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Abstract 

Background: For patients with non-small cell lung cancer (NSCLC), the PD-1/PD-L1 blockade 

treatment were incorporated into first-line treatment commonly. Despite the improved survival 

observed in PD-1 blockade treatment, a large proportion of patients do not respond while others 

actually progress during treatment.  

Method: Transcriptomic profiling was performed on whole blood samples from 30 patients 

received anti-PD-1 (Tislelizumab) plus chemotherapy. Expression levels of differentially 

expressed genes (DEGs) identified from two comparisons (post-and pre-treatment, responders 

and non-responders) were validated by real-time quantitative PCR, analyzed within tissue 

database and meta-analysis database, then followed by enrichment analysis in high-level 

representations and in silico leukocyte deconvolution.  

Results: A panel of blood-based gene signatures (FDR p<0.05, fold change<-2 or >2) were 

identified (DEG n=155 and 112 in two comparisons) and validated that not only differentially 

expressed between post- and pre- treatment or responders and non-responders but also in tissue 

samples between normal and tumor. Genes DLG5 and H3C10 were found negatively associated 

with overall survival (p<0.05). Enrichment of immunological and metabolism pathways and 

gene sets indicating activated circulating leukocytes were observed. 

Conclusion: The molecular and cellular signatures characterized in this study may provide 

potential blood-based predictors of the response to PD-1 blockade treatment in NSCLC patients.  

 

Key words:  non-small cell lung cancer; anti-PD-1 therapy; responder; molecular signatures; 

biomarker 
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Introduction  

Given the significant benefit checkpoint inhibitors (ICIs) immunotherapy has achieved for 

various types of cancer in the past decade,  it is emerging as a “common denominator” and even 

in the neoadjuvant (presurgical) setting for cancer therapy [1]. In many countries, ICIs targeting 

the PD-1/PD-L1 (programmed death-1/programmed death ligand-1) pathway have been 

gradually approved as monotherapy or in combinations with chemotherapy [2, 3]. Non-small cell 

lung cancer (NSCLC) as the most common subtype of lung cancer presents a significant health 

concern with its diagnosis rate and burden highest for male, ever-smoker and the elderly 

population [4, 5]. Advanced NSCLC was one of the first pioneers becoming a common 

therapeutic focus of PD-1-targeted immunotherapy as a first-line therapy [6, 7]. It is proved that 

anti-PD-1 agents with or without chemotherapy could restore anti-tumor activities of multiple 

immune cell subsets, together leading to an increased overall survival compared with sole 

conventional chemotherapy [8, 9].  

To date, several anti-PD-1 or anti-PD-L1 antibodies have been approved by regulatory 

authorities covering almost all the common types of cancer indications as monotherapy or in 

combination with other drugs [10]. Despite the impressive success of PD-1 blockade therapy in 

cancer, it seems the clinical benefit of this treatment is always and only limited to a small subset 

of patients [11]. Taking one of the approved anti-PD-1 antibodies Pembrolizumab as an example, 

the objective response rate for the unselected population with NSCLC was only 19% and the 

median overall survival was 12 months [12]. All approved PD-1/PD-L1 blockade displayed 

similar efficacy while combinations of anti-PD-1 therapy with chemotherapy have showed more 

encouraging results in the up-front treatment of NSCLC [13]. NSCLC as well as other lung 

cancers are characterized by high degree molecular heterogeneity associated to high level of 
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genetic and phenotypic variations, co-evolving with the complex nature of immune 

microenvironment [14-16]. The outcome of anti-PD-1 treatment for NSCLC patents is associated 

with many factors, such as PD-1/PD-L1 expression level, tumor mutation burden, mRNA 

expression of certain biomarker genes, neo-antigens, and the composition of tumor-infiltrating 

immune cells [17]. Many clinical studies as well as review articles suggested PD-L1 expression 

testing should become (if not yet) routine for patients with newly diagnosed NSCLC, while other 

biomarkers should be evaluated in the future [18-21]. 

The low response rate to PD-1/PD-L1 blockade treatment suggests better understanding the 

molecular signatures responding to the therapy is important in the search for potentially reliable 

biomarkers. Lately, a number of new biomarkers predictive of tumor response to ICIs were 

proposed, including DNA variant of NK cells [22], CD28 levels in tumor-infiltrating CD8-T 

cells [23], metabolite from on-treatment serum [24], local or peripheral immune cell clusters [25, 

26], or combination of T cell properties and energy metabolism markers in blood [27].  In the 

present study, comprehensive computational analyses were performed to investigate the 

molecular signatures and pathway representations in peripheral blood as potential predictors of 

the response and outcome in NSCLC patients who received PD-1 inhibitor plus chemotherapy. 

