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ABSTRCAT: 
 
Purpose: This study investigates whether graph-based fusion of imaging data with non-imaging EHR 

data can improve the prediction of disease trajectory for COVID-19 patients, beyond the prediction 

performance of only imaging or non-imaging EHR data. 

Materials and Methods: We present a novel graph-based framework for fine-grained clinical outcome 

prediction (discharge, ICU admission, or death) that fuses imaging and non-imaging information using a 

similarity-based graph structure. Node features are represented by image embedding and edges are 

encoded with clinical or demographic similarity. 

Results: Our experiments on data collected from Emory Healthcare network indicate that our fusion 

modeling scheme performs consistently better than predictive models using only imaging or non-imaging 

features, with f1-scores of 0.73, 0.77, and 0.66 for discharge from hospital, mortality, and ICU admission, 

respectively. External validation was performed on data collected from Mayo Clinic. Our scheme 

highlights known biases in the model prediction such as bias against patients with alcohol abuse history 

and bias based on insurance status.  

Conclusion: The study signifies the importance of fusion of multiple data modalities for accurate 

prediction of clinical trajectory. Proposed graph structure can model relationships between patients based 

on non-imaging EHR data and graph convolutional networks can fuse this relationship information with 

imaging data to effectively predict future disease trajectory more effectively than models employing only 

imaging or non-imaging data. Forecasting clinical events can enable intelligent resource allocation in 

hospitals. Our graph-based fusion modeling frameworks can be easily extended to other prediction tasks 

to efficiently combine imaging data with non-imaging clinical data. 
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INTRODUCTION: 

To successfully perform any clinical prediction task, it is essential to learn effective 

representations of various data captured during patient encounters and model their interdependencies, 

including patient demographics, diagnostic codes, and radiologic imaging. Graph convolutional neural 

networks (GCN) present an intuitive and elegant way of processing multi-modal data presented as a graph 

structure. Recent works in GCN have enabled fusion of various data types and preserve their inter-

dependency including imaging data such as MRI, CT scans, or X-rays with non-imaging electronic health 

record (EHR) or phenotypic data. Availability of comprehensive public databases such as TADPOLE [1], 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 and ABIDE2 containing imaging and non-imaging 

information for patients with Alzheimer and autism spectrum disorder (ASD), respectively,  has 

facilitated the use of GCN for disease prediction [2, 3, 4, 5, 6] with innovation in GCN architecture 

involving kernel size selection and use of recurrence. We build on this trend of research by applying the 

GCN model to understand the relationship between imaging and non-imaging data and by incorporating 

holistic weighted edge formation based on patient clinical history and demographic information. We 

propose a novel framework for fine-grained clinical event prediction for COVID-19 patients based on 

GCN-inspired models.  

 BACKGROUND AND SIGNIFICANCE: 

Much of the literature regarding predictive modeling for COVID-19 patients has been largely 

focused on either diagnosis by processing imaging data (chest X-rays) through deep convolutional neural 

networks (CNN) [7-12], or mortality prediction using clinical risk factors [13-17]. In contrast, we propose 

a graph-based framework (see Figure 4) for predictive modeling of disease trajectory during 

hospitalization of the patient. Our framework includes multi-stage predictive models for various clinical 

events such as discharge from the hospital, ICU admission, and mortality. While most of the previous 

work has focused on either imaging data or hand-picked clinical factors [15, 16, 18-20], our framework 

                                                       
1 adni.loni.usc.edu 
2 https://fcon_1000.projects.nitrc.org/indi/abide/ 
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fuses chest radiographs with non-imaging EHR data to capture patient similarity based on clinical history 

and demographic factors. While a pre-trained model was used for chest X-ray featurization, we developed 

innovative feature engineering schemes to model sparse information regarding past medical procedures 

and diagnosed illnesses of patients.  Our relational graph-based modeling allows prediction processes to 

gather cues from similar cases, i.e., patients with similar demographic features and medical history. Our 

experiments clearly indicate merits of our fusion modeling in comparison to models employing only 

imaging or only non-imaging features. Biases based on demographic features like race, or socio-economic 

indicators like insurance status, or alcohol use, may affect clinical decision making regarding discharge 

from hospital or admission into the ICU [21, 22]. Therefore, we investigated disparity in the predictions 

made by the proposed framework.  

