both. However, while laboratory and 33 
field studies have provided insights into these epidemiological characteristics, quantifying the 34 
extent of immune erosion (or evasion) and changes to transmissibility for each VOC remains 35 
challenging.   36 
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 37 
Like many places, by February 2022 South Africa had experienced four distinct pandemic waves 38 
caused by the ancestral SARS-CoV-2 and three VOCs (Beta, Delta, and Omicron BA.1). However, 39 
South Africa is also unique in that the country had the earliest surge for two of the five VOCs 40 
identified to date – namely, Beta (2) and Omicron (3). To better understand the COVID-19 41 
dynamics in South Africa and variant epidemiological characteristics, here we utilize a model-42 
inference system similar to one developed for study of SARS-CoV-2 VOCs, including the Beta 43 
variant in South Africa (4). We use this system to reconstruct SARS-CoV-2 transmission 44 
dynamics in each of the nine provinces of South Africa from the pandemic onset during March 45 
2020 to the end of February 2022 while accounting for multiple factors modulating underlying 46 
transmission dynamics. We then rigorously validate the model-inference estimates using 47 
independent data and retrospective predictions. The validated estimates quantify the immune 48 
erosion potential and transmissibility of three major SARS-CoV-2 variants, i.e., Beta, Delta, and 49 
Omicron (BA.1), in South Africa. Our findings highlight several common characteristics of SARS-50 
CoV-2 VOCs and the need for more proactive planning and preparedness for future VOCs, 51 
including development of a universal vaccine that can effectively block SARS-CoV-2 infection as 52 
well as prevent severe disease.  53 
 54 
RESULTS 55 
Model fit and validation 56 
The model-inference system uses case and death data to reconstruct the transmission 57 
dynamics of SARS-CoV-2, while accounting for under-detection of infection, infection 58 
seasonality, implemented nonpharmaceutical interventions (NPIs), and vaccination (see 59 
Methods). Overall, the model-inference system is able to fit weekly case and death data in each 60 
of the nine South African provinces (Fig 1A, Fig S1, and additional discussion in Supplemental 61 
Materials). Additional testing (in particular, for the infection-detection rate) and visual 62 
inspections indicate that posterior estimates for the model parameters are consistent with 63 
those reported in the literature, or changed over time and/or across provinces in directions as 64 
would be expected (see Supplemental Materials).  65 
 66 
We then validated the model-inference estimates using three independent datasets. First, we 67 
used serology data. We note that early in the pandemic serology data may reflect underlying 68 
infection rates but later, due to waning antibody titers and reinfection, likely underestimate 69 
infection. Compared to seroprevalence measures taken at multiple time points in each 70 
province, our model estimated cumulative infection rates roughly match corresponding 71 
serology measures and trends over time; as expected, model estimates were higher than 72 
serology measures taken during later months (Fig 1B). Second, compared to hospital admission 73 
data, across the nine provinces, model estimated infection numbers were well correlated with 74 
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numbers of hospitalizations for all four pandemic waves caused by the ancestral, Beta, Delta, 75 
and Omicron (BA.1) variants, respectively (r > 0.75, Fig S2 A-D). Third, model-estimated 76 
infection numbers were correlated with age-adjusted excess mortality for both the ancestral 77 
and Delta wave (r = 0.86 and 0.61, respectively; Fig S2 A and C). For the Beta wave, after 78 
excluding Western Cape, a province with a very high hospitalization rate but low excess 79 
mortality during this wave (Fig S2 B), model-estimated infection numbers were also correlated 80 
with age-adjusted excess mortality for the remaining provinces (r = 0.55; Fig S2 B). For the 81 
Omicron (BA.1) wave, like many other places, due to prior infection and/or vaccination (5, 6), 82 
mortality rates decoupled from infection rates (Fig S2 D).  Overall, comparisons with the three 83 
independent datasets indicate our model-inference estimates align with underlying 84 
transmission dynamics.  85 
 86 
In addition, as a fourth model validation, we generated retrospective predictions of the Delta 87 
and Omicron (BA.1) waves at two key time points, i.e. 2 weeks and 1 week, separately, before 88 
the observed peak of cases (approximately 3 to 5 weeks before the observed peak of deaths; 89 
Fig 2). To accurately predict a pandemic wave caused by a new variant, the model-inference 90 
system needs to accurately estimate the background population characteristics (e.g., 91 
population susceptibility) before the emergence of the new variant, as well as changes in 92 
population susceptibility and transmissibility due to the new variant. This is particularly 93 
challenging for South Africa, as the pandemic waves there tended to progress quickly, with 94 
cases surging and peaking within 3 to 7 weeks before declining. As a result, often only 1 to 6 95 
weeks of new variant data were available for model-inference before generating the prediction. 96 
Despite these challenges, 1-2 weeks before the case peak and 3-5 weeks before the observed 97 
death peak, the model was able to accurately predict the remaining trajectories of cases and 98 
deaths in most of the nine provinces for both the Delta and Omicron (BA.1) waves (Fig 2 for the 99 
four most populous provinces and Fig S3 for the remainder). These accurate model predictions 100 
further validate the model-inference estimates.  101 
 102 
Pandemic dynamics and key model-inference, using Gauteng province as an example 103 
Next, we use Gauteng, the province with the largest population, as an example to highlight 104 
pandemic dynamics in South Africa thus far and develop key model-inference estimates (Fig 3 105 
for Gauteng and Figs S4-S11 for each of the other eight provinces).  Despite lower cases per 106 
capita than many other countries, infection numbers in South Africa were likely much higher 107 
due to under-detection. For Gauteng, the estimated infection-detection rate during the first 108 
pandemic wave was 4.59% (95% CI: 2.62 – 9.77%), and increased slightly to 6.18% (95% CI: 3.29 109 
– 11.11%) and 6.27% (95% CI: 3.44 – 12.39%) during the Beta and Delta waves, respectively 110 
(Table S1). These estimates are in line with serology data. In particular, a population-level sero-111 
survey in Gauteng found 68.4% seropositivity among those unvaccinated at the end of the Delta 112 
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wave (7). Combining the reported cases at that time (~6% of the population size) with 113 
undercounting of infections in sero-surveys due to sero-reversions and reinfections suggests 114 
that the overall detection rate would be less than 10%.  115 
 116 
Using our inferred under-detection (Fig 3E), we estimate that 32.83% (95% CI: 15.42 - 57.59%, 117 
Table S2) of the population in Gauteng were infected during the first wave, predominantly 118 
during winter when more conducive climate conditions and relaxed public health restrictions 119 
existed (see the estimated seasonal and mobility trends, Fig 3A). This high infection rate, while 120 
with uncertainty, is in line with serology measures taken in Gauteng at the end of the first wave 121 
(ranging from 15% to 27% among 6 sero-surveys during November 2020; Fig 1B) and a study 122 
showing 30% sero-positivity among participants enrolled in the Novavax NVX-CoV2373 vaccine 123 
phase 2a-b trial in South Africa during August – November 2020 (8).  124 
 125 
With the emergence of Beta, another 21.87% (95% CI: 12.16 – 41.13%) of the population in 126 
Gauteng – including reinfections – is estimated to have been infected, even though the Beta 127 
wave occurred during summer under less conducive climate conditions for transmission (Fig 128 
3A). The model-inference system estimates a large increase in population susceptibility with the 129 
surge of Beta (Fig 3D; note population susceptibility is computed as S / N × 100%, where S is the 130 
estimated number of susceptible people and N is population size). This dramatic increase in 131 
population susceptibility (vs. a likely more gradual change due to waning immunity), to the then 132 
predominant Beta variant, suggests Beta likely substantially eroded prior immunity and is 133 
consistent with laboratory studies showing low neutralizing ability of convalescent sera against 134 
Beta (9, 10).  In addition, an increase in transmissibility is also evident for Beta, after accounting 135 
for concurrent NPIs and infection seasonality (Fig 3C; note transmissibility is computed as the 136 
product of the estimated variant-specific transmission rate and the infectious period; see 137 
Methods for detail). Notably, in contrast to the large fluctuation of the time-varying effective 138 
reproduction number over time (Rt, Fig 3B), the transmissibility estimates are more stable and 139 
reflect changes in variant-specific properties. Further, consistent with in-depth epidemiological 140 
findings (11), the estimated overall infection-fatality risk for Beta was about twice as high as the 141 
ancestral SARS-CoV-2 (0.19% [95% CI: 0.10 - 0.33%] vs. 0.09% [95% CI: 0.05 - 0.20%], Fig 3F and 142 
Table S3). Nonetheless, these estimates are based on documented COVID-19 deaths and are 143 
likely underestimates.  144 
 145 
With the introduction of Delta, a third pandemic wave occurred in Gauteng during the 2021 146 
winter. The model-inference system estimates a 49.82% (95% CI: 25.22 – 90.79%) attack rate by 147 
Delta, despite the large number of infections during the previous two waves. This large attack 148 
rate was possible due to the high transmissibility of Delta, as reported in multiple studies (12-149 
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16), the more conducive winter transmission conditions (Fig 3A), and the immune erosive 150 
properties of Delta relative to both the ancestral and Beta variants (17-19).  151 
 152 
Due to these large pandemic waves, prior to the detection of Omicron (BA.1) in Gauteng, 153 
estimated cumulative infection numbers surpassed the population size (Fig 4B), indicating the 154 
large majority of the population had been infected and some more than once. With the rise of 155 
Omicron (BA.1), the model-inference system estimates a very large increase in population 156 
susceptibility (Fig 3D), as well as an increase in transmissibility (Fig 3C); however, unlike 157 
previous waves, the Omicron (BA.1) wave progresses much more quickly, peaking 2-3 weeks 158 
after initiating marked exponential growth. These estimates suggest that several additional 159 
factors may have also contributed to the observed dynamics, including changes to the 160 
infection-detection rate (Fig 3E and Supplemental Materials), a summer seasonality increasingly 161 
suppressing transmission as the wave progressed (Fig 3A), as well as a slight change in 162 
population mobility suggesting potential behavior changes (Fig 3A). By the end of February 163 
2022, the model-inference system estimates a 44.49% (95% CI: 19.01 – 75.30%) attack rate, 164 
with only 4.26% (95% CI: 2.46 – 9.72%) of infections detected as cases, during the Omicron 165 
(BA.1) wave in Gauteng. In addition, consistent with the reported 0.3 odds of severe disease 166 
compared to Delta infections (6), estimated overall infection-fatality risk during the Omicron 167 
(BA.1) wave was about 30% of that during the Delta wave in Gauteng (0.03% [95% CI: 0.02 – 168 
0.06%] vs. 0.11% [95% CI: 0.06 – 0.21%], based on documented COVID-19 deaths; Table S3). 169 
 170 
Model inferred epidemiological characteristics across the nine provinces in South Africa 171 
Across all nine provinces in South Africa, the pandemic timing and intensity varied (Fig 4 A-C).  172 
In addition to Gauteng, high cumulative infection rates during the first three pandemic waves 173 
are also estimated for Western Cape and Northern Cape (Fig 1 C-E, Fig 4B and Table S2). 174 
Overall, all nine provinces likely experienced three large pandemic waves prior to the growth of 175 
Omicron (BA.1); estimated average cumulative infections ranged from 60% of the population in 176 
Limpopo to 122% in Northern Cape (Fig 4B). Corroboration for these cumulative infection 177 