As several innovative in silico deconvolution methods were developed for inference of tumor-

infiltrating immune cells in tissue samples [28, 29], we adapted from these new tools and 

updated a different immune profiling approach from our previous study [30] targeting blood 

samples. Here, we enumerated a set of key immune cell repertoires in NSCLC patients and 

responders as we hypothesized that the circuiting immune cell subsets in peripheral blood may 

ultimately allow discrimination between patients that derive benefit from PD-1 blockade. 

Result 
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Study design and overall analytical workflow 

In order to identify the blood-based molecular signature associated with PD-1 blockade 

treatments in cancer, whole blood samples were collected from 30 NSCLC patients who 

underwent anti-PD-1 therapy plus chemotherapy. The majority of these patients were male 

(86.7%), over 60-year-old (66.7%), ever-smokers (80%), and classified as lung squamous cell 

carcinoma (SqCC) (76.7%) (Table 1). Paired blood samples were collected from 12 patients to 

construct subgroups for post- and pre-treatment comparisons. A little less than 50% of the 

patients showed pathologic complete response and were considered as responders in the 

following analysis.  

Blood-based DEGs changed upon combined treatment abnormally expressed in lung 

cancer tissue 

Standard bioinformatics analysis was applied to process RNA-seq reads from 5 pairs of blood 

samples (pre v post) to identify the genes that differentially expressed in response to anti-PD-1 

treatment. Differential expression analysis revealed that a total of 155 protein-coding genes out 

of almost 30,000 genes (total n =29,195, FDR p <0.05 and fold change >2 or <0.5) were 

differentially expressed between pre- and post-treated blood samples (Figure 2A). Utilizing the 

overall RNA-seq profiles, principal components analysis (PCA) constructed complete separation 

of pre and post sample groups as showed by biplots (Supplementary Figure S1). Hierarchical 

clustering using the 155 DEGs organized the pre-treatment samples into a distinct group from the 

post-treatment samples (Figure 2B and Supplementary Table S1a). The mRNA expression 

difference of 10 top-ranked genes were examined in an independent patient group (n=7 v 7) by 

qRT-PCR and found all of them were differentially expressed in same patterns (Figure 2C). Out 

of 10, 8 were confirmed significantly (all p<0.05) changed in pairwise comparison.  
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Next, we sought to investigate the expression profiles of these top-ranked genes in cancer tissues. 

Firstly, we searched human tissue database GENT2 that generated from NCBI GEO databases 

that contains microarray data from >499 lung cancer samples and >1117 normal lung samples. 

Interestingly, the transcriptional changes of 8 genes (out of top 10 DEGs) from pre to post were 

consistently seen from tumor to normal lung tissue (p<0.01) (Figure 2D, Supplementary 

Figure S2 and Supplementary Table S2a). Then we extended our search to a larger lung cancer 

database that was built from 56 datasets (over 6700 patients) and allows meta-analysis of the 

gene expression profiles as well as the association between expression and overall survival. 

Combining statistical power from multiple datasets, a strong agreement to the data above was 

observed that a consistent tumor-to-normal change was significantly detected in 6 out of the 8 

genes identified above (all p<0.05) (Figure 3, Supplementary Figure S3 and Supplementary 

Table S2a).  

DEGs down-regulated in responders were over-expressed in lung cancer and associated 

with poor overall survival 

We hypothesized that the molecular signatures correlated with complete responses may indicate 

the prognosis of NSCLC patients. RNA-seq data from responders (res) and non-responders (non-

res) was collected and submitted for PCA analysis. Several combinations of key principal 

components (PCs), such as PC1 + PC3, successfully separated res and non-res samples (Figure 

4A, yellow highlighted). A total of 112 DEGs as identified by comparing res and non-res 

subjects and utilized to construct hierarchical clustered heatmap where res and non-res subjects 

were grouped distinctly (Figure 4B & 4C and Supplementary Table S1b). Our qRT-PCR 

results confirmed in an independent cohort that the expression differences of 7 top-ranked DEGs 
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(out of 10) were consistently seen between res and non-res subjects (n=7 v 7) (Supplementary 

Table S1b).  