MATERIALS AND METHODS 

We developed a graph-based fusion AI model to predict COVID-19 disease trajectory by using multi-

modal patient data including radiology imaging data, demographic information, and clinical history 

(Figure 1).  

Cohort description: Following approval of the Emory Institutional Review Board (IRB), we collected all 

chest X-rays of patients with at least one positive RT-PCR test for COVID-19, performed in 12 centers of 

the Emory Healthcare network from January 2020 to December 2020. As shown in Figure 2, the data 

consisted of 47,555 chest X-rays belonging to 23,831 unique patients. We only considered posteroanterior 

(PA) and anteroposterior (A) view of chest radiographs during the period of hospitalization. We also 

collected hospital admission, mortality and discharge data from the hospital billing system. Patients who 

were never admitted, or those who were admitted but did not receive regular intervals of x-rays (at 

minimum every three days) were discarded. This left 2,201 unique patients corresponding to 2,983 

hospitalizations for which chest-x rays were obtained at least every 3 days (7,813 total chest-x rays). In 

order to avoid data leakage, we applied a patient-wise split of the train and test sets. Some patients were 

hospitalized multiple times during the year 2020. We considered the chest X-ray exam date and time as a 
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timepoint for predicting future clinical events and stratified these events based on severity – discharged 

from hospital with 3 days, admission to ICU, or death. There were 929 patients and 4,850 chest X-rays 

after which the patient was admitted to the hospital for more than three days. Out of these, 380 patients 

corresponding to 543 chest Xrays were admitted to ICU within 3 days. There were 1,754 patients 

corresponding to 2,963 chest X-rays who were discharged from hospital within 3 days. 220 patients 

corresponding to 502 chest X-rays died within 3 days. The selection process for this cohort is shown in 

Figure 2. Outcome data for this cohort was collected from hospital billing records and warehouse EHR 

data sources. Our goal was to predict adverse events as early as possible to provide enough decision 

making time for the clinicians. In our preliminary experiments, we evaluated 3 days up to 7 days, 

however given the unbalanced dataset, we found 3 days to be the most prevalent in terms of different 

prediction labels. This cut-off provided a rather balanced distribution of discharged vs. not discharged 

labels.  

External test –With the approval of Mayo Institutional Review Board, we shipped our Emory trained 

model to Mayo and evaluated externally on 50 unique patients admitted to the Mayo Clinic hospital 

between Jan 2020 – Dec, 2020 with a positive RT-PCR test. The patients have 293 chest X-rays during 

the period of hospitalization. Demographic and comorbidities statistics of both cohorts are provided in 

Table 1.  

 

Multimodal encounter data description and feature engineering: To fulfill the aim of multi-modal 

data fusion, we tested different approaches to handling imaging and non-imaging data. 

Imaging Data: We used a DenseNet-121 [23] pre-trained on the open-source chest CheXpert X-ray 

dataset [24], and fine-tuned on 199,029  non-COVID chest X-rays from EUH acquired in 2019, for 

processing normalized images. We dropped the final softmax classification layer of the DenseNet-121 

model and extracted 1024-dimensional feature vectors from each image to construct a dense 

representation of the images.  
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Non-Imaging EHR Data: We extracted the current and historic EHR data from 2020 for all patients in our 

cohort.       

Demographic information:  Gender (male/female), self-reported race (African American, Caucasian, 

Native Hawaiian or Other Pacific Islander, Asian, American Indian or Alaska Native, Multiple, 

Unknown), ethnic group (Hispanic or Latino, Non-Hispanic or Latino, Unknown), and age at the time of 

admission (binned in 10-year intervals). All features were one-hot encoded.  

Current Procedural Terminology codes (CPT):  CPT is a five-digit procedure code that reports medical, 

surgical, and diagnostic procedures and services to entities such as physicians, health insurance 

companies and accreditation organizations. CPT codes are maintained and grouped in a hierarchical 

structure by the American Medical Association (AMA). Each CPT code was reduced into a higher-order 

parent category based on the defined hierarchy 3 (details available in supplementary material). We 

selected all of 21 groups with more than 1000 occurrences. 