estimates is derived from mortality data. Excess mortality before the Omicron (BA.1) wave was 178 
as high as 0.47% of the South African population by the end of November 2021 (20), despite the 179 
relatively young population (median age: 27.6 years (21) vs. 38.5 years in the US (22)) and thus 180 
lower expected infection-fatality risk (23, 24). Assuming an infection-fatality risk of 0.5% (similar 181 
to estimates in (25) for South Africa), these excess deaths would convert to a 94% infection 182 
rate.   183 
 184 
We then use these model-inference estimates to quantify the immune erosion potential and 185 
increase in transmissibility for each VOC. Specifically, the immune erosion (against infection) 186 
potential is computed as the ratio of two quantities – the numerator is the increase of 187 
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population susceptibility due to a given VOC and the denominator is population immunity (i.e., 188 
complement of population susceptibility) at wave onset. The relative increase in transmissibility 189 
is also computed as a ratio, i.e., the average increase due to a given VOC relative to the 190 
ancestral SARS-CoV-2 (see Methods). As population-specific factors contributing to 191 
transmissibility (e.g., population density and average contact rate) would be largely cancelled 192 
out in the latter ratio, we expect estimates of the VOC transmissibility increase to be generally 193 
applicable to different populations. However, prior exposures and vaccinations varied over time 194 
and across populations; thus, the level of immune erosion is necessarily estimated relative to 195 
the local population immune landscape at the time of the variant surge and should be 196 
interpreted accordingly. In addition, this assessment does not distinguish the sources of 197 
immunity or partial protection against severe disease; rather, it assesses the overall loss of 198 
immune protection against infection for a given VOC.   199 
 200 
In the above context, we estimate that Beta eroded immunity among 63.4% (95% CI: 45.0 – 201 
77.9%) of individuals with prior ancestral SARS-CoV-2 infection and was 34.3% (95% CI: 20.5 – 202 
48.2%) more transmissible than the ancestral SARS-CoV-2. These estimates for Beta are 203 
consistent across the nine provinces (Fig 4D, 1st column and Table 1), as well as with our 204 
previous estimates using national data for South Africa (4).  Additional support for the high 205 
immune erosion of Beta is evident from recoverees of ancestral SARS-CoV-2 infection who were 206 
enrolled in the Novavax NVX-CoV2373 vaccine phase 2a-b trial (8) and found to have a similar 207 
likelihood of COVID-19, mostly due to Beta, compared to those seronegative at enrollment.  208 
 209 
Estimates for Delta vary across the nine provinces (Fig 4D, 2nd column), given the more diverse 210 
population immune landscape among provinces after two pandemic waves. Overall, we 211 
estimate that Delta eroded 24.5% (95% CI: 0 – 53.2%) of prior immunity (gained from infection 212 
by ancestral SARS-CoV-2 and/or Beta, and/or vaccination) and was 47.5% (95% CI: 28.4 – 213 
69.4%) more transmissible than the ancestral SARS-CoV-2. Consistent with this finding, and in 214 
particular the estimated immune erosion, studies have reported a 27.5% reinfection rate during 215 
the Delta pandemic wave in Delhi, India (17) and reduced ability of sera from Beta-infection 216 
recoverees to neutralize Delta (18, 19). 217 
 218 
For Omicron (BA.1), estimates also vary by province but still consistently point to its higher 219 
transmissibility than all previous variants (Fig 4D, 3rd column). Overall, we estimate that 220 
Omicron (BA.1) is 94.0% (95% CI: 73.5 – 121.5%) more transmissible than the ancestral SARS-221 
CoV-2. This estimated transmissibility is higher than Delta and consistent with in vitro and/or ex 222 
vivo studies showing Omicron (BA.1) replicates faster within host than Delta (26, 27). In 223 
addition, we estimate that Omicron (BA.1) eroded 54.1% (95% CI: 35.8 – 70.1%) of immunity 224 
due to all prior infections and vaccination. Importantly, as noted above, the estimate for 225 
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immune erosion is not directly comparable across variants, as it is relative to the combined 226 
population immunity accumulated until the rise of each variant. In the case of Beta, it is 227 
immunity accumulated from the first wave via infection by the ancestral SARS-CoV-2. In the 228 
case of Omicron (BA.1), it includes immunity from prior infection and refection of any of the 229 
previously circulating variants as well as vaccination. Thus, the estimate for Omicron (BA.1) may 230 
represent a far broader capacity for immune erosion than was evident for Beta. Supporting the 231 
suggestion of broad-spectrum immune erosion of Omicron (BA.1), studies have reported low 232 
neutralization ability of convalescent sera from infections by all previous variants (28, 29), as 233 
well as high attack rates among vaccinees in several Omicron (BA.1) outbreaks (30, 31).  234 
 235 
DISCUSSION 236 
Using a comprehensive model-inference system, we have reconstructed the pandemic 237 
dynamics in each of the nine provinces of South Africa. Uncertainties exist in our findings, due 238 
to incomplete and varying detection of SARS-CoV-2 infections and deaths, changing population 239 
behavior and public health interventions, and changing circulating variants. To address these 240 
uncertainties, we have validated our estimates using three datasets not used by our model-241 
inference system (i.e., serology, hospitalization, and excess mortality data; Fig 1B and Fig S2) as 242 
well as retrospective prediction (Fig 2 and Fig S4). In addition, as detailed in the Results, we 243 
have showed that estimated underlying infection rates (Fig 1B and Fig S2) and key parameters 244 
(e.g., infection-detection rate and infection-fatality risk) are in line with other independent 245 
epidemiological data and investigations. The detailed, validated model-inference estimates thus 246 
allow quantification of both the immune erosion potential and transmissibility of three major 247 
SARS-CoV-2 VOCs, i.e., Beta, Delta, and Omicron (BA.1).   248 
 249 
The relevance of our model-inference estimates to previous studies has been presented in the 250 
Results section. Here, we make three additional general observations, drawn from global SARS-251 
CoV-2 dynamics including but not limited to findings in South Africa. First, high prior immunity 252 
does not preclude new outbreaks, as neither infection nor current vaccination is sterilizing. As 253 
shown in South Africa, even with the high infection rate accumulated from preceding waves, 254 
new waves can occur with the emergence or introduction of new variants. Around half of South 255 
Africans are estimated to have been infected after the Beta wave (Table S2 and Table S4), yet 256 
the Delta variant caused a third large pandemic wave, followed by a fourth wave with 257 
comparable infection rates by Omicron BA.1 (Fig 4B and Table S2).  258 
 259 
Second, large numbers of hospitalizations and/or deaths can still occur in later waves with large 260 
infection surges, even though prior infection may provide partial protection and to some extent 261 
temper disease severity. This is evident from the large Delta wave in South Africa, which 262 
resulted in 0.2% excess mortality (vs. 0.08% during the first wave and 0.19% during the Beta 263 
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wave (20)). More recently, due to the Omicron BA.4/BA.5 subvariants that have been shown to 264 
evade prior immunity including from BA.1 infection (32, 33), a fifth wave began in South Africa 265 
during May 2022, leading to increases in both cases and hospitalizations (34).  Together, the 266 
continued transmission and potential severe outcomes highlight the importance of continued 267 
preparedness and prompt public health actions as societies learn to live with SARS-CoV-2.  268 
 269 
Third, multiple SARS-CoV-2 VOCs/VOIs have emerged in the two years since pandemic 270 
inception. It is challenging to predict the frequency and direction of future viral mutation, in 271 
particular, the level of immune erosion, changes in transmissibility, and innate severity. 272 
Nonetheless, given high exposure and vaccination in many populations, variants capable of 273 
eroding a wide spectrum of prior immunity (i.e., from infection by multiple preexisting variants 274 
and vaccination) would have a greater chance of causing new major outbreaks. Indeed, except 275 
for the Alpha variant, the other four important VOCs (i.e. Beta, Gamma, Delta, and Omicron) all 276 
produced some level of immune erosion. In addition, later VOCs, like Delta and Omicron, 277 
appear to have been more genetically distinct from previous variants (35). As a result, they are 278 
likely more capable of causing re-infection despite diverse prior exposures and in turn new 279 
pandemic waves. Given this pattern, to prepare for future antigenic changes from new variants, 280 
development of a universal vaccine that can effectively block SARS-CoV-2 infection in addition 281 
to preventing severe disease (e.g. shown in (36)) is urgently needed (37).  282 
 283 
The COVID-19 pandemic has caused devastating public health and economic burdens 284 
worldwide. Yet SARS-CoV-2 will likely persist in the future. To mitigate its impact, proactive 285 
planning and preparedness is paramount.   286 
 287 
METHODS 288 
Data sources and processing 289 
We used reported COVID-19 case and mortality data to capture transmission dynamics, 290 
weather data to estimate infection seasonality, mobility data to represent concurrent NPIs, and 291 
vaccination data to account for changes in population susceptibility due to vaccination in the 292 
model-inference system. Provincial level COVID-19 case, mortality, and vaccination data were 293 
sourced from the Coronavirus COVID-19 (2019-nCoV) Data Repository for South Africa 294 
(COVID19ZA)(38). Hourly surface station temperature and relative humidity came from the 295 
Integrated Surface Dataset (ISD) maintained by the National Oceanic and Atmospheric 296 
Administration (NOAA) and are accessible using the “stationaRy” R package (39, 40). We 297 
computed specific humidity using temperature and relative humidity per the Clausius-298 
Clapeyron equation (41).  We then aggregated these data for all weather stations in each 299 
province with measurements since 2000 and calculated the average for each week of the year 300 
during 2000-2020.  301 
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 302 
Mobility data were derived from Google Community Mobility Reports (42); we aggregated all 303 
business-related categories (i.e., retail and recreational, transit stations, and workplaces) in all 304 
locations in each province to weekly intervals. For vaccination, provincial vaccination data from 305 
the COVID19ZA data repository recorded the total number of vaccine doses administered over 306 
time; to obtain a breakdown for numbers of partial (1 dose of mRNA vaccine) and full 307 
vaccinations (1 dose of Janssen vaccine or 2 doses of mRNA vaccine), separately, we used 308 
national vaccination data for South Africa from Our World in Data (43, 44) to apportion the 309 
doses each day. In addition, cumulative case data suggested 18,586 new cases on Nov 23, 2021, 310 
whereas the South Africa Department of Health reported 868 (45). Thus, for Nov 23, 2021, we 311 
used linear interpolation to fill in estimates for each province on that day and then scaled the 312 
estimates such that they sum to 868.  313 
 314 
Model-inference system  315 
The model-inference system is based on our previous work estimating changes in 316 
transmissibility and immune erosion for SARS-CoV-2 VOCs including Alpha, Beta, Gamma, and 317 
Delta (4, 46). Below we describe each component. 318 
 319 
Epidemic model 320 
The epidemic model follows an SEIRSV (susceptible-exposed-infectious-recovered-susceptible-321 
vaccination) construct per Eqn 1: 322 
 323 
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 325 
where S, E, I, R are the number of susceptible, exposed (but not yet infectious), infectious, and 326 
recovered/immune/deceased individuals; N is the population size; and ε is the number of 327 
travel-imported infections. In addition, the model includes the following key components:  328 
 329 
1) Virus-specific properties, including the time-varying variant-specific transmission rate 0+, 330 