Again, we investigate the tissue expression profiles of the top 10 DEGs in GENT2 and LCE 

databases. Seven genes were found differently expressed between normal lung and lung cancer 

tissue according to GENT2 database (Figure 4E and Supplementary Table S2b) and 4 of them 

showed consistent differences in meta-analysis from LCE databases (Figure 5A and 

Supplementary Table S2b). For instance, genes DLG5 and H3C10 were down-regulated in 

responder groups as detected by RNAseq and qRT-PCR (Figure 4B & 4D), and down-regulated 

in normal lung tissue as compared with tumor tissue (Figure 4E & 5A). Notably, unlike the fact 

that survival meta-analyses in LCE database provided no significant association found for DEGs 

from pre v post comparison, our search for top DEGs from res v non-res comparison revealed 

two cases of negative expression-survival association in lung cancer patients (p<0.01 for DLG5 

and p=0.04 for H3C10) (Figure 5B and 5C).  

Immunological and metabolism pathways and leukocyte abundances are key signatures in 

responders after treatment  

Pathway and gene ontology (GO) overrepresentation analysis provided an answer about which 

regulatory mechanisms are statistically significantly associated with the combinational treatment 

or the treatment responsiveness. KOBAS-i is a newly released tool utilizing machine learning 

algorithms and integrating functional class scoring approaches into a single ensemble score, to 

optimize the prioritization of biologically relevant pathways from expression data. The results 

indicated the co-modulated DEGs from post v pre comparison were significantly enriched in 

mechanism clusters that commonly connected to each other (C1-C3, C5& C6) (Figure 6A), 

covering all top-ranked pathways (Figure 6B). Differentially, DEGs from res v non-res 
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comparison were enriched in separated mechanism (Figure 6C). Interestingly, the top 10 

overrepresented mechanisms (ranked by corrected p-value) in two comparisons shared pathways 

such as “Immune System” and “Metabolism of protein” and gene ontologies such as “Protein 

binding” (Figure 6D). The difference was the significant mechanisms in comparison of post- v 

pre focused immunological and metabolism pathways while the significant mechanisms in 

comparison of res v non-res are more diverse.  

Interestingly, GSEA analyses focused on immunologic signature gene sets (collection C7, in 

total 5279 gene sets) identified 52 down-regulated and 14 up-regulated gene sets from 

comparison of post- and pre-treatment (Figure 7A, pink). Zero down-regulated and 116 up-

regulated immune gene sets were recognized using our DEG data from res v non-res comparison 

(Figure 7A, blue).  Overlapped up-regulated gene sets (n=9) of two comparisons indicated a 

broad spectrum of the major leukocyte subsets were activated in responding patients after 

treatment, including monocyte, Dendritic cells (DCs), T helper 2 (TH2) cells and B cells (Figure 

7A, purple). Moreover, the shared gene sets contained gene set GSE1889 whereas genes are up-

regulated after stimulated by TNF as comparing control cells when versus T-reg cells. This 

finding suggested, in addition to the activated immune cell subsets, inactivation of T-reg cells 

was also triggered in a successful treatment (Figure 7A, purple).   

Finally, an in silico leukocyte deconvolution approach (AImmune) for inference of key 

circulating immune cells components was modified from our previous study [30] with inclusion 

of new gene markers adapted from single cell RNAseq data obtained from peripheral blood 

mononuclear cells (PBMCs) of NSCLC patients and healthy donors. To assess deconvolution 

performance, the relative expressions and pairwise correlations of these new signature genes 

across 7 key circulating immune cells were illustrated by heatmap and similarity matrix, 
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respectively (Figure 7B and Supplementary Figure S4). Immune cell scores were generated by 

AImmune approach utilizing the RNAseq profiles in res and non-res subjects and no significant 

difference was observed (Figure 7B). We also calculated and compared the scores for a 

simulated cohort (n=20 each group) based on the individual profiles (Supplementary Figure 

S5). The results indicated monocytes and both CD4+ and CD8+ T lymphocytes showed 

significant increase in res subjects as compared to non-res subjects.  

Discussion 

Given the majority of tumor patients fail respond to anti-PD-1/PD-L1 therapy, a lot of effort 

made by clinical trials led to the identification of predictive biomarkers to select treatment 

responders and the discovery of underlying mechanisms during treatment for improving current 

treatment modalities [31, 32]. Although PD-1/L1 immunohistochemical expression has been 

widely evaluated as a predictive biomarker, it is not implemented as a routine diagnostic test for 

anti–PD-1/PD-L1 therapy worldwide, including China [33]. Part of the reason is lack of 

universal standard of antibody for detecting PD-L1 expression and no mention it is still 

controversial whether PD-1/L1 expression is an inadequate determinant of treatment benefit with 

anti-PD-1/L1 therapies.  