Comorbidities: Past and current diagnoses of patients are structured as International Classification of 

Disease, 9th edition (ICD-9) codes which we grouped based on hierarchical structure [22] (details 

available in supplementary material). We selected all of 29 groups occurring more than 5000 times in the 

data. 

Graph-based Fusion model - Image and EHR:  

Like any CNN, a GCN learns to generate a vector embedding of each node optimized for the downstream 

prediction task, While CNN defines ‘neighborhood’ of an instance based on spatial proximity such as 

neighboring pixels in images, GCN allows the neighborhood to be defined by edges in graph structure. 

Edges can be defined by any relevant similarity metrics/interconnection between the nodes, providing 

extreme flexibility for modeling complex clinical scenarios.  Node embeddings generated by a GCN are 

dependent on node representation itself and neighborhood/edge-connected nodes. In our graph design, 

chest X-ray embeddings (1024-dimensional vector) are used as nodes and edges are decided by similarity 

                                                       
3 https://www.aapc.com/codes/cpt-codes-range/ 
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in patients’ demographic information or medical history (see Figure 3). Therefore, our GCN supports the 

notion of ‘neighborhoods’ based on clinical and/or demographic similarity between patients and makes 

predictions for future clinical events by considering trends among similar patients.  

For edge formation, we encoded an EHR feature vector for each node (chest radiograph) based on one-hot 

encoding of EHR information of the patient corresponding to that radiograph. Edge formulation only 

employs retrospective data collected before the chest radiograph exam date to avoid any data leakage. 

Cosine similarity between EHR feature vectors corresponding to two nodes is used to decide edge 

between the nodes, while edge weight encodes the strength of the similarity between nodes. 

Many GCN variations are designed for transductive learning such that they can only process graph 

structures used for training with no ability to generalize to unseen nodes or new graph structure. To avoid 

this limitation, we used the SAGE (SAmple and aggreGatE) graph convolution network (GraphSAGE) 

[25] that optimizes a sample aggregate function to collect ‘messages’ from neighboring nodes while 

generating vector embedding of a node. For inference, GraphSAGE employs an optimized aggregate 

function to generate embedding for unseen nodes in unseen graph structures. GraphSAGE based 

prediction models can inductively reason to assign predictive labels to unlabeled nodes by learning from 

labelled nodes in the graph.  

Branched Framework of Prediction: Forecasting the trajectory of disease, in terms of three clinical 

events, once the patient has been hospitalized is the focus of this work. Given the challenge of collecting a 

balanced dataset for multi-class classification, we modeled 3 sequential decision points and developed a 

pipeline for comprehensive prediction of possible clinical events. (Model1) - Prediction of discharge from 

the hospital: In the first decision point, Model-1 predicts whether the patient will stay in the hospital for 

more than 3 days (positive label) or not. (Model-2) - Mortality prediction: For negatively labeled 

instances by Model-1, in the second decision point, Model-2 predicts whether the patient will expire 

within 3 days (positive label) or not. (Model-3) - Prediction of Admission in ICU: Finally, for positively 

labelled instances from Model-1, Model-3 predicts whether the patient will be admitted to ICU within 3 

days (positive label) or not. Distribution of positive and negative class labels is highly imbalanced, 
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especially for Model-2 and Model-3 (Figure 2). We employed undersampling of majority label and 

weighted loss to tackle this challenge. 

In this framework, disease trajectory is predicted as predictive events include indicators of worsening 

(admission in ICU, mortality) or improving (discharge from hospital) prognosis. A patient is evaluated 

every time a chest radiograph is taken, while staying in the hospital. 

Model comparison and statistical evaluation: Evaluation of the proposed modeling framework is focused 

on two aspects; 1) performance of the fusion model in comparison to models using single modality (either 

imaging data or non-imaging data), 2) comparative effectiveness of different EHR data sources in terms 

of graph structure definition-based prediction. We designed a Random Forest classifier and used the 

Pulmonary X-ray severity (PXS) scores computed by a CNN [26] to predict clinical events as well. As 

PXS scores are based on deep learning based processing of imaging data, we wanted to establish the 

benefits of our selection of imaging features in our relational graph by comparison. We report the model 

performance in terms of Area Under the Receiver Operating Characteristics curve (AUCROC), precision, 

recall and f1- score on held-out test-set from Emory University cohort, as well as on external test-set 

composed of patients’ of Mayo Clinic. 