latency period Zt, infectious period Dt, and immunity period Lt. Of note, the immunity 331 
period Lt and the term R/Lt in Eqn 1 are used to model the waning of immune protection 332 
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against infection.  Also note that all parameters are estimated for each week (t) as 333 
described below. 334 

2) The impact of NPIs. Specifically, we use relative population mobility (see data above) to 335 
adjust the transmission rate via the term mt, as the overall impact of NPIs (e.g., reduction 336 
in the time-varying effective reproduction number Rt) has been reported to be highly 337 
correlated with population mobility during the COVID-19 pandemic.(47-49) To further 338 
account for potential changes in effectiveness, the model additionally includes a 339 
parameter, et, to scale NPI effectiveness.   340 

3) The impact of vaccination, via the terms v1,t and v2,t. Specifically, v1,t is the number of 341 
individuals successfully immunized after the first dose of vaccine and is computed using 342 
vaccination data and vaccine effectiveness (VE) for 1st dose; and v2,t is the additional 343 
number of individuals successfully immunized after the second vaccine dose (i.e., excluding 344 
those successfully immunized after the first dose). In South Africa, around two-thirds of 345 
vaccines administered during our study period were the mRNA BioNTech/Pfizer vaccine 346 
and one-third the Janssen vaccine (50). We thus set VE to 20%/85% (partial/full 347 
vaccination) for Beta, 35%/75% for Delta, and 10%/35% for Omicron (BA.1) based on 348 
reported VE estimates (51-53). 349 

4) Infection seasonality, computed using temperature and specific humidity data as described 350 
previously (see supplemental material of Yang and Shaman(4)). Briefly, we estimated the 351 
relative seasonal trend (bt) using a model representing the dependency of the survival of 352 
respiratory viruses including SARS-CoV-2 to temperature and humidity (54, 55), per 353 

)=(') = [AB
7(') + -B(') + C][

EF

E(+)
]
EGHI   (Eqn 2) 354 

-+ =
JK(+)

JK(+)
LLLLLLLL

    (Eqn 3) 355 

In essence, the seasonality function in Eqn 2 assumes that humidity has a bimodal effect on 356 
seasonal risk of infection, with both low and high humidity conditions favoring transmission 357 
[i.e., the parabola in 1st set of brackets, where q(t) is weekly specific humidity measured by 358 
local weather stations]; and this effect is further modulated by temperature, with low 359 
temperatures promoting transmission and temperatures above a certain threshold limiting 360 
transmission [i.e., 2nd set of brackets, where T(t) is weekly temperature measured by local 361 
weather stations and Tc is the threshold]. As SARS-CoV-2 specific parameters (a, b, c, Tc, 362 
and Texp in Eqn 2) are not available, to estimate its seasonality using Eqn 2, as done in Yang 363 
and Shaman (4), we use parameters estimated for influenza (56) and scale the weekly 364 
outputs [i.e., )=(')] by the annual mean (i.e., )=LLL) per Eqn 3. In doing so, the scaled outputs 365 
(bt) are no longer specific to influenza; rather, they represent the relative, seasonality-366 
related transmissibility by week, general to viruses sharing similar seasonal responses. As 367 
shown in Fig 2A, bt estimates over the year averaged to 1 such that weeks with bt >1 (e.g. 368 
during the winter) are more conducive to SARS-CoV-2 transmission whereas weeks with bt 369 
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<1 (e.g. during the summer) have less favorable climate conditions for transmission. The 370 
estimated relative seasonal trend, bt, is used to adjust the relative transmission rate at time 371 
t in Eqn 1. 372 

 373 
Observation model to account for under-detection and delay 374 
Using the model-simulated number of infections occurring each day, we further computed the 375 
number of cases and deaths each week to match with the observations, as done in Yang et al 376 
(57). Briefly, we include 1) a time-lag from infectiousness to detection (i.e., an infection being 377 
diagnosed as a case), drawn from a gamma distribution with a mean of Td,mean days and a 378 
standard deviation of Td, sd days, to account for delays in detection (Table S5); 2) an infection-379 
detection rate (rt), i.e. the fraction of infections (including subclinical or asymptomatic 380 
infections) reported as cases, to account for under-detection; 3) a time-lag from infectiousness 381 
to death, drawn from a gamma distribution with a mean of 13-15 days and a standard deviation 382 
of 10 days; and 4) an infection-fatality risk (IFRt). To compute the model-simulated number of 383 
new cases each week, we multiplied the model-simulated number of new infections per day by 384 
the infection-detection rate, and further distributed these simulated cases in time per the 385 
distribution of time-from-infectiousness-to-detection. Similarly, to compute the model-386 
simulated deaths per week and account for delays in time to death, we multiplied the 387 
simulated-infections by the IFR and then distributed these simulated deaths in time per the 388 
distribution of time-from-infectious-to-death. We then aggregated these daily numbers to 389 
weekly totals to match with the weekly case and mortality data for model-inference.  For each 390 
week, the infection-detection rate (rt), the infection-fatality risk (IFRt)., and the two time-to-391 
detection parameters (Td, mean and Td, sd) were estimated along with other parameters (see 392 
below).  393 
 394 
Model inference and parameter estimation 395 
The inference system uses the ensemble adjustment Kalman filter (EAKF (58)), a Bayesian 396 
statistical method, to estimate model state variables (i.e., S, E, I, R from Eqn 1) and parameters 397 
(i.e., 0+, Zt, Dt, Lt, et, from Eqn 1 as well as rt, IFRt and other parameters from the observation 398 
model). Briefly, the EAKF uses an ensemble of model realizations (n=500 here), each with initial 399 
parameters and variables randomly drawn from a prior range (see Table S5). After model 400 
initialization, the system integrates the model ensemble forward in time for a week (per Eqn 1) 401 
to compute the prior distribution for each model state variable and parameter, as well as the 402 
model-simulated number of cases and deaths for that week.  The system then combines the 403 
prior estimates with the observed case and death data for the same week to compute the 404 
posterior per Bayes' theorem (58). During this filtering process, the system updates the 405 
posterior distribution of all model variables and parameters for each week.  For a further 406 
discussion on the filtering process and additional considerations, see the Supplemental text; 407 
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diagnosis of model posterior estimates for all parameters are also included in the Supplemental 408 
text and Figs. S15 – S23.  409 
 410 
Estimating changes in transmissibility and immune erosion for each variant  411 
As in ref (4), we computed the variant-specific transmissibility ()EM) as the product of the 412 
variant-specific transmission rate (0+) and infectious period (Dt). Note that Rt, the time-varying 413 
effective reproduction number, is defined as )+ = -+.+/+0+<+&/2 = -+.+/+)EM&/2.		To 414 
reduce uncertainty, we averaged transmissibility estimates over the period a particular variant 415 
of interest was predominant. To find these predominant periods, we first specified the 416 
approximate timing of each pandemic wave in each province based on: 1) when available, 417 
genomic surveillance data; specifically, the onsets of the Beta wave in Eastern Cape, Western 418 
Cape, KwaZulu-Natal, and Northern Cape, were separately based on the initial detection of Beta 419 
in these provinces as reported in Tegally et al. (2); the onsets of the Delta wave in each of the 420 
nine provinces, separately, were based on genomic sequencing data from the Network for 421 
Genomic Surveillance South Africa (NGS-SA)(59); and 2) when genomic data were not available, 422 
we used the week with the lowest case number between two waves. The specified calendar 423 
periods are listed in Table S6.  During later waves, multiple variants could initially co-circulate 424 
before one became predominant. As a result, the estimated transmissibility tended to increase 425 
before reaching a plateau (see, e.g., Fig 2C). In addition, in a previous study of the Delta 426 
pandemic wave in India (46), we also observed that when many had been infected, 427 
transmissibility could decrease a couple months after the peak, likely due to increased 428 
reinfections for which onward transmission may be reduced. Thus, to obtain a more variant-429 
specific estimate, we computed the average transmissibility ()EMLLLLL) using the weekly RTX 430 
estimates over the 8-week period starting the week prior to the maximal Rtx during each wave; 431 
if no maximum existed (e.g. when a new variant is less transmissible), we simply averaged over 432 
the entire wave.  We then computed the change in transmissibility due to a given variant 433 

relative to the ancestral SARS-CoV-2 as (
JPQ,RSTUSVW
LLLLLLLLLLLLLLLLXJPQ,SVFGYWTSZ

LLLLLLLLLLLLLLLLLLL

JPQ,SVFGYWTSZ
LLLLLLLLLLLLLLLLLLL

) × 100%.	 434 

 435 
To quantify immune erosion, similar to ref (4), we estimated changes in susceptibility over time 436 
and computed the change in immunity as ΔImm = St+1 – St + it, where St is the susceptibility at 437 
time-t and it is the new infections occurring during each week-t.  We sum over all ΔImm 438 
estimates for a particular location, during each wave, to compute the total change in immunity 439 
due to a new variant, ΣΔ1//a.  Because filter adjustment could also slightly increase S, to 440 
avoid overestimation, here we only included substantial increases (i.e., ΔImm per week > 0.5% 441 
of the total population) when computing changes due to a new variant. As such, we did not 442 
further account for smaller susceptibility increases due to waning immunity [for reference, for a 443 
population that is 50% immune and a 2-year mean immunity period, 0.5 / (52 × 2) × 100% = 444 
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0.48% of the population would lose immunity during a week due to waning immunity].  We 445 
then computed the level of immune erosion as the ratio of ΣΔ1//a to the model-estimated 446 
population immunity prior to the first detection of immune erosion, during each wave. That is, 447 
as opposed to having a common reference of prior immunity, here immune erosion for each 448 
variant depends on the state of the population immune landscape – i.e., combining all prior 449 
exposures and vaccinations – immediately preceding the surge of that variant.  450 
 451 
For all provinces, model-inference was initiated the week starting March 15, 2020 and run 452 
continuously until the week starting February 27, 2022. To account for model stochasticity, we 453 
repeated the model-inference process 100 times for each province, each with 500 model 454 
realizations and summarized the results from all 50,000 model estimates.  455 
 456 
Model validation using independent data 457 
To compare model estimates with independent observations not assimilated into the model-458 
inference system, we utilized three relevant datasets:  459 
1) Serological survey data measuring the prevalence of SARS-CoV-2 antibodies over time. 460 

Multiple serology surveys have been conducted in different provinces of South Africa. The 461 
South African COVID-19 Modelling Consortium summarizes the findings from several of 462 
these surveys (see Fig 1A of ref (60)). We digitized all data presented in Fig 1A of ref (60) 463 
and compared these to corresponding model-estimated cumulative infection rates 464 
(computed mid-month for each corresponding month with a seroprevalence measure). 465 
Due to unknown survey methodologies and challenges adjusting for sero-reversion and 466 
reinfection, we used these data directly (i.e., without adjustment) for qualitative 467 
comparison.  468 

2) COVID-19-related hospitalization data, from COVID19ZA (38).  We aggregated the total 469 
number of COVID-19 hospital admissions during each wave and compared these 470 
aggregates to model-estimated cumulative infection rates during the same wave. Of note, 471 
these hospitalization data were available from June 6, 2020 onwards and are thus 472 
incomplete for the first wave.  473 

3) Age-adjusted excess mortality data from the South African Medical Research Council 474 
(SAMRC)(20). Deaths due to COVID-19 (used in the model-inference system) are 475 
undercounted. Thus, we also compared model-estimated cumulative infection rates to age-476 
adjusted excess mortality data during each wave. Of note, excess mortality data were 477 
available from May 3, 2020 onwards and are thus incomplete for the first wave.  478 