The overall hypothesis of the present study is the blood-based molecular signatures that 

differently expressed in blood samples from responders versus non-responders may differ 

between normal and cancer in tissue as tumor-driving genes, and thus provide additive 

prognostic value in patient selection. Our integrated analysis workflow (Figure 1) also included 

innovative approaches as another layer of blood-based strategy to evaluate the leukocyte 

abundance as non-invasive biomarkers reflecting the host immunity, which ultimately will 

improve the clinical efficacy of PD-1 blockade therapy. By profiling the patients and responders 
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during the treatment, our data provided new evidence for targetable pathways, driving factors 

and molecular and cellular determinants of response that is correlated with the beneficial 

response and clinical efficacy. 

At the beginning of this study, investigation of the top-ranked 10 DEGs found 6 genes (up: 

HBG1, HBG2, GATA2, IFI27; down: LHX4 and ANKRD22) that were not only differentially 

expressed in blood samples between post and pre subjects but also abnormally expressed in lung 

cancer tissue (Figures 2C, 2D and Figure 3). These findings were significant as they were, on 

one hand, validated by multiple approaches (RNA-seq, qRT-PCR and GENT2 microarray 

database); on the other hand, they were also confirmed by multiple datasets and diverse cohorts 

(LCE meta-analysis database). This gene signature group contains a modulator of innate immune 

responses (IFN-I signal-induced gene IFI27) [34, 35], a hematopoietic transcription regulator 

(GATA2) [36], a metabolism mediator (ANKRD22) [37, 38], and a transcription factor involved 

in differentiation control (LHX4) [39], which is consistent with the following findings that 

immunological and metabolism mechanisms are enriched in post-treatment and responder 

patients (Figure 6 A & 6B). Moreover, several of them were proven to regulate the oncogenesis 

of lung cancer or respiratory diseases. For instance, ANKRD22 as we found down-regulated in 

NSCLC patients after therapy, was reported to promote the progression of NSCLC by enhancing 

cell proliferation [40]. In the present study we showed HBG1/2, as coding genes for hemoglobin 

subunit gamma, were up-regulated after treatment and also enriched in normal tissue comparing 

to tumor tissue. This finding is supported by study that stated HBG1/2 expression is upregulated 

in normal lung tissue by smoking and is downregulated again when tumors form in smokers [41]. 

More importantly, a recent report also determined HBG1 was consistently upregulated in 

PBMCs of patients with stage III/IV NSCLC from the 2nd anti-PD-1 antibody treatment through 
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to the 5th treatment [42]. This observation seems dependent on stage and histology as both 

protein and mRNA levels of HBG1/2 were found down-regulated in stage I NSCLC 

adenocarcinomas [43]. Together, these findings suggest that the gene signature we identified and 

investigated in the present study could potentially act as a novel biomarker for effective patient 

selection. 

Next round of comparison (res v non-res) in RNA-seq profiles identified DEGs with diverse 

function and roles. Three of the top 10 DEGs are histone family genes (H3C10/HIST1H3H, 

H2BC17/HIST1H2BO, H4C8/HIST1H4H) (Figure 4B & Supplementary Table S1b). A 

couple of histone genes have been reported to be hypermethylated in lung cancer and associated 

with oncogenesis in a wide range of cancers, suggesting histone gene could act as a potential 

universal-cancer-only marker [44]. H3C10 was previously reported up-regulated in breast cancer 

and its high expression was associated with poor overall survival [45]. H3C10 is rarely studied 

and its clinical relevance in lung cancer remains unknown. Here we searched two large tissue 

databases covering >50 studies and it turned out that genes H3C10 and DLG5 are both 

significantly decreased in normal tissue as compared to tumor tissue (Figures 4D, 4E & 5A). 

Our survival meta-analysis also showed both genes are significantly associated with poor 

prognosis of lung cancer patients (Figures 5B-C). Notably, the result of DLG5 is not quite in 

agreement with an earlier study that claimed DLG5 is down-regulated in SqCC tissue and 

indicated a favorable prognosis [46]. Nevertheless, the observation that DLG5 is down-regulated 

in normal tissue is agreement with our original finding that DLG5 was down-regulated in 

responders as compared with non-responders (Figures 4B). Given the consistent results across 

multiple platforms and comparisons, we concluded that blood-based gene signatures may have 

potential predictive value in NSCLC.  
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In the last part of this study, we sought to understand the transcriptomic profiles from a different 

perspective that involves high-level representations, such as pathways, gene ontologies and gene 

sets. KOBAS-i as utilized in our analysis is an intelligent prioritization tool that covering 

multiple pathway databases (KEGG Pathway, Reactome and PANTHER) and GO databases [47]. 