RESULTS:  

Quantitative performance: Our framework consists of three binary prediction models: Model-1 

(Discharge from hospital), Model-2 (mortality), Model-3 (ICU admission). Tables 2 presents results for 

these three prediction models evaluated using the class-wise and aggregated (weighted average) precision, 

recall, and F-score as well as confidence interval (95% confidence) on a randomly held-out set of test 

samples. In Figure 5, we also represent the receiver operating characteristics (ROC) curves for these 

evaluations.  

 

Tables 2, 3, and 4 show the performance of  predictive models - (1) EHR only: Random forest model 

using all EHR data sources as input (demographics, CPT groups, ICD-9 groups), (2) PXS only: Random 
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forest model using only PXS score derived from the images as input, (3) Image only: softmax 

classification of the pretrained DensenNET-121 using chest X-ray as input, and (4) GraphSAGE with XX: 

GraphSAGE network with graph structure based on different EHR sources (XX) like demographics, CPT 

groups, and ICD-9 groups.   

For both prediction of discharge from hospital and mortality, GraphSAGE with CPT achieved the 

highest performance, surpassing baseline single modality models - Image-only and EHR only, while 

PXS-only model also achieved suboptimal performance. GraphSAGE with demographics and ICD do not 

provide any significant boost over the baseline performance for both the prediction tasks. However, 

GraphSAGE with ICD was the best performing model for ICU admission prediction, surpassing the 

performance of single modality models and PXS-only model.  

 Overall results demonstrate that graph-based models increase the performance beyond the 

performance of any individual source for all the target prediction tasks. The performance tables show p-

values, computed by statistical t-test to evaluate statistically significant performance differences, for all 

models at all decision points compared with the best performing model at the corresponding decision 

point.   
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Model bias analysis: Interestingly, GraphSAGE models trained on demographic similarity data, do not 

surpass the performance of the baseline models, even for the ICU admission and mortality. We used the 

Aequitas toolkit [27] to analyze model disparity focused on false positive rate (FPR) and false omission 

rates (FOR). Figure 6 shows these FPR and FOR disparity plots based on alcohol use, race and insurance 

status for discharge (Model 1) and ICU admission (Model 3). FPR represents the rate of false positive 

prediction when a certain subgroup is falsely predicted to have positive label where positive label is 

punitive in nature such as discharge from hospital. Similarly, FOR represents the fraction of cases from a 

certain subgroup who are falsely omitted from a positive prediction group where the positive label has an 

assistive nature such as admission to ICU. Disparity plots represent comparisons of FPR and FOR of 

different subgroups in reference to a reference subgroup. Adhering to convention, we chose the majority 

subgroup as the reference for both plots. Higher disparity values indicate unfavorable bias while lower 

values indicate favorable bias. Our analysis indicates that the model for discharge prediction is 

unfavorably biased towards patients with alcohol abuse history, Caucasian population. While Medicaid 

insurance has a negative bias towards discharge, commercial insurance has a high False Omission rate for 

ICU admission. No racial bias was identified in our predictive models. This conclusion is based on an 

acceptable bias range of 0.8 to 1.2.   

External Validation: During the external validation, we found that procedures (CPT codes) and 

comorbidities (ICD-10) for the external population are very different from common codes of our internal 

validation dataset (lists of common CPT and ICD-10 codes are provided in supplementary material). 

Following the proposed strategy, we built graphs based on demographics (age, gender, race, and 

ethnicity), common ICD-10 and common CPT codes for this cohort and tested our GraphSAGE models 

as well as image-only and EHR-only models for all prediction labels. Results of their performance are 

provided in Table 2 - 4. It is clear that graph based models have higher and more consistent generalization 
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capabilities than baseline models (image-only and EHR-only) achieving better F-score for all three tasks. 