 479 
Model validation using retrospective prediction 480 
As a fourth model validation, we generated model predictions at 2 or 1 week before the week 481 
of highest cases for the Delta and Omicron (BA.1) waves, separately, and compared the 482 
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predicted cases and deaths to reported data unknown to the model. Predicting the peak timing, 483 
intensity, and epidemic turnaround requires accurate estimation of model state variables and 484 
parameters that determine future epidemic trajectories. This is particularly challenging for 485 
South Africa as the pandemic waves tended to progress quickly such that cases surged to a 486 
peak in only 3 to 7 weeks. Thus, we chose to generate retrospective predictions 2 and 1 weeks 487 
before the peak of cases in order to leverage 1 to 6 weeks of new variant data for estimating 488 
epidemiological characteristics. Specifically, for each pandemic wave, we ran the model-489 
inference system until 2 weeks (or 1 week) before the observed peak of cases, halted the 490 
inference, and used the population susceptibility and transmissibility of the circulating variant 491 
estimated at that time to predict cases and deaths for the remaining weeks (i.e. 10-14 weeks 492 
into the future). Because the infection detection rate and fatality risk are linked to observations 493 
of cases and deaths, changes of these quantities during the prediction period could obscure the 494 
underlying infection rate and accuracy of the prediction. Thus, for these two parameters 495 
specifically, we used model-inference estimates for corresponding weeks to allow comparison 496 
of model-predicted cases and deaths with the data while focusing on testing the accuracy of 497 
other key model estimates (e.g., transmissibility of the new variant). As for the model-498 
inference, we repeated each prediction 100 times, each with 500 model realizations and 499 
summarized the results from all 50,000 ensemble members.  500 
 501 
Data Availability: All data used in this study are publicly available as described in the “Data 502 
sources and processing” section.  503 
 504 
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Figure Legends: 647 
Fig 1. Pandemic dynamics in South Africa, model-fit and validation using serology data. (A) 648 
Pandemic dynamics in each of the nine provinces (see legend); dots depict reported weekly 649 
numbers of cases and deaths; lines show model mean estimates (in the same color). (B) For 650 
validation, model estimated infection rates are compared to seroprevalence measures over 651 
time from multiple sero-surveys summarized in ref 60. Boxplots depict the estimated 652 
distribution for each province (middle bar = mean; edges = 50% CrIs) and whiskers (95% CrIs). 653 
Red dots show corresponding measurements. Note that reported mortality was high in 654 
February 2022 in some provinces (see additional discussion in Supplemental Materials).   655 
 656 
Fig 2. Model validation using retrospective prediction. Model-inference was trained on cases 657 
and deaths data since March 15, 2020 until 2 weeks (1st plot in each panel) or 1 week (2nd plot) 658 
before the Delta or Omicron (BA.1) wave (see timing on the x-axis); the model was then 659 
integrated forward using the estimates made at the time to predict cases (left panel) and 660 
deaths (right panel) for the remaining weeks of each wave. Blue lines and surrounding shades 661 
show model fitted cases and deaths for weeks before the prediction (line = median, dark blue 662 
area = 50% CrIs, and light blue = 80% CrIs). Red lines show model projected median weekly 663 
cases and deaths; surrounding shades show 50% (dark red) and 80% (light red) CIs of the 664 
prediction. For comparison, reported cases and deaths for each week are shown by the black 665 
dots; however, those to the right of the vertical dash lines (showing the start of each 666 
prediction) were not used in the model.  For clarity, here we show 80% CIs (instead of 95% CIs, 667 
which tend to be wider for longer-term projections) and predictions for the four most populous 668 
provinces (Gauteng in A and B; KwaZulu-Natal in C and D; Western Cape in E and F; and Eastern 669 
Cape in G and H). Predictions for the other five provinces are shown in Fig S3.  670 
 671 
Fig 3. Example model-inference estimates for Gauteng. (A) Observed relative mobility, 672 
vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 673 
time. Key model-inference estimates are shown for the time-varying effective reproduction 674 
number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 675 
population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 676 
shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 677 
and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 678 
whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 679 
the transmissibility estimates (RTX in C) have removed the effects of changing population 680 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 681 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 682 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 683 
true values due to likely under-reporting of COVID-19 deaths. 684 
 685 
Fig 4. Model-inferred epidemiological properties for different variants across SA provinces. 686 
Heatmaps show (A) Estimated mean infection rates by week (x-axis) and province (y-axis), (B) 687 
Estimated mean cumulative infection numbers relative to the population size in each province, 688 
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and (C) Estimated population susceptibility (to the circulating variant) by week and province. 689 
(D) Boxplots in the top row show the estimated distribution of increases in transmissibility for 690 
Beta, Delta, and Omicron (BA.1), relative to the Ancestral SARS-CoV-2, for each province 691 
(middle bar = median; edges = 50% CIs; and whiskers =95% CIs); boxplots in the bottom row 692 
show, for each variant, the estimated distribution of immune erosion to all adaptive immunity 693 
gained from infection and vaccination prior to that variant. Red lines show the mean across all 694 
provinces.  695 
 696 
  697 
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Table 1. Estimated increases in transmissibility and immune erosion potential for Beta, Delta, 698 
and Omicron (BA.1). The estimates are expressed in percentage for the median (and 95% CIs).  699 
Note that estimated increases in transmissibility for all three variants are relative to the 700 
ancestral strain, whereas estimated immune erosion is relative to the composite immunity 701 
combining all previous infections and vaccinations accumulated until the surge of the new 702 
variant. See main text and Methods for details. 703 
Province Quantity Beta Delta Omicron (BA.1) 

All combined  % Increase in transmissibility 34.3 (20.5, 48.2) 47.5 (28.4, 69.4) 94 (73.5, 121.5) 

% Immune erosion 63.4 (45, 77.9) 24.5 (0, 53.2) 54.1 (35.8, 70.1) 

Gauteng  % Increase in transmissibility 42.2 (35.6, 48.3) 51.8 (44.5, 58.7) 112.6 (96.2, 131.8) 

% Immune erosion 65 (57, 72.2) 44.3 (36.4, 54.9) 64.1 (56, 74.2) 

KwaZulu-

Natal 

% Increase in transmissibility 29.7 (22.9, 36.6) 52.5 (44.8, 60.8) 90.6 (77.9, 102.4) 

% Immune erosion 58.1 (48.3, 71.3) 17.3 (1.4, 27.6) 51.1 (39.3, 58.1) 

Western 

Cape 

% Increase in transmissibility 23.4 (20.2, 27.4) 55.2 (48.2, 62.7) 86.1 (72.6, 102.6) 

% Immune erosion 68.9 (62.5, 76.4) 41.5 (35.6, 53.5) 61 (55.5, 67.3) 

Eastern Cape % Increase in transmissibility 24.1 (18, 29.7) 50.2 (40.5, 57.4) 78.4 (67.6, 89.2) 

% Immune erosion 54.6 (45.1, 61.2) 24.2 (15.4, 36.2) 45.3 (34.5, 57.2) 

Limpopo % Increase in transmissibility 32.6 (24.9, 39.8) 38.9 (31.5, 50.5) 91.8 (82.6, 102.4) 

% Immune erosion 56.3 (38.4, 76.2) 1.8 (0, 21.2) 42.1 (33.2, 53.2) 

Mpumalanga  % Increase in transmissibility 31.2 (25.4, 38.6) 35.3 (24.9, 48.2) 88.6 (72.8, 104.3) 

% Immune erosion 55.6 (39.8, 70) 3.1 (0, 21.7) 45.9 (37.7, 55.7) 

North West  % Increase in transmissibility 43.8 (36.9, 52.1) 36.8 (25.6, 47.5) 100 (81.7, 121.1) 

% Immune erosion 67 (58.4, 75.4) 12.4 (0.4, 30.5) 56.6 (48.2, 68.8) 

Free State % Increase in transmissibility 42.7 (35, 49.8) 43.8 (31.9, 52.1) 92.2 (77.4, 106.9) 

% Immune erosion 70 (64.5, 76.2) 27.7 (17.6, 41.6) 57 (49.5, 66.6) 

Northern 

Cape 

% Increase in transmissibility 38.6 (32.6, 44.8) 63.1 (50.4, 79.2) 106 (94.7, 119.6) 

% Immune erosion 75 (67.4, 82) 47.9 (40.5, 59.1) 64 (57.3, 72.6) 

 704 
  705 
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Fig 1. Pandemic dynamics in South Africa, model-fit and validation using serology data. (A) 706 
Pandemic dynamics in each of the nine provinces (see legend); dots depict reported weekly 707 
numbers of cases and deaths; lines show model mean estimates (in the same color). (B) For 708 
validation, model estimated infection rates are compared to seroprevalence measures over 709 
time from multiple sero-surveys summarized in ref 60. Boxplots depict the estimated 710 
distribution for each province (middle bar = mean; edges = 50% CrIs) and whiskers (95% CrIs). 711 
Red dots show corresponding measurements. Note that reported mortality was high in 712 
February 2022 in some provinces (see additional discussion in Supplemental Materials).   713 

 714 
  715 
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Fig 2. Model validation using retrospective prediction. Model-inference was trained on cases 716 
and deaths data since March 15, 2020 until 2 weeks (1st plot in each panel) or 1 week (2nd plot) 717 
before the Delta or Omicron (BA.1) wave (see timing on the x-axis); the model was then 718 
integrated forward using the estimates made at the time to predict cases (left panel) and 719 
deaths (right panel) for the remaining weeks of each wave. Blue lines and surrounding shades 720 
show model fitted cases and deaths for weeks before the prediction (line = median, dark blue 721 
area = 50% CrIs, and light blue = 80% CrIs). Red lines show model projected median weekly 722 
cases and deaths; surrounding shades show 50% (dark red) and 80% (light red) CIs of the 723 
prediction. For comparison, reported cases and deaths for each week are shown by the black 724 
dots; however, those to the right of the vertical dash lines (showing the start of each 725 
prediction) were not used in the model.  For clarity, here we show 80% CIs (instead of 95% CIs, 726 
which tend to be wider for longer-term projections) and predictions for the four most populous 727 
provinces (Gauteng in A and B; KwaZulu-Natal in C and D; Western Cape in E and F; and Eastern 728 
Cape in G and H). Predictions for the other five provinces are shown in Fig S3.  729 

 730 
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Fig 3. Example model-inference estimates for Gauteng. (A) Observed relative mobility, 732 
vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 733 
time. Key model-inference estimates are shown for the time-varying effective reproduction 734 
number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 735 
population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 736 
shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 737 
and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 738 
whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 739 
the transmissibility estimates (RTX in C) have removed the effects of changing population 740 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 741 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 742 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 743 
true values due to likely under-reporting of COVID-19 deaths. 744 

  745 
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Fig 4. Model-inferred epidemiological properties for different variants across SA provinces. 746 
Heatmaps show (A) Estimated mean infection rates by week (x-axis) and province (y-axis), (B) 747 
Estimated mean cumulative infection numbers relative to the population size in each province, 748 
and (C) Estimated population susceptibility (to the circulating variant) by week and province. 749 
(D) Boxplots in the top row show the estimated distribution of increases in transmissibility for 750 
Beta, Delta, and Omicron (BA.1), relative to the Ancestral SARS-CoV-2, for each province 751 
(middle bar = median; edges = 50% CIs; and whiskers =95% CIs); boxplots in the bottom row 752 
show, for each variant, the estimated distribution of immune erosion to all adaptive immunity 753 
gained from infection and vaccination prior to that variant. Red lines show the mean across all 754 
provinces.  755 

 756 
 757 
 758 
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Supplemental Materials 
for  

COVID-19 pandemic dynamics in South Africa and epidemiological 
characteristics of three variants of concern (Beta, Delta, and Omicron) 

Wan Yang and Jeffrey Shaman 

 

Supplemental results and discussion 
1. A brief note on reported COVID-19 mortality and model-inference strategy in this study 
COVID-19 mortality data in some South African provinces appeared irregular with very high 

weekly death counts for some weeks even though cases in preceding weeks were low (see, e.g., 

COVID-19 related deaths in Mpumalanga and Northern Cape in Fig S1). A likely explanation is 

the audit and release of mortality data including deaths that occurred in previous time periods, 

which were not redistributed according to the actual time of death. Such instances have 

occurred in multiple countries (see, e.g., some of the documentations by Financial Times in ref 

(1), under the header “SOURCES”).  Here, we could not adjust for this possibility due to a lack of 

information on these apparent data releases.  Instead, to account for potential data errors, the 

ensemble adjustment Kalman filter (EAKF) algorithm (2), used in the model-inference system, 

includes an estimate of observational error variance for computing the posterior estimates. In 

this study, the observational error variance was scaled to corresponding observations (thus, 

weeks with higher mortality would also have larger observational errors). In doing so, the EAKF 

reduces the weight of observations with larger observational errors (e.g., for weeks with very 

large death counts), which reduces their impact on the inference of model dynamics. As such, 

the posterior estimates for mortality tend to (intentionally) miss very high outlying data points 

(see Fig 1 and Fig S1).  In addition, posterior estimates for the infection-fatality risk (IFR) are 

more stable over time, including for weeks with outlying death counts (see, e.g., Fig S23, IFR 

estimates for Mpumalanga).  