It turned out the most top-ranked pathways retrieved from our DEG lists were mostly assigned to 

pathways collected in Reactome (Figure 6B & 6D upper). Reactome is known to be composed 

of less broad but more detailed terms as compared to KEGG [48]. In agreement with that, our 

over-representation analysis on post v pre comparison yielded a complex cluster network 

showing the significant enriched terms were connected and overlaid (Figure 6A). This result 

demonstrated the pathways or GO associated with immune system (C1 & C5) and metabolism 

(C2 & C3) were significantly enriched in post-treatment subjects. In contrast, analysis on res v 

non-res comparison displayed a lot more metabolism regulatory terms were enriched (such as 

“O2/CO2 exchange”), suggesting metabolic regulations or metabolic products may play key 

roles in driving the outcome of anti-PD-1 blockade treatment (Figure 6C). Our findings 

provided additional insights to the growing body of evidence documenting that combination of 

metabolic and immune biomarkers in lung cancer is quite valuable for responder prediction [27, 

49]. These signaling cascades identified here are also of interest from a therapeutic perspective, 

combining PD-1 checkpoint inhibitors with a broad range of clinically active partners is a 

highlighted strategy with potential importance [50, 51].   

One limitation of the pathway analysis was only minimum directional effect (absolute values for 

z-score<2) was observed in the individual pathway, which is probably due to the complex 

interactions between immune components and regulators within each pathway. To overcome this 

issue, quantitative analysis was performed to evaluate the directional impact on immunological 
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gene sets and circulating leukocytes. In consistent with the pathway analyses above, the gene set 

enrichment analysis also highlighted a couple of metabolism-related gene sets (GSE9006) 

uniquely in responders (Figure 7A, blue), in addition to gene sets representing immune cell 

subset (GSE22886, GSE3982 and GSE18893) (Figure 7A, purple). It is not surprising a broad-

spectrum of leukocyte subsets (Monocytes, DCs, Th2 cells and B cells) were up-regulated or 

down-regulated (Treg cells) in the responder patients, which was also validated by our immune 

cell profiling analysis (Figure 7C). This finding is strongly supported by several recent studies 

and not limited to lung cancer [52-55]. Several key lymphocyte subsets (higher levels of CD4- 

and CD8-T cells; lower levels of NK cells) measured in blood samples at baseline were 

correlated with overall survival as well as clinical response in NSCLC patients received anti-PD-

1 antibody treatment [53]. Similarly, the cellular signatures such as M1 macrophage and  

peripheral T cell showed better predictive performance than PD-L1 immunohistochemistry, 

tumor mutation burden, or tumor-infiltrating lymphocytes in NSCLC [54].  

It is important to point out the in silico leukocyte deconvolution analysis (AImmune) presented 

here only strengthened the conclusions as drawn by other studies but also proposed a novel 

leukocyte enumeration approach that designed for circulating blood samples, instead of tissue 

samples as reported by other studies. We have previously used this approach in analyzing PBMC 

samples from patients with lung infection [30] and demonstrated the abundance of certain 

leukocyte subsets was lung disease severity (unpublished data). Similar immune profiling 

technologies have been employed to enumerate tumor-infiltrating immune cells (e.g. TIMER [56] 

and CIBERSORT [57]). These methods were recently upgraded taking advantage of the fast-

growing single cell RNAseq data and well-developed modern machine learning algorithms (e.g. 

TIMER 2.0 [58]; CIBERSORTx[29]). Here for the first time, we reported an implementation of 
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modified AImmune approach. With the existing gene markers tested and validated in our 

previous study [30], new gene markers adapted from PBMC-based scRNAseq data of NSCLC 

patients and healthy donor are now included in AImmune (Figure 7B & Supplementary Figure 

S5). We believe our results suggest alternative technology option in terms of evaluating 

leukocytes as blood-based biomarkers for immunotherapy. 

In summary, the integrated analyses employed in the current study identified blood-based 

molecular and cellular signatures that are associated with responsiveness of ICI plus 

chemotherapy as well as the overall survival. Furthermore, the present study demonstrated that 

immunological and metabolic pathways may prove a useful panel of targetable biomarkers to 

improve patient selection and prognosis prediction. Despites its insights, the retrospective and 

preliminary nature of this small cohort study should be highlighted. Given the high molecular 

heterogeneity among different NSCLC subtypes, the number of patients sequenced in this study 

might be too small to provide strong statistical power or drawn informative conclusions. It is 

encouraged that our current findings and results should be further confirmed by a larger cohort 

with long-term follow-up and time series analysis. 