Baseline models do achieve higher AUROC only for mortality prediction 

DISCUSSION: 

It appears that elements in clinical history, like past medical procedures and comorbidities play a 

larger role in clinical event prediction than demographic features like age, gender, and race. Though past 

medical procedures often produced better performance than coded comorbidities, past procedures are 

already correlated with specific comorbidities. In addition to single modality model, we also compared 

the different GraphSAGE models against a model trained on PXS score[26] where the PXS were directly 

computed from the X-ray images and the CNN model was pretrained on ~160,000 images from CheXpert 

and transfer learning on 314 CXRs from patients with COVID-19.  GraphSAGE model also outperformed 

the PXS only model with a statistically significant margin. We also validated the performance of 

GraphSAGE against the individual modality on an external institution where the common comorbidities 

(diabetics, renal disease) are rare (<20%) compared to our internal training data (>55%) and as a 

consequence the respective procedures are less frequently performed. In such distribution shift, often the 

machine learning model failed to generalize [28]; however graph based modeling is flexible enough to 

handle data-shift by updating the similarity definition for edge generation and produce comparable results 

on the external data. 

 

 Despite the encouraging performance, the bias analysis shows that model performance is biased 

towards race and current insurance status for discharge and ICU admission. However, this is more related 

towards the practice since as multiple past studies have highlighted biases in crucial care services and 

discharge delays based on insurance status [29, 30, 31, 32, 33, 34].  

 

Limitation of the study: The proposed framework may face limitations in terms of application scope as it 

requires imaging data to be collected on regular interval and was trained on data collected from highly 

integrated academic healthcare system. Prediction interval is also limited to 3 days which is still longer 
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than most studies done in the past [18, 19]. Due to the two-fold informational fusion of the GraphSAGE 

which involves mathematically irreversible calculations, it is not feasible to apply traditional model 

interpretation techniques, and hard to explain the decision reason for the prediction of the each node 

classification. 

CONCLUSION: 

We proposed a graph-based framework to preserve interdependencies in multi-modal data, i.e., EHR and 

radiologic images, to predict future clinical events (e.g. discharge, ICU admission, and mortality) for the 

in-patients population tested positive for COVID-19 within 3 days of admission. During the graph-based 

learning, in theory, two-fold information fusion of node features and graph structure ensure that relevant 

features (nodes and graph structure) for the targeted task are amplified while similar non-relevant 

attributes are suppressed. To our knowledge, this is the first attempt to encode and learn the patient-wise 

similarity within imaging data using a GCN model and apply that for predictive modeling hospital 

resource optimization. Our experiments clearly establish superiority of relational graph based fusion 

modeling, over single-modality predictive models, in terms of prediction performance and adaptation to 

different populations. 
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Table 1: Cohort characteristics - demographics, clinical history and insurance status. The numbers have been represented in 

terms of complete dataset (total cohort) as well as train and test split. 

Characterization 

 

Total cohort (2201) Train (1762) Test 

(439) 

External test (50) 

Gender Male  

Mean Age (std. deviation) 

1111  

59.7(16.2)  

887 

59.2 (16.1) 

224 

61.5(16.3) 

34 

64.5 (16.3) 

Female 

Mean Age (std. deviation) 

1090  

59.0 (18.8) 

875  

58.7(18.9) 

215  

60.2(18.4) 

16 

59.8 (15.9) 

Race African American 1405(63.8%) 1135(64.4%) 270(61.5%) 6 (12%) 

Caucasian 554(25.2%) 427(24.2%) 127(28.9%) 43 (86%) 

Asian 51(2.3%) 42(2.4%) 9(2.1%) 1(2%) 

American Indian or Alaskan  11(0.5%) 7(0.4%) 4(0.9%) -- 

Multiple                                   6(0.3%) 6(0.3%) 0(0%) -- 

Native Hawaiian or Other 6 (0.3%) 4(0.2%) 2(0.4%) -- 

Unknown 168(7.6%) 141(8.0%) 27(6.2%) -- 

Ethnicity Hispanic 163(7.4%) 133(7.5%) 30 (6.8%) -- 

Non-Hispanic 1894(86.1%) 1517(86.1%) 377(85.9%) 50 (100%) 

Unknown 144(6.5%) 112(6.4%) 32(7.3%) -- 

Comorbidities Diabetes 1187(53.9%) 937 (53.2%) 250(56.9%) 7(14%) 

Renal Disease 1330(60.4%) 1050(59.6%) 280(63.8%) 10(20%) 

Hypertension 1711(77.7%) 1356(77.0%) 355(80.9%) 19 (38%) 

Respiratory Disease 1948(88.5%) 1556(88.3%) 392(89.3%) 27 (54%) 