 

In light of these COVID-19 related mortality data patterns, we computed the overall IFR during 

each pandemic wave using two methods. The first method computes the wave-specific IFR as 

the ratio of the total reported COVID-19 related deaths to the model-estimated cumulative 

infection rate during each wave. Because reported COVID-19 related mortality is used as the 

numerator, this method is more heavily affected by the aforementioned data irregularities.  The 

second method computes the wave-specific IFR as a weighted average of the weekly IFR 

estimates during each wave, a measure for which both the numerator and denominator are 

model-inference derived; the weights are the estimated fraction of infections during each 

week.  As shown in Table S3, for provinces with consistent case and mortality trends (e.g., 

Gauteng), the two methods generated similar IFR estimates. In contrast, for provinces with 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.12.19.21268073doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268073


 26 

mortality trends inconsistent with case trends (e.g., Mpumalanga), the second method 

generated IFR estimates more comparable to other provinces than the first method.   

 

2. Considerations in parameter prior choice and the EAKF inference algorithm 
The model-inference system included 9 parameters, namely, the variant-specific transmission 

rate 0+, latency period Zt, infectious period Dt, immunity period Lt, scaling factor of NPI 

effectiveness et, infection-detection rate rt, IFRt, and two parameters for the distribution of 

time from infectiousness to case detection (i.e., the mean and standard deviation, for a gamma 

distribution).  The initial prior distributions were randomly drawn from uniform distributions 

with ranges listed in Table S5.  For parameters with previous estimates from the literature (e.g., 

transmission rate β, incubation period Z, infectious period D, and immunity period L; see Table 

S5, column “Source/rationale”), we set the prior range accordingly. For parameters with high 

uncertainty and spatial variation (e.g., infection-detection rate), we preliminarily tested initial 

prior ranges by visualizing model prior and posterior estimates, using different ranges. For 

instance, for the infection-detection rate, when using a higher prior range (e.g., 5 -20% vs. 1 -

10%), the model prior tended to overestimate observed cases and underestimate deaths. Based 

on the initial testing, we then used a wide range able to reproduce the observed cases and 

deaths relatively well and then derived estimates of unobserved state variables and 

parameters.   

 

Importantly, the EAKF used here is an iterative filtering algorithm. After initialization using the 

initial prior distributions, it iteratively incorporates additional observations at each time step 

(here, each week) to compute and update the model posterior (including all model state 

variables and parameters) using the model prior and the latest observations. For the model 

state variables, the prior is computed per the dynamic model (here, Eqn 1); for the model 

parameters, the prior is the posterior from the last time step.  As such, the influence of the 

initial prior range tends to be less pronounced compared to methods such as Markov Chain 

Monte Carlo (MCMC). In addition, to capture potential changes over time (e.g., likely increased 

detection for variants causing more severe disease), we applied space reprobing (SR) (3), a 

technique that randomly replaces parameter values for a small fraction of the model ensemble, 

to explore a wider range of parameter possibilities (Table S5).  Due to both the EAKF algorithm 

and space reprobing, the posterior parameter estimates can migrate outside the initial 

parameter ranges (e.g., for the transmission rate during the circulation of new variants).   

 

3. Testing of the infection-detection rate during the Omicron (BA.1) wave in Gauteng 
A major challenge for this study is inferring the underlying transmission dynamics of the 

Omicron (BA.1) wave in Gauteng, where Omicron was initially detected and had the earliest 

case surge. In Gauteng, the number of cases during the first week of reported detection (i.e., 
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the week starting 11/21/21) increased 4.4 times relative to the previous week; during the 

second week of report (i.e., the week starting 11/28/21) cases increased another 4.9 times. Yet 

after these two weeks of dramatic increases, cases peaked during the third week and started to 

decline afterwards. Initial testing suggested substantial changes in infection-detection rates 

during this time; in particular, detection could increase during the first two weeks due to 

awareness and concern for the novel Omicron variant and decline during later weeks due to 

constraints on testing capacity as well as subsequent reports of milder disease caused by 

Omicron. To more accurately estimate the infection-detection rate and underlying transmission 

dynamics, we ran and compared model-inference estimates using 4 settings for the infection-

detection rate.  

 

As noted above, with the model-EAKF filtering algorithm, parameter posterior is iteratively 

updated and becomes the prior at the next time step such that information from all previous 

time steps is sequentially incorporated. Given the sequential nature of the EAKF, rather than 

using a new prior distribution for the infection-detection rate, to explore new state space (here, 

potential changes in detection rate), we applied SR (3), which randomly assigns the prior values 

of a small fraction of the model ensemble while preserving the majority that encodes prior 

information. In previous studies (3, 4), we have showed that the model ensemble posterior 

would remain similar if there is no substantial change in the system and more efficiently 

migrate towards new state space if there is a substantial change. Here, to explore potential 

changes in infection detection rates during the Omicron (BA.1) wave, we tested 4 SR settings 

for the infection-detection rate: 1) Use of the same baseline range as before (i.e., 1-8%; uniform 

distribution, same for other ranges) for all weeks during the Omicron (BA.1) wave; 2) Use of a 

wider and higher range (i.e., 1-12%) for all weeks; 3) Use of a range of 1-15% for the 1st week of 

Omicron reporting (i.e., week starting 11/21/21), 5-20% for the 2nd week of Omicron reporting 

(i.e., the week starting 11/28/21), and 1-8% for the rest; and 4) Use of a range of 5-25% for the 

2nd week of reporting and 1-8% for all others.  

 

Estimated infection-detection rates in Gauteng increased substantially during the first two 

weeks of the Omicron (BA.1) wave and decreased afterwards under all four SR settings (Fig S12, 

1st row). This consistency suggests a general trend in infection-detection rates at the time in 

accordance with the aforementioned potential changes in testing. Without using a higher SR 

range (e.g., 1-8% and 1-12% in columns 1-2 of Fig S12 vs 5-20% and 5-25% for week 2 in 

columns 3-4), the estimated increases in infection-detection rate were lower; instead, the 

model-inference system attributed the dramatic case increases in the first two weeks to higher 

increases in population susceptibility and transmissibility (Fig S12, 2nd and 3rd row, compare 

columns 1-2 vs. 3-4). However, the higher estimates for population susceptibility and 

transmissibility contradicted with the drastic decline in cases shortly afterwards such that the 
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model-inference system readjusted the transmissibility to a lower level during later weeks (see 

the uptick in estimated transmissibility in Fig S12, 3rd row, first 2 columns). In contrast, when 

higher infection-detection rates were estimated for the first two weeks using the last two SR 

settings, the transmissibility estimates were more stable during later weeks (Fig S12, 3rd row, 

last 2 columns). In addition, model-inference using the latter two SR settings also generated 

more accurate retrospective predictions for the Omicron (BA.1) wave in Gauteng (Fig S13).  

 

Given the above results, we used the 4th SR setting in the model-inference for Gauteng (i.e., 

replace a fraction of the infection detection rate using values randomly drawn from U[5%, 25%] 

for the week starting 11/28/21 and U[1%, 8%] for all other weeks during the Omicron wave). 

Reported cases in other provinces did not change as dramatically as in Gauteng; therefore, for 

those provinces, we used the baseline setting, i.e., values drawn from U[1%, 8%], for re-probing 

the infection-detection rate. Nonetheless, we note that the overall estimates for changes in 

transmissibility and immune erosion of Omicron (BA.1) were slightly higher under the first two 

SR settings but still consistent with the results presented in the main text (Fig S14).  

 

4. Examination of posterior estimates for all model parameters 
To diagnose posterior estimates for each parameter, we plotted the posterior median, 50% and 

95% credible intervals (CrIs) estimated for each week during the entire study period, for each of 

the nine provinces (Figs. S15 – S23). As shown in Fig S15, the estimated transmission rate was 

relatively stable during the ancestral wave; it then increased along with the surge of the Beta 

variant around October 2020 and leveled off during the Beta wave. Similarly, following the 

initial surge of the Delta and Omicron variants, estimated transmission rates increased before 

leveling off when the new variant became predominant. Similar patterns are estimated for all 

provinces, indicating the model-inference system is able to capture the changes in transmission 

rate due to each new variant.  

 

Estimated latent period (Fig S16), infectious period (Fig S17), immunity period (Fig S18), and the 

scaling factor of NPI effectiveness (Fig S19) all varied somewhat over time, but to a much less 

extent compared to the transmission rate.  Estimated time from infectiousness to case 

detection decreased slightly over time, albeit with larger variations in later time periods (see Fig 

S20 for the mean and Fig S21 for the standard deviation). It is possible that the model-inference 

system could not adequately estimate the nuanced changes in these parameters using 

aggregated population level data.   

 

Estimated infection-detection rates varied over time for all provinces (Fig S22). The infection-

detection rate can be affected by 1) testing capacity, e.g., lower during the first weeks of the 

COVID-19 pandemic, and sometimes lower near the peak of a pandemic wave when maximal 
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capacity was reached; 2) awareness of the virus, e.g., higher when a new variant was first 

reported and lower near the end of a wave; and 3) disease severity, e.g., higher when variants 

causing more severe disease were circulating. Overall, the estimates were consistent with these 

expected patterns.  

 

Lastly, estimated IFRs also varied over time and across provinces (Fig S23). IFR can be affected 

by multiple factors, including infection demographics, innate severity of the circulating variant, 

quality and access to healthcare, and vaccination coverage. For infection demographics, IFR 

tended to be much lower in younger ages as reported by many (e.g., Levin et al. 2020 (5)). In 

South Africa, similar differences in infection demographics occurred across provinces. For 

instance, Giandhari et al. (6) noted a lower initial mortality in Gauteng, as earlier infections 

concentrated in younger and wealthier individuals. For the innate severity of the circulating 

variant, as noted in the main text, in general estimated IFRs were higher during the Beta and 

Delta waves than during the Omicron wave.  In addition, as shown in Fig S23, estimated IFRs 

were substantially higher in four provinces (i.e., KwaZulu-Natal, Western Cape, Eastern Cape, 

and Free State) than other provinces during the Beta wave. Coincidentally, the earliest surges of 

the Beta variant occurred in three of those provinces (i.e., KwaZulu-Natal, Western Cape, 

Eastern Cape)(7). Nonetheless, and as noted in the main text and the above subsection, the IFR 

estimates here should be interpreted with caution, due to the likely underreporting and 

irregularity of the COVID-19 mortality data used to generate these estimates.  