Method 

Study cohort and sample collection 

This study was approved by the local Ethics Committee and the Institutional Review Board of 

Northwest University (approval number: 200402001) and all patients provided written informed 

consent. This retrospective study collected 42 whole blood samples from 30 patients visited 

Tianjin Cancer Hospital from 2020 to 2021 (Figure 1). All patients were diagnosed with non-

small cell lung cancer (Table 1) and under treatment of anti–PD-1 monoclonal antibody 

Tislelizumab [59, 60], in combination with standard chemotherapy according to the histology.  
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Overall study design and data analytical flow 

Transcriptomic profiling (RNA-seq) was performed on mRNA samples in two comparison 

groups: 1) post-treatment (post) versus (v) pre-treatment (pre) and 2) responders versus non-

responders (Figure 1). The data analytical flow started by multiple sequential analysis at gene 

level, such as RNA-seq processing and real-time quantitative PCR (qRT-PCR) validation, which 

were followed by investigation of differential expression genes (DEGs) in tissue database (Gene 

Expression database of Normal and Tumor tissues 2, GENT2) [61] and meta-analysis of 

differential gene expression and expression-survival association in lung cancer database (Lung 

Cancer Explorer, LCE) [41]. The DEG data produced from the gene-level analyses were then 

submitted for further computational analyses in higher-level representations, such as canonical 

pathways and functional gene ontologies (KEGG Orthology Based Annotation System-

intelligent version, KOBAS-i) [47], immune-related gene sets (Gene Set Enrichment Analysis, 

GSEA) [62, 63] and immune cell subsets (AImmune).  

AImmune analysis and computational analysis 

A novel in silico leukocyte deconvolution method, named AImmune, is a computational 

approach developed by integrating our established immune cell profiling [30] with published 

single cell RNAseq data obtained from NSCLC PBMCs (1071 qualified cells from one patient, 

GSE127471) and healthy PBMCs (8369 and 7687 cells from two donors, 10X Genomics). 

Briefly, with the additional marker genes included, more than 30 candidate marker genes for 

each cell subsets in leukocytes (CD4-T cells, CD8-T cells, B cells, Monocytes, DCs, NK cells 

and NKT cells) were selected based on their expression patterns across immune cell subsets [57] 

(Figure 7B). The pairwise similarity statistic of all cell subsets (Figure S4) was computed 

between all pairs of the candidate marker genes within the normalized RNA-seq profiles (FPKM) 
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from whole blood samples. Using the criteria (average Pearson correlation factor >0.60, p<0.01), 

10-20 selected marker genes were identified as our final marker genes. The raw cell abundance 

score was calculated as the sum of the simple averages of the marker genes’ log2 expression, 

which allows comparison of cell composition across subject groups. Monte Carlo simulation, as 

previously used in proteomics analysis and produce scores for peptide [64], was employed here 

to estimate the relation between the raw cell abundance score and generated a new dataset (n=20 

in each group) with the same distributions and correlations as the raw scores. This approach also 

tested a novel deconvolution model (unpublished) built by DNN (deep neural networks) 

algorithms and then trained by pseudo-bulk samples obtained by randomly subsampling of 

published scRNA-seq data [65]. Machine learning-based feature extraction (marker gene 

selection) was integrated for model optimization. Most of the computational analysis procedure 

was coded by common Python packages, Monte Carlo simulation was performed by R package 

faux; scRNA-seq data was processed by R package scanpy; machine learning model was 

developed and tested with Python library Tensorflow. All computational analysis were 

performed and visualized using R version 3.6.1 or Python version 3.7.9. 

RNA isolation, transcriptomic profiling, and qRT-PCR 

Total RNA was isolated using Trizol (Invitrogen, Waltham, MA, USA) and the purity and 

concentration were verified using a NanoDrop ND-1000 instrument (ThermoFisher Scientific, 

Waltham, MA, USA). The integrity of the RNA was assessed by a 2100 Bioanalyzer gel image 

analysis system (Agilent, Santa Clara, CA, USA). Only RNA samples with an integrity number 

of 7 or higher were processed for RNA-seq. At least 100 ng mRNA per sample was submitted 

for library preparation.  
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Qualified RNA samples were then enriched and synthesized into two strand cDNA for library 

preparation. RNA-seq libraries were constructed using the TruSeq RNA Sample Prep Kit 

(Illumina, San Diego, CA, USA). The libraries from qualified RNA samples were sequenced in 

the 150 nt paired-end mode on an Illumina HiSeq 6000 platform at Novogene Bioinformatic 

Technology (Tianjin, China). After quality filtering (FastQC, quality value >5), over 30 billion 

clean reads were obtained in each library and then used for down-stream analysis. 