Insurance Status Medicare 1034(47.0%) 806(45.7%) 228(51.9%) Not available 

Commercial 784(35.6%) 651 (36.9%) 133(30.1%) 

Medicaid 125(5.7%) 100(5.7%) 25(5.7%) 

Others 258 (11.7%) 205(11.6%) 53(12.1%) 

Alcohol Use No 1464(66.5%) 1178(66.9%) 286(65.2%) 

Yes 245(11.1%) 213(12.1%) 32(7.3%) 

Not Reported 492(22.4%) 371 (21.1%) 121(27.6%) 
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Table 2: Performance of Model 1. Prediction of discharge from hospital within 3 days. Total number of held-out test samples - 
1,545 with 563 discharged patients. CI stands for 95% confidence range calculated using bootstrapping with 1000 randomly 
subsampled sets from the held-out test set. Optimal performance is highlighted in bold. p-values have been computed using 
pairwise t-test with GraphSAGE CPT. Overall performance of the external dataset was represented in terms of macro average of 
precision, recall, and F-score. 

  Precision Recall F1-score p-
values 

Internal hold-out testset 
GraphSAGE with 
Demographics 

Discharged 69 54 60 < 0.1 
Not Discharged 76 86 81 
Overall 73 70 71 
C.I. [71.0-74.3] [68.4-71.5] [69.1-72.3] 

GraphSAGE with 
CPT 

Discharged 74 54 62 Ref. 
Not Discharged 77 89 83 
Overall 76 72 73 
C.I. [74.0-77.1] [70.0-73.0] [70.9-74.1] 

GraphSAGE with 
ICD 9  

Discharged 58 68 62 <0.001 
Not Discharged 80 71 75 
Overall 69 7 69 
C.I. [67.2-70.1] [68.2-71.3] [67.3-70.4] 

Image only  Discharged 68 51 59 <0.5 
Not Discharged 76 86 80 
Overall 72 69 69 
C.I. [70.1-73.5] [67.2-70.4] [67.9-71.3] 

EHR only  Discharged 57 58 58 <0.001 
Not Discharged 76 75 75 
Overall 66 67 67 
C.I. [64.9-68.1] [65.1-68.1] [65.0-68.0] 

PXS only Discharged 48 46 47 <0.001 
Not Discharged 70 72 71 
Overall 59 59 59 
C.I. [57.2-60.8] [57.0-60.6] [57.1-60.7] 

External testset 

GraphSAGE with 
Demographics 

Overall 0.64 0.60 0.61 Ref 

GraphSAGE with 
CPT 

Overall 0.60 0.58 0.59 <0.001 

GraphSAGE with 
ICD 9 

Overall 0.58 0.55 0.56 <0.001 

Image only Overall 0.52 0.51 0.49 <0.001 

EHR only Overall 0.59 0.62 0.69 <0.001 
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Table 3: Performance Model 2. Prediction of mortality of patients within 3 days. Total number of held-out test samples - 563 
with 445 alive patients. CI stands for 95% confidence range calculated using bootstrapping with 1000 randomly subsampled sets 
from the held-out test set. Optimal performance is highlighted in bold. p-values have been computed using pairwise t-test with 
GraphSAGE CPT. Overall performance of the external dataset was represented in terms of macro average of precision, recall, 
and F-score. 

 
  Precision Recall F1-score p-

values 
Internal hold-out testset 

GraphSAGE with 
Demographics 

Alive 87 96 91 <0.001 
Dead 73 45 55 
Overall 80 70 73 
C.I. [76.4-83.2] [67.2-73.3] [70.0-76.4] 

GraphSAGE with 
CPT 

Alive 91 92 91 Ref. 
Dead 68 65 67 
Overall 80 79 79 
C.I. [76.6-82.6] [75.6-81.7] [76.2-81.8] 

GraphSAGE with 
ICD 9  

Alive 91 90 90 >0.5 
Dead 63 64 64 
Overall 77 77 77 
C.I. [73.9-79.9] [74.3-80.7] [74.1-79.7] 

Image only  Alive 90 89 89 <0.5 
Dead 60 63 61 
Overall 75 76 75 
C.I. [72.3-78.2] [72.7-79.2] [72.5-78.4] 