 

5. A proposed approach to compute the reinfection rates using model-inference estimates. 
It is difficult to measure or estimate reinfection rate directly. In this study, we have estimated 

the immune erosion potential for three major SARS-CoV-2 variants of concern (VOCs) and the 

infection rates during each pandemic wave in South Africa. These estimates can be used to 

support estimation of the reinfection rate for a given population.  In-depth analysis is needed 

for such estimations.  Here, as an example, we propose a simple approach to illustrate the 

possibility.   

 

Consider the estimation in the context of the four waves in South Africa in this study (i.e., 

ancestral, Beta, Delta, and Omicron BA.1 wave).  Suppose the cumulative fraction of the 

population ever infected before the beta wave is Cbcd_fd+g  (this is roughly the attack rate during 
the ancestral wave) and estimated immune erosion potential for Beta is hfd+g. To compute the 

reinfection rate during the Beta wave, we can assume that Cbcd_fd+g × (1 − hfd+g) are 

protected by this prior immunity, and that the remaining Cbcd_fd+ghfd+g	(i.e. those lost their 

immunity due to immune erosion) have the same risk of infection as those never infected, such 

that the reinfection rate/fraction among all infections, zbeta, during the Beta wave (i.e., zbeta is 

the attack rate by Beta) would be: 
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ifd+g =
Cbcd_fd+ghfd+g

1 − Cbcd_fd+g + Cbcd_fd+ghfd+g

 

 

The reinfection rate/fraction among the entire population would be: 

i
fd+g

j
= kfd+gifd+g  

 

Combining the above, the cumulative fraction of the population ever infected by the end of the 
Beta wave and before the Delta wave would be: 

Cbcd_ldm+g = Cbcd_fd+g + kfd+g − ifd+g
j  

 

Note that the fraction of the population ever infected, c, is updated to compute the subsequent 

fraction of the population protected by prior immunity, because the immune erosion potential 

here is estimated relative to the combined immunity accumulated until the rise of a new 

variant. We can repeat the above process for the Delta wave and the Omicron wave.  See an 

example calculation in Table S4.  

 

Work to refine the reinfection estimates (e.g., sensitivity of these estimates to assumptions and 

uncertainty intervals) is needed. Nonetheless, these example estimates (Table S4) are 

consistent with reported serology measures [4th column vs. e.g. ~90% seropositive in March 

2022 after the Omicron BA.1 wave reported in Bingham et al. 2022 (8)] and reinfection rates 

reported elsewhere [5th and 6th columns vs. e.g., reported much higher reinfection rate during 

the Omicron wave in Pulliam et al. (9)].  Importantly, these estimates also show that, in addition 

to the innate immune erosive potential of a given new variant, the reinfection rate is also 

determined by the prior cumulative fraction of the population ever infected (4th column in 

Table S4) and the attack rate by each variant (3rd column in Table S4).  That is, the higher the 

prior cumulative infection rate and/or the higher the attack rate by the new variant, the higher 

the reinfection rate would be for a new variant that can cause reinfection. For instance, despite 

the lower immune erosion potential of Delta than Beta, because of the high prior infection rate 

accumulated up to the Delta wave onset, the estimated reinfection rate by Delta among all 
Delta infections was higher compared to that during the Beta wave (6th column in Table S4). 

With the higher attack rate during the Delta wave, the reinfection rate among the entire 
population was much higher for Delta than Beta (5th column in Table S4). Thus, these 

preliminary results suggest that reinfection rates observed for each variant and differences 

across different variants should be interpreted in the context of the innate immune erosion 

potential of each variant, the prior cumulative infection rate of the study population, and the 

attack rate of each variant in the same population.  

 

Reference: 
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Supplemental Figures and Tables 
Fig S1. Model-fit to case and death data in each province. Dots show reported SARS-CoV-2 

cases and deaths by week. Blue lines and surrounding area show model estimated median, 50% 

(darker blue) and 95% (lighter blue) credible intervals. Note that reported mortality was high in 

February 2022 in some provinces with no clear explanation.   
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Fig S2. Model validation using hospitalization and excess mortality data. Model estimated 

infection rates are compared to COVID-related hospitalizations (left panel) and excess mortality 

(right panel) during the Ancestral (A), Beta (B), Delta (C), and Omicron (D) waves.  Boxplots 

show the estimated distribution for each province (middle bar = mean; edges = 50% CrIs and 

whiskers =95% CrIs). Red dots show COVID-related hospitalizations (left panel, right y-axis) and 

excess mortality (right panel, right y-axis); these are independent measurements not used for 

model fitting. Correlation (r) is computed between model estimates (i.e., median cumulative 

infection rates for the nine provinces) and the independent measurements (i.e., hospitalizations 

in the nine provinces in left panel, and age-adjusted excess mortality in the right panel), for 

each wave. Note that hospitalization data begin from 6/6/20 and excess mortality data begin 
from 5/3/20 and thus are incomplete for the ancestral wave.  
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Fig S3. Model validation using retrospective prediction, for the remaining 5 provinces. Model-

inference was trained on cases and deaths data since March 15, 2020 until 2 weeks (1st plot in 

each panel) or 1 week (2nd plot) before the Delta or Omicron wave (see timing on the x-axis); 

the model was then integrated forward using the estimates made at the time to predict cases 

(left panel) and deaths (right panel) for the remaining weeks of each wave. Blue lines and 

surrounding shades show model fitted cases and deaths for weeks before the prediction (line = 

median, dark blue area = 50% CrIs, and light blue = 80% CrIs). Red lines show model projected 

median weekly cases and deaths; surrounding shades show 50% (dark red) and 80% (light red) 

CIs of the prediction. For comparison, reported cases and deaths for each week are shown by 

the black dots; however, those to the right of the vertical dash lines (showing the start of each 

prediction) were not used in the model.  For clarity, here we show 80% CIs (instead of 95% CIs, 

which tend to be wider for longer-term projections) and predictions for the five least populous 

provinces (Limpopo in A and B; Mpumalanga in C and D; North West in E and F; Free State in G 

and H; and Northern Cape in I and J). Predictions for the other 4 provinces are shown in Fig 2.  
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All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.12.19.21268073doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268073


 35 

Fig S4. Model inference estimates for KwaZulu-Natal. (A) Observed relative mobility, 

vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 

time. Key model-inference estimates are shown for the time-varying effective reproduction 

number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 

population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 

shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 

and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S5. Model inference estimates for Western Cape. (A) Observed relative mobility, 

vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 

time. Key model-inference estimates are shown for the time-varying effective reproduction 

number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 

population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 

shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 

and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S6. Model inference estimates for Eastern Cape. (A) Observed relative mobility, vaccination 

rate, and estimated disease seasonal trend, compared to case and death rates over time. Key 

model-inference estimates are shown for the time-varying effective reproduction number Rt 

(B), transmissibility RTX (C), population susceptibility (D, shown relative to the population size in 

percentage), infection-detection rate (E), and infection-fatality risk (F). Grey shaded areas 

indicate the approximate circulation period for each variant. In (B) – (F), blue lines and 

surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths.
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Fig S7. Model inference estimates for Limpopo. (A) Observed relative mobility, vaccination 

rate, and estimated disease seasonal trend, compared to case and death rates over time. Key 

model-inference estimates are shown for the time-varying effective reproduction number Rt 

(B), transmissibility RTX (C), population susceptibility (D, shown relative to the population size in 

percentage), infection-detection rate (E), and infection-fatality risk (F). Grey shaded areas 

indicate the approximate circulation period for each variant. In (B) – (F), blue lines and 

surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S8. Model inference estimates for Mpumalanga. (A) Observed relative mobility, 

vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 

time. Key model-inference estimates are shown for the time-varying effective reproduction 

number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 

population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 

shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 

and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S9. Model inference estimates for North West. (A) Observed relative mobility, vaccination 

rate, and estimated disease seasonal trend, compared to case and death rates over time. Key 

model-inference estimates are shown for the time-varying effective reproduction number Rt 

(B), transmissibility RTX (C), population susceptibility (D, shown relative to the population size in 

percentage), infection-detection rate (E), and infection-fatality risk (F). Grey shaded areas 

indicate the approximate circulation period for each variant. In (B) – (F), blue lines and 

surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S10. Model inference estimates for Free State. (A) Observed relative mobility, vaccination 

rate, and estimated disease seasonal trend, compared to case and death rates over time. Key 

model-inference estimates are shown for the time-varying effective reproduction number Rt 

(B), transmissibility RTX (C), population susceptibility (D, shown relative to the population size in 

percentage), infection-detection rate (E), and infection-fatality risk (F). Grey shaded areas 

indicate the approximate circulation period for each variant. In (B) – (F), blue lines and 

surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S11. Model inference estimates for Northern Cape. (A) Observed relative mobility, 

vaccination rate, and estimated disease seasonal trend, compared to case and death rates over 

time. Key model-inference estimates are shown for the time-varying effective reproduction 

number Rt (B), transmissibility RTX (C), population susceptibility (D, shown relative to the 

population size in percentage), infection-detection rate (E), and infection-fatality risk (F). Grey 

shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines 

and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and 

whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that 
the transmissibility estimates (RTX in C) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant-specific properties.  Also note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
true values due to likely under-reporting of COVID-19 deaths. 
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Fig S12. Comparison of posterior estimates for Gauteng during the Omicron (BA.1) wave, under 

four different settings for infection-detection rate.  Four space reprobing (SR) settings for the 

infection-detection rate were tested and results are shown in the 4 four columns: 1) Use of the 

same baseline range as before (i.e., 1-8%) for all weeks during the Omicron (BA.1) wave; 2) Use 

of a wider and higher range (i.e., 1-12%) for all weeks; 3) Use of a range of 1-15% for the 1st 

week of Omicron detection, 5-20% for the 2nd week of Omicron detection, and 1-8% for the 

rest; and 4) Use of a range of 5-25% for the 2nd week of detection and 1-8% for all other weeks. 

Estimated infection-detection rates are shown in the 1st row, population susceptibility 

estimates are shown in the 2nd row, and transmissibility estimates are shown in the 3rd row. In 

each plot, blue lines and surrounding areas show the median, 50% and 95% CrIs of the posterior 

(left y-axis) for each week (x-axis). For comparison, reported cases for corresponding weeks are 

shown by the grey bars (right y-axis).  
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Fig S13. Comparison of retrospective prediction of the Omicron (BA.1) wave in Gauteng with 

the four different settings of infection-detection rate.  Four space reprobing (SR) settings for 

the infection-detection rate were tested, and the results are shown in the 4 panels: 1) Use of 

the same baseline range as before (i.e., 1-8%) for all weeks during the Omicron (BA.1) wave; 2) 

Use of a wider and higher range (i.e., 1-12%) for all weeks; 3) Use of a range of 1-15% for the 1st 

week of Omicron detection, 5-20% for the 2nd week of Omicron detection, and 1-8% for the 

rest; and 4) Use of a range of 5-25% for the 2nd week of detection and 1-8% for all other weeks. 