PCR primers were designed top-ranked genes (10 for each comparison) as obtained by 

differential gene analysis (Supplemental Table S3). Real-time quantitative PCR was performed 

in real-time PCR systems (Bio-Rad, Hercules, CA, USA).  The 2–∆∆CT method for relative 

gene expression analysis was performed to calculate the mRNA levels of individual gene. Two 

or three replicates were measured for each sample. 

Bioinformatics and statistics analyses 

All raw RNA-seq reads were filtered by R package trim_fastq to remove adapters, rRNA and 

low-quality reads. The QC criteria included: removing bases below Phred quality 20, containing 

over two “N”, or shorter than 75. The output reads were then indexed by aligner STAR and 

mapped to reference genome by BAM. Normalized read counts were generated and compared 

between groups to generate DEGs using R package DESeq2. Another R package countToFPKM 

was employed to produce FPKM for AImmune analysis. Genes that displayed at least two-fold 

difference in gene expression between comparison groups (false discovery rate [FDR]<0.05) 

were considered significant DEGs and carried forward in the analysis. Differentially expressed 

RNAs were illustrated as a volcano plot. Hierarchical clustering was performed to show the gene 

expression patterns and similarities among samples. PCA was performed to cluster subjects 

based on the differentially expressed transcripts. GSEA analysis was carried out by searching the 
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established MSigDB gene-set collections (C7). Differences of mRNA levels and cell 

composition scores were evaluated using independent t-tests or paired t-tests if pairwise samples 

were given. A p value of <0.05 was considered statistically significant. Bioinformatics and 

statistics analyses were performed and visualized using R version 3.6.1 or Python version 3.7.9. 
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Table 1.  General characteristics of the study subjects (N=30) 

Characteristics Count (percentage) 

Gender 

Male  26 (86.7%) 

Female 4 (13.3%) 

Age 

≥60 20 (66.7%) 

<60 10 (33.3%) 

Smoking history 

Yes 24 (80%) 

No 6 (20%) 

Histology  

Squamous (SqCC) 23 (76.7%) 

Adenocarcinoma (ADC) 6 (20%) 

Large cell carcinoma (LCA) 1 (3.3%) 

Stage 

ⅠA 8 (26.7%) 

ⅠB 4 (13.3%) 

ⅡA 1 (3.3%) 

ⅡB 3 (10%) 

ⅢA 6 (20%) 

IIIB 5 (16.7%) 

ⅣA 1 (3.3%) 

Unable to stage 2 (6.7%) 

Pre- and post-treatment samples 

Available  12 (40%) 

Not available 18 (60%) 

Responder status 

Responder (pCR) 14 (46.6%) 

Non-responder (non-pCR) 16 (53.3%) 

pCR, pathologic complete response 
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Figure 1. Workflow diagram of the study. Data collection and analytical workflow depicting 

the overall study design, profiling and validation scheme and computational analyses in multiple 

representation levels. NSCLC, non-small cell lung cancer; PBMC, peripheral blood mononuclear 
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cell; v, versus; scRNA-seq, single cell RNA-seq; res, responders; non-res, non-responders; DEGs 

or DE, differently expressed (genes); LC, lung cancer.  

 

Figure 2. Blood-based DEGs responding to treatment expressed abnormally in lung cancer 

tissues. A) Volcano plots of total differentially expressed gens identified in pairwise 

comparisons of 5 patients and colored by regulation directions (up and down). B) The 

hierarchical clustering of the study subjects annotated by patient numbers and the heatmap 

representing the relative expression level of each DEG over two subject groups. Pre- and post-
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treatment status, histology and stage information were color-coded and labelled. C) Relative 

mRNA levels of the top 10 genes (ranked by FDR p value) as measured in an independent 

patients set (pair n=7) for pairwise comparison. D) Relative mRNA levels of 8 genes as reported 

in normal lung and lung cancer tissues (data from GENT2 database). Genes HBG1 and HBG2 

were combined because they were detected by same primer set. Dot plots and box plots, if shown, 

represent the individual values and the average values of the mRNA levels. N, normal lung tissue; 

T, lung cancer tissue; v, versus; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 3. Meta-analyses confirmed the DEGs were differentially expressed between normal 

and cancer tissues. Forest plots show the standardized mean of gene expression difference 

between normal and tumor tissue as estimated from multiple studies (data from LCE database). 