EHR only  Alive 78 51 62 <0.001 
Dead 88 96 92 
Overall 83 74 77 
C.I. [79.8-86.3] [70.5-76.6] [73.6-80.0] 

PXS only Alive 85 87 86 <0.001 
Dead 47 42 44 
Overall 66 64 65 
C.I. [62.2-69.0] [61.3-67.7] [61.7-68.1] 

External testset 

GraphSAGE with 
Demographics 

Overall 0.55 0.59 0.54 <0.1 

GraphSAGE with 
CPT 

Overall 0.77 0.59 0.61 <0.1 

GraphSAGE with 
ICD 9 

Overall 0.63 0.64 0.63 Ref 

Image only Overall 0.62 0.74 0.57 >0.5 

EHR only Overall 0.81 0.63 0.66 <0.001 
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Table 4: Performance Model 3. Prediction of admission to the ICU. Total number of held-out test samples - 592 with 110 ICU 
admitted patients.CI stands for 95% confidence range calculated using bootstrapping with 1000 randomly subsampled sets from 
the held-out test set. p-values have been computed using pairwise t-test with GraphSAGE ICD. Overall performance of the 
external dataset was represented in terms of macro average of precision, recall, and F-score. 

 
  Precision Recall F1-score p-

values 
GraphSAGE with 
Demographics 

Not Admitted to ICU 87 74 80 <0.001 
Admitted to ICU 32 53 39 
Overall 59 63 60 
C.I. [56.8-62.2] [59.8-66.9] [56.7-62.9] 

GraphSAGE with 
CPT 

Not Admitted to ICU 89 79 83 <0.01 
Admitted to ICU 38 57 45 
Overall 63 68 64 
C.I. [60.9-66.0] [64.8-71.4] [61.7-67.4] 

GraphSAGE with 
ICD 9  

Not Admitted to ICU 88 85 86 Ref. 
Admitted to ICU 43 50 46 
Overall 65 67 66 
C.I. [62.0-68.4] [63.8-70.8] [62.7-69.2] 

Image only  Not Admitted to ICU 86 75 80 <0.01 
Admitted to ICU 30 48 37 
Overall 58 61 59 
C.I. [55.9-60.9] [58.3-64.9] [55.8-61.6] 

EHR only  Not Admitted to ICU 84 91 87 <0.001 
Admitted to ICU 38 25 30 
Overall 61 58 59 
C.I. [57.1-65.1] [55.0-60.6] [55.5-61.7] 

PXS only  Not Admitted to ICU 82 81 82 <0.01 
Admitted to ICU 21 22 21 
Overall 52 52 52 
C.I. [48.6-54.4]

  
[48.6-54.4] [48.6-54.4]

  
External testset 

GraphSAGE with 
Demographics 

Overall 0.51 0.51 0.51 <0.5 

GraphSAGE with 
CPT 

Overall 0.54 0.56 0.54 <0.001 

GraphSAGE with 
ICD 9 

Overall 0.56 0.54 0.55 Ref 

Image only Overall 0.52 0.53 0.51 <0.001 

EHR only Overall 0.41 0.36 0.20 <0.01 
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Figure 1: Proposed Graph-based fusion AI framework for modeling image and EHR data 

 

Figure 2: CONSORT style diagram for Cohort selection for internal data 
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Figure 3: Graph formation based on chest X-rays and patient similarity information; a) sample graph construction, b) 1% 

random subsample of an actual graph – red dots are nodes indicated by chest X-rays in sample graph, blue lines are edges which 

are constructed between nodes when similarity between corresponding patient features exceed a certain threshold.  

 

Figure 4: Branched framework for disease trajectory prediction with three sequential decision points (highlighted in blue box) 
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Figure 5: ROC curves; (a) Model-1: discharge prediction, (b) Model-2: Mortality Prediction, (c) Model-3: ICU Admission 

Prediction  
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 Figure 6: False Positive Rate (FPR) based disparity in Model-1: Discharge Prediction; (a) alcohol use based disparity, (b) race 

based disparity (c) insurance status based disparity. False Omission Rate (FOR) based disparity in Model-3: ICU Admission 

Prediction; (d) alcohol use based disparity, (e) race based disparity (f) insurance status based disparity 
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