Blue lines and show model fitted cases for weeks before the prediction. Red lines show model 

projected median weekly cases and deaths; surrounding shades show 50% (dark red) and 80% 

(light red) CIs of the prediction. For comparison, reported cases for each week are shown by the 

black dots; however, those to the right of the vertical dash lines (showing the start of each 

prediction) were not used in the model.   
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Fig S14. Comparison of the estimated increase in transmissibility and immune erosion for the 

Omicron (BA.1) variant in Gauteng, under four different settings of the infection-detection rate.  
Four space reprobing (SR) settings for the infection-detection rate were tested: 1) Use of the 

same baseline range as before (i.e., 1-8%) for all weeks during the Omicron (BA.1) wave; 2) Use 

of a wider and higher range (i.e., 1-12%) for all weeks; 3) Use of a range of 1-15% for the 1st 

week of Omicron detection, 5-20% for the 2nd week of Omicron detection, and 1-8% for the 

rest; and 4) Use of a range of 5-25% for the 2nd week of detection and 1-8% for all other weeks. 

Boxplots in left panel show the estimated distribution of increases in transmissibility, relative to 

the Ancestral SARS-CoV-2 (middle bar = median; edges = 50% CIs; and whiskers =95% CIs); 

boxplots in the right panel show the estimated distribution of immune erosion to all adaptive 

immunity gained from infection and vaccination prior to the surge of Omicron (BA.1) wave.  

 
  

Transmissibility Immune erosion

1−8
% all w

ks

1−1
2% all w

ks

1−1
5% w1, 5−

20% w2,

1−8
% other wks

5−2
5% w2,

1−8
% other wks

1−8
% all w

ks

1−1
2% all w

ks

1−1
5% w1, 5−

20% w2,

1−8
% other wks

5−2
5% w2,

1−8
% other wks

50

60

70

80

90

100

100

120

140

160

R
el

at
ive

 in
cr

ea
se

 (%
)

Estimated epidemiological properties

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.12.19.21268073doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268073


 46 

Fig S15. Posterior estimates for the transmission rate (0+  in Eqn 1) by week. Thick black lines 

show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. 

For reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 

5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.  
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Fig S16. Posterior estimates for the latent period (9+ in Eqn 1) by week. Thick black lines show 

the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For 

reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 

5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.  
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Fig S17. Posterior estimates for the infectious period (<+ in Eqn 1) by week. Thick black lines 

show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. 

For reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 

5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.  
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Fig S18. Posterior estimates for the immunity period (*+ in Eqn 1) by week. Thick black lines 

show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. 

For reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 

5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.  
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Fig S19. Posterior estimates for the scaling factor of NPI effectiveness (.+ in Eqn 1) by week. 

Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas 

show the 95% CrIs. For reference, the dashed vertical black lines indicate three dates 

(mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and 

Omicron waves, respectively.  
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Fig S20. Posterior estimates for the mean of time from infectiousness to detection (nl,odgp  in 

the observation model) by week. Thick black lines show the median, dark blue areas show the 

50% CrIs, and light blue areas show the 95% CrIs. For reference, the dashed vertical black lines 

indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start of 

the Beta, Delta, and Omicron waves, respectively.  

 
  

North West Free State Northern Cape

Eastern Cape Limpopo Mpumalanga

Gauteng KwaZulu−Natal Western Cape

03/15/20

05/10/20

07/05/20

08/30/20

10/25/20

12/20/20

02/14/21

04/11/21

06/06/21

08/01/21

09/26/21

11/21/21

01/16/22

03/15/20

05/10/20

07/05/20

08/30/20

10/25/20

12/20/20

02/14/21

04/11/21

06/06/21

08/01/21

09/26/21

11/21/21

01/16/22

03/15/20

05/10/20

07/05/20

08/30/20

10/25/20

12/20/20

02/14/21

04/11/21

06/06/21

08/01/21

09/26/21

11/21/21

01/16/22

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Week start (mm/dd/yy)

Po
st

er
io

r e
st

im
at

es
 (m

ed
ia

n,
 5

0%
 a

nd
 9

5%
 C

rIs
)

Time from infectiousness to detection, mean (days)

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.12.19.21268073doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268073


 52 

Fig S21. Posterior estimates for the standard deviation of time from infectiousness to detection 

(nl,ql in the observation model) by week. Thick black lines show the median, dark blue areas 

show the 50% CrIs, and light blue areas show the 95% CrIs. For reference, the dashed vertical 

black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the 

start of the Beta, Delta, and Omicron waves, respectively.  
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Fig S22. Posterior estimates for infection-detection rate (r+ in the observation model) by week. 

Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas 

show the 95% CrIs. For reference, the dashed vertical black lines indicate three dates 

(mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and 

Omicron waves, respectively.  
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Fig S23. Posterior estimates for infection-fatality risk (1s)+ in the observation model) by week. 

Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas 

show the 95% CrIs. For reference, the dashed vertical black lines indicate three dates 

(mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and 

Omicron waves, respectively.  
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Table S1.  Model estimated infection-detection rate during each wave. Numbers show the estimated percentage of infections 
(including asymptomatic and subclinical infections) documented as cases (mean and 95% CI in parentheses).  

Province Ancestral wave Beta wave Delta wave Omicron wave 
Gauteng 4.59 (2.62, 9.77) 6.18 (3.29, 11.11) 6.27 (3.44, 12.39) 4.16 (2.46, 9.72) 
KwaZulu-Natal 4.33 (2.01, 11.02) 7.4 (3.89, 13.67) 5.69 (2.69, 12.34) 3.25 (1.84, 7.81) 
Western Cape 5.62 (3, 10.93) 7.1 (3.99, 12.78) 6.83 (3.71, 13.08) 4.26 (2.49, 9.37) 
Eastern Cape 3.79 (1.98, 9.39) 6.1 (3.35, 11.27) 5.58 (2.63, 11.52) 2.91 (1.4, 7.99) 
Limpopo 2.13 (0.79, 6.46) 4.57 (1.89, 10.01) 3.4 (1.53, 9.3) 2.9 (1.2, 7.55) 
Mpumalanga 3.42 (1.42, 9.1) 6.28 (2.85, 12.51) 5.71 (2.58, 12.96) 3.13 (1.54, 7.24) 
North West 3.37 (1.62, 7.88) 5.79 (2.77, 11.14) 5.26 (2.8, 10.8) 3.73 (1.78, 8.62) 
Free State 5.02 (2.83, 10.63) 6.69 (3.69, 11.97) 6.5 (3.16, 13.23) 4.03 (2.12, 8.95) 
Northern Cape 4.96 (2.75, 10.34) 6.49 (3.72, 11.44) 6.69 (3.74, 12.32) 3.71 (1.97, 8.21) 
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Table S2. Model estimated attack rate during each wave. Numbers show estimated cumulative infection numbers, expressed as 
percentage of population size (mean and 95% CI in parentheses).  

Province Ancestral wave Beta wave Delta wave Omicron wave 
Gauteng 32.83 (15.42, 57.59) 21.87 (12.16, 41.13) 49.82 (25.22, 90.79) 44.49 (19.01, 75.3) 
KwaZulu-Natal 24.06 (9.45, 51.91) 26.36 (14.28, 50.18) 27.15 (12.52, 57.39) 38.11 (15.87, 67.56) 
Western Cape 28.44 (14.61, 53.17) 37.09 (20.61, 66.04) 47.29 (24.68, 87.1) 44.1 (20.02, 75.4) 
Eastern Cape 32.85 (13.27, 62.95) 27.44 (14.86, 49.95) 25.59 (12.4, 54.34) 26.38 (9.59, 54.69) 
Limpopo 13.78 (4.55, 37.21) 17.12 (7.82, 41.41) 28.22 (10.33, 62.74) 18.62 (7.15, 45.01) 
Mpumalanga 18.99 (7.14, 45.83) 17.33 (8.7, 38.21) 27.18 (11.97, 60.14) 27.67 (11.96, 56.13) 
North West 24.57 (10.51, 51.09) 16.04 (8.34, 33.49) 37.21 (18.13, 70.02) 26.17 (11.33, 54.71) 
Free State 39.31 (18.54, 69.57) 24.23 (13.54, 43.92) 30.85 (15.16, 63.38) 32.79 (14.76, 62.32) 
Northern Cape 34.92 (16.77, 63.13) 26.98 (15.3, 47.09) 55.59 (30.18, 99.32) 36.87 (16.65, 69.34) 
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Table S3. Model estimated infection-fatality risk during each wave. Numbers are percentages (%; mean and 95% CI in 
parentheses). Note that these estimates were based on reported COVID-19 deaths and may be biased due to likely under-reporting 
of COVID-19 deaths. In addition, due to data irregularities, we computed the IFR using two methods. Estimates per Method 1 are the 
ratio of the total reported COVID-19 related deaths to the model-estimated cumulative infection rate during each wave.  Estimates 
per Method 2 are the weighted average of the weekly IFR estimates during each wave. See details in Section 1 of the Supplemental 
text.  

Province Ancestral wave Beta wave Delta wave Omicron wave 
Estimates per Method 1 (i.e., use reported COVID-19 deaths as the numerator): 
Gauteng 0.09 (0.05, 0.2) 0.19 (0.1, 0.33) 0.11 (0.06, 0.21) 0.03 (0.02, 0.06) 
KwaZulu-Natal 0.09 (0.04, 0.24) 0.27 (0.14, 0.49) 0.14 (0.06, 0.29) 0.03 (0.02, 0.08) 
Western Cape 0.21 (0.11, 0.41) 0.3 (0.17, 0.54) 0.25 (0.14, 0.48) 0.06 (0.04, 0.14) 
Eastern Cape 0.11 (0.06, 0.27) 0.5 (0.27, 0.91) 0.2 (0.1, 0.42) 0.08 (0.04, 0.22) 
Limpopo 0.06 (0.02, 0.17) 0.18 (0.08, 0.4) 0.1 (0.04, 0.27) 0.05 (0.02, 0.12) 
Mpumalanga 0.07 (0.03, 0.18) 0.1 (0.05, 0.2) 0.04 (0.02, 0.1) 0.21 (0.11, 0.5) 
North West 0.05 (0.02, 0.11) 0.21 (0.1, 0.4) 0.16 (0.08, 0.32) 0.05 (0.03, 0.12) 
Free State 0.13 (0.08, 0.28) 0.42 (0.23, 0.75) 0.26 (0.13, 0.52) 0.09 (0.05, 0.2) 
Northern Cape 0.06 (0.03, 0.13) 0.21 (0.12, 0.37) 0.17 (0.1, 0.32) 0.22 (0.12, 0.48) 
Estimates per Method 2 (i.e., weighted average of weekly IFR estimates): 
Gauteng 0.09 (0.02, 0.18) 0.18 (0.05, 0.38) 0.12 (0.04, 0.25) 0.06 (0.01, 0.16) 
KwaZulu-Natal 0.16 (0.02, 0.4) 0.28 (0.07, 0.69) 0.21 (0.06, 0.55) 0.08 (0.01, 0.23) 
Western Cape 0.23 (0.06, 0.4) 0.3 (0.11, 0.68) 0.28 (0.09, 0.56) 0.13 (0.02, 0.32) 
Eastern Cape 0.15 (0.03, 0.33) 0.39 (0.13, 0.8) 0.3 (0.07, 0.65) 0.15 (0.02, 0.39) 
Limpopo 0.15 (0.01, 0.31) 0.19 (0.02, 0.6) 0.2 (0.03, 0.54) 0.11 (0.01, 0.31) 
Mpumalanga 0.14 (0.01, 0.29) 0.16 (0.02, 0.39) 0.1 (0.01, 0.29) 0.1 (0.01, 0.2) 
North West 0.12 (0.01, 0.27) 0.21 (0.04, 0.45) 0.17 (0.05, 0.37) 0.1 (0.01, 0.26) 
Free State 0.18 (0.05, 0.45) 0.46 (0.15, 0.87) 0.32 (0.09, 0.65) 0.14 (0.03, 0.34) 
Northern Cape 0.12 (0.02, 0.27) 0.22 (0.07, 0.44) 0.18 (0.05, 0.34) 0.1 (0.02, 0.22) 
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Table S4. Example estimation of reinfection rates.  As an example, to compute reinfection rates, assume Beta is estimated !"#$% = 
65% immune erosive, Delta is estimated !&#'$%  = 40% immune erosive, and Omicron BA.1 is estimated !()*+,(- = 65% immune 
erosive, relative to the combined immunity accumulated until the rise of each of these variants (2nd column); and the attack rates 
(3rd column) are c1 = z1 = 30%, z2 = 20%, z3 = 50%, and z4 = 40% during the ancestral, Beta, Delta, and Omicron BA.1 waves, 
respectively. Note these numbers roughly align with our estimates for Gauteng. The cumulative percentage of the population ever 
infected (including reinfections; 4th column), the percentage of reinfection during each VOC wave among the entire population (5th 
column) or among those infected by that variant (6th column) can be computed using the approach described in the supplemental 
text, sub-section “A proposed approach to compute reinfection rates using the model-inference estimates.” 