The leftmost column shows the included studies by the first author’s name and publication year 

and followed by the cohort size. The circles lined up in each column represent the effect 

estimates from individual studies and the very bottom circles show the pooled result for each 

gene as annotated. The size of each circle indicates the cohort size of individual study. The 

horizontal lines through the boxes illustrate the length of the 95% confidence interval in both 

positive and negative sides. Random-effects model was utilized to evaluate the overall effect as 

described by z-score and p value. N, normal lung tissue; T, lung cancer tissue; v, versus; scRNA-

seq, single cell RNA-seq. 
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Figure 4. Blood-based DEGs downregulated in responders were enriched in lung cancer 

tissues. A) PCA biplots illustrating two groups of samples color-coded (res v non-res). Yellow 

boxes indicate combination of principal components that can distinguish two groups. B) Volcano 

plots of total differentially expressed gens identified in comparison of 7 res and 9 non-res 

patients and colored by regulation directions (up and down). C) The hierarchical clustering of the 

study subjects annotated by patient numbers and the heatmap representing the relative expression 
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level of each DEG over two subject groups. Responder status, histology and stage information 

were color-coded and labelled. D) Relative mRNA levels of genes DLG5 and H3C10 as 

measured in an independent patients set (7 res v 9 non-res). E) Relative mRNA levels of genes 

DLG5 and H3C10 as reported in normal lung and lung cancer tissues (data from GENT2 

database). Dot plots and box plots, if shown, represent the individual values and the average 

values of the mRNA levels. res, responders; non-res, non-responders; N, normal lung tissue; T, 

lung cancer tissue; v, versus; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 5. Meta-analyses suggested the expression profile and prognostic value of the DEGs 

identified from the responders. A-B) Forest plots show the standardized mean of gene 

expression difference between normal and tumor tissue (A) or the summary hazard ratio (B) as 

estimated from multiple studies (data from LCE database). The leftmost column shows the 

included studies by the first author’s name and publication year and followed by the cohort size. 

The circles lined up in each column represent the effect estimates from individual studies and the 

very bottom circles show the pooled result for each gene as annotated. The size of each circle 
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indicates the cohort size (A) or weight (B) of individual study. The horizontal lines through the 

boxes illustrate the length of the 95% confidence interval in both positive and negative sides. 

Random-effects model was utilized to evaluate the overall effect as described by z-score and p 

value. C) Survival analysis of Schabath_2016 using groups defined by gene expressions of 

DLG5 (left) and H3C10 (right) with cutoff at median. res, responders; non-res, non-responders; v, 

versus. 
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Figure 6. Immune-related and metabolic pathways were the most over-represented 

regulatory mechanisms  

A & C) cirFunMap visualization of the over-representation analysis result in circular network 

view showing the enriched clusters from comparisons of pre v post (A) and res v non-res (C) 

(KOBAS-i). The top-ranked enrichment clusters (correlation > 0.35, top n = 7) were color-coded 

while node with bigger size stands for smaller p value. The remining lower ranked enrichment 

clusters were labelled in gray. B & D) Bubble plots of the top 10 pathways (upper) and the top 

10 gene oncology (lower) enriched in comparisons of pre v post (B) and res v non-res (D). 
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Bubble with bigger size stands for smaller p value. Each term was colored following same code 

used to annotate the node clusters in A or B, respectively. Z-scores of individual terms were 

provided as calculated following Ingenuity pathway analysis manual. res, responders; non-res, 

non-responders; v, versus. 
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Figure 7. Integrated GSEA and immune profiling analysis revealed a broad-spectrum 

immune activation in responders received treatment 

A) Integrated gene set enrichment analysis (GSEA) yielded quantitative measures of the 

overrepresentation of immunologic signature gene sets as regulated in either post-treatment 

subjects or the responder subjects. The overlapped or unique gene sets identified upregulated in 

each comparison are listed and annotated. All gene sets are presented in same direction (up-

regulation) for convenience of interpretation. B) The hierarchical clustering of relative 

expression in new marker genes included in AImmune approach across 7 key immune cell 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.07.21267340doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267340


35 
 

subsets. These expression profiles were adapted from scRNA-seq of NSCLC and healthy 

PBMCs. C) Immune cell scores of 7 cell subsets produced by updated AImmune approach, 

utilizing the transcriptomic profiles from res and non-res subjects (n=7 v 9). Dot plots and box 

plots show the individual values and the average value of the scores. res, responders; non-res, 

non-responders; v, versus; scRNA-seq, single cell RNA-seq. 
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