Variant Immune 
erosion, θ 

Attack 
rate, z 

Cumulative %  
ever infected, c 

Percentage reinfection this wave, among 
entire population, η’ those infected this 

wave, η 
Ancestral - 30.0% 30.0% - - 
Beta 65.0% 20.0% 45.6% 4.4% 21.8% 
Delta 40.0% 50.0% 83.1% 12.6% 25.1% 
Omicron (BA.1) 65.0% 40.0% 92.6% 30.5% 76.1% 
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Table S5. Prior ranges for the parameters used in the model-inference system.  All initial values are drawn from uniform 
distributions using Latin Hypercube Sampling.  

Parameter/ 
variable 

Symbol Prior range Source/rationale 

Initial exposed E(t=0) 1 – 500 times of reported cases during the Week of March 
15, 2020 for Western Cape and Eastern Cape; 1 – 10 times 
of reported cases during the Week of March 15, 2020, for 
other provinces 

Low infection-detection rate in first weeks; 
earlier and higher case numbers reported 
in Western Cape and Eastern Cape than 
other provinces. 

Initial infectious I(t=0) Same as for E(t=0)  

Initial 
susceptible 

S(t=0) 99 – 100% of the population Almost everyone is susceptible initially 

Population size  N N/A Based on population data from COVID19ZA 
(main text ref 24) 

Variant-specific 
transmission 
rate 

β For all provinces, starting from U[0.4, 0.7] at time 0 and 
allowed to increase over time using space re-probing(1) 
with values drawn from U[0.5, 0.9] during the Beta wave, 
U[0.7, 1.25] during the Delta wave, and U[0.7, 1.3] during 
the Omicron wave. 

For the initial range at model initialization, 
based on R0 estimates of around 1.5-4 for 
SARS-CoV-2.(2-4)  For the Beta, Delta and 
Omicron variants, we use large bounds for 
space re-probing (SR)(1) to explore the 
parameter state space and enable 
estimation of changes in transmissibility 
due to the new variants. Note that SR is 
only applied to 3-10% of the ensemble 
members and β can migrate outside either 
the initial range or the SR ranges during 
EAKF update.  
 

Scaling of 
effectiveness of 
NPI 

e  [0.5, 1.5], for all provinces Around 1, with a large bound to be flexible. 
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Latency period Z [2, 5] days, for all provinces Incubation period: 5.2 days (95% CI: 4.1, 
7)(2); latency period is likely shorter than 
the incubation period 

Infectious 
period 

D [2, 5] days, for all provinces Time from symptom onset to 
hospitalization: 3.8 days (95% CI: 0, 12.0) in 
China,(5) plus 1-2 days viral shedding 
before symptom onset. We did not 
distinguish symptomatic/asymptomatic 
infections. 

Immunity 
period 

L [730, 1095] days, for all provinces Assuming immunity lasts for 2-3 years 

Mean of time 
from viral 
shedding to 
diagnosis 

Tm [5, 8] days, for all provinces From a few days to a week from symptom 
onset to diagnosis/reporting,(5) plus 1-2 
days of viral shedding (being infectious) 
before symptom onset.  

Standard 
deviation (SD) of 
time from viral 
shedding to 
diagnosis 

Tsd [1, 3] days, for all provinces To allow variation in time to 
diagnosis/reporting 

Infection-
detection rate 

r Starting from U[0.001, 0.01] at time 0 for Western Cape 
and Eastern Cape as these two provinces had earlier and 
higher case numbers during March – April 2020 than other 
provinces, suggesting lower detection rate at the time; for 
the rest starting from U[0.01, 0.06]. For all provinces, 

Large uncertainties; therefore, in general 
we use large prior bounds and large 
bounds for space re-probing (SR).  Note 
that SR is only applied to 3-10% of the 
ensemble members and r can migrate 
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allowed r to increase over time using space re-probing (1) 
with values drawn from uniform distributions with ranges 
between roughly 0.01 to 0.12.  
 

outside either the initial range or the SR 
ranges during EAKF update.  
  

Infection fatality 
risk (IFR) 

 For Gauteng: starting from [0.0001, 0.002] at time 0 and 
allowed to change over time using space re-probing(1) 
with values drawn from U[0.0001, 0.005] during 
12/13/2020 – 5/15/21 (due to Beta), U[0.0001, 0.002] 
during the Delta wave, and U[0.00001, 0.00075] starting 
9/1/21 (Omicron wave). 
For KwaZulu-Natal: starting from U[0.0001, 0.003] at time 
0 and allowed to change over time using space re-probing 
(1) with values drawn from U[0.0001, 0.005] during 
4/19/20 –10/31/20 (ancestral wave), U[0.0001, 0.01] 
during 11/1/20 – 5/15/21 (Beta wave), U[0.0001, 0.002] 
during the Delta wave, and U[0.00001, 0.00075] starting 
10/1/21 (Omicron wave). 
For Western Cape: starting from U[0.00001, 0.003] at time 
0 and allowed to change over time using space re-probing 
(1) with values drawn from U[0.00001, 0.0004] during 
4/19/20 – 10/31/20 (ancestral wave), U[0.00001, 0.01] 
during 11/1/20 – 5/15/21 (Beta wave), U[0.00001, 0.005] 
during 5/16/21 – 9/30/21 (Delta wave) and U[0.00001, 
0.002] starting 10/1/21 (Omicron wave). 
For Eastern Cape: starting from U[0.0001, 0.003] at time 0 
and allowed to change over time using space re-probing(1) 
with values drawn from U[0.0001, 0.004] during 4/19/20 – 
9/30/20 (Ancestral wave), U[0.0001, 0.01] during 10/1/20 
– 40/30/21 (Beta wave), [0.0001, 0.005] during the Delta 
wave, and U[0.00001, 0.002] or starting 10/16/21 
(Omicron wave). 

Based on previous estimates(6) but extend 
to have wider ranges. Note that SR is only 
applied to 3-10% of the ensemble 
members and IFR can migrate outside 
either the initial range or the SR ranges 
during EAKF update. 
Western Cape had earlier and higher case 
numbers during March – April 2020 than 
other provinces, suggesting lower 
detection rate at the time.  
Initial mortality rate in Gauteng was 
relatively low because initial infections 
occurred mainly among middle-aged, 
returning holiday makers.(7)  
Earlier spread of Beta in Eastern Cape, 
KwaZulu-Natal, and Northern Cape, higher 
numbers of deaths per capita reported. 
Free State reported higher number of 
deaths per capita.  
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For Limpopo and Mpumalanga: starting from U[0.0001, 
0.003] at time 0 and allowed to change over time using 
space re-probing (1) with values drawn from U[0.0001, 
0.01] during the Beta wave, U[0.0001, 0.005] during the 
Delta wave, U[0.00001, .002] for the Omicron wave.  
For Free State: starting from U[0.0001, 0.003] at time 0 
and allowed to change over time using space re-probing 
(1) with values drawn from U[0.0001, 0.006] during 
3/16/20 – 10/31/20, U[0.0001, 0.01] during the Beta wave, 
U[0.0001, 0.008] during the Delta wave, and U[0.00001, 
0.002] starting 10/1/21 (Omicron wave).  
For North West and Northern Cape: starting from 
U[0.0001, 0.003] at time 0 and allowed to change over 
time using space re-probing (1) with values drawn from 
U[0.0001, 0.005] during the Beta wave, U[0.0001, 0.003] 
during the Delta wave, and U[0.00001, 0.0015] starting 
10/1/21 (Omicron wave). 
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Table S6. Approximate epidemic timing (mm/dd/yy) for each wave in each province, used in the 1 
study. Note 3/5/22 is the last date of the study period.   2 
Province Variant Start date End date 
Gauteng Ancestral 3/15/20 10/31/20 
Gauteng Beta 11/1/20 5/15/21 
Gauteng Delta 5/16/21 8/31/21 
Gauteng Omicron 9/1/21 3/5/22 
KwaZulu-Natal Ancestral 3/15/20 9/15/20 
KwaZulu-Natal Beta 9/16/20 5/15/21 
KwaZulu-Natal Delta 5/16/21 9/30/21 
KwaZulu-Natal Omicron 10/1/21 3/5/22 
Western Cape Ancestral 3/15/20 9/15/20 
Western Cape Beta 9/16/20 5/15/21 
Western Cape Delta 5/16/21 9/30/21 
Western Cape Omicron 10/1/21 3/5/22 
Eastern Cape Ancestral 3/15/20 8/15/20 
Eastern Cape Beta 8/16/20 4/30/21 
Eastern Cape Delta 5/1/21 10/15/21 
Eastern Cape Omicron 10/16/21 3/5/22 
Limpopo Ancestral 3/15/20 10/31/20 
Limpopo Beta 11/1/20 5/15/21 
Limpopo Delta 5/16/21 9/30/21 
Limpopo Omicron 10/1/21 3/5/22 
Mpumalanga Ancestral 3/15/20 10/31/20 
Mpumalanga Beta 11/1/20 5/15/21 
Mpumalanga Delta 5/16/21 9/30/21 
Mpumalanga Omicron 10/1/21 3/5/22 
North West Ancestral 3/15/20 10/31/20 
North West Beta 11/1/20 5/15/21 
North West Delta 5/16/21 9/30/21 
North West Omicron 10/1/21 3/5/22 
Free State Ancestral 3/15/20 10/31/20 
Free State Beta 11/1/20 5/31/21 
Free State Delta 6/1/21 9/30/21 
Free State Omicron 10/1/21 3/5/22 
Northern Cape Ancestral 3/15/20 10/31/20 
Northern Cape Beta 11/1/20 5/15/21 
Northern Cape Delta 5/16/21 9/30/21 
Northern Cape Omicron 10/1/21 3/5/22 

 3 
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