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Abstract 20 

The decline in NO2 and PM2.5 pollutant levels were observed during COVID-19 around the 21 

world, especially during lockdowns. Previous studies explained such observed decline with 22 

the decrease in human mobility, whilst overlooking the meteorological changes (e.g., rainfall, 23 

wind speed) that could mediate air pollution level simultaneously. This pitfall could 24 

potentially lead to over- or under-estimation of the effect of COVID-19 on air pollution. 25 

Consequently, this study aims to re-evaluate the impact of COVID-19 on NO2 and PM2.5 26 

pollutant level in Singapore, by incorporating the effect of meteorological parameters in 27 
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predicting NO2 and PM2.5 baseline in 2020 using machine learning methods. The results 28 

found that NO2 and PM2.5 declined by a maximum of 38% and 36%, respectively, during 29 

lockdown period. As two proxies for change in human mobility, taxi availability and carpark 30 

availability were found to increase and decrease by a maximum of 12.6% and 9.8%, 31 

respectively, in 2020 from 2019 during lockdown. To investigate how human mobility 32 

influenced air pollutant level, two correlation analyses were conducted: one between PM2.5 33 

and carpark availability changes at regional scale and the other between NO2 and taxi 34 

availability changes at a spatial resolution of 0.01o. The NO2 variation was found to be more 35 

associated with the change in human mobility, with the correlation coefficients vary spatially 36 

across Singapore. A cluster of stronger correlations were found in the South and East Coast 37 

of Singapore. Contrarily, PM2.5 and carpark availability had a weak correlation, which could 38 

be due to the limit of regional analyses. Drawing to the wider context, the high association 39 

between human mobility and NO2 in the South and East Coast area can provide insights into 40 

future NO2 reduction policy in Singapore.  41 

 42 

1. Introduction  43 

The outbreak of the novel coronavirus SARS-CoV-2 (COVID-19) pandemic has led to 44 

unprecedented scales of city-wide and nation-wide lockdowns around the world to reduce 45 

human contact and transmissions (Lai et al., 2020; Yin et al., 2021). Resultingly, the 46 

restrictions on human mobility within the country drastically decreased emissions coming 47 

from public and private vehicular transportations (Doumbia et al., 2021). Singapore, a 48 

Southeast Asian megacity, is no exception to this disruption (Dickens et al., 2020; Li and 49 

Tartarini, 2020). On 7 April 2020, the Singapore government announced the commencement 50 

of a nation-wide lockdown locally known as the “Circuit Breaker” (Ministry of Health, 51 

2020a). This measure heavily restricted outdoor movements including commute to work, 52 

school and other activities. This has reportedly led to a reduction in traffic volume by 60% 53 

(Tan, 2020) four months into the Circuit Breaker, accounting for at least 44% reduction in 54 

emissions from transport-related sources (Jiang et al., 2021). The Circuit Breaker was then 55 

followed by three reopening phases (Ministry of Health, 2020b) which led to a rebound of 56 

vehicular greenhouse gas emissions as mobility increases (Di Domenico et al., 2020; Zhu et 57 

al., 2020; Jiang et al., 2021; Velasco, 2021).  58 

Unlike cities suffering from severe air pollution where lockdown has reportedly resulted in an 59 

improvement in air quality (Liu et al., 2021; Bao and Zhang, 2020; Fu et al., 2020; Kerimray 60 
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et al., 2020), Singapore generally experiences a low level of air pollution mainly in the form 61 

of PM2.5 even in the pre-COVID days (Zhu et al., 2020). Industries and vehicular emissions 62 

constitute one of the constant and major sources of air pollution in Singapore, with 63 

transboundary haze periodically affecting Singapore’s air quality particularly in the months 64 

of August to October during the Southwest monsoon season (National Environment Agency, 65 

2021). In this context, the change in human mobility in the forms of vehicular traffic during 66 

and after Singapore’s Circuit Breaker could therefore potentially lead to a spatial-temporal 67 

variation in air quality.  68 

Since the onset of COVID-19 and enforcement of lockdown measures, a plethora of studies 69 

has been performed to investigate the effect of lockdown on air pollutions around the world. 70 

At regional scale, most of the studies was conducted on Asia (65%), followed by the 71 

European Union (18%), North America (6%), South America (5%), and Africa (3%) (Addas 72 

& Maghrabi, 2021). At national scale, India is the most studied country (29%), while about 73 

23% of the studies were performed on China and the rest on US (5%), UK (4%) and Italy 74 

(Addas & Maghrabi., 2021). These studies generally concluded a substantial reduction of air 75 

pollution level and a significant improvement in air quality compared during the COVID-19 76 

lockdown period compared to the pre-lockdown period. A number of air pollutants were 77 

being studies: PM2.5, PM10, NO2, NOx, O3, SO2, CO, NH3 etc., among which NO2 and PM2.5 78 

were found to have the most prominent decline during the lockdown period (Faridi et al., 79 

2021). For instance, Sale city (Morocco) experienced as high as 96% reduction in NO2 during 80 

the lockdown period (Otamani et al., 2020), and reduction in PM2.5 was reported ranging 81 

from 76.5% in Malaysia, 58% in Spain and 53.1% in Dehli (Faridi et al., 2021). However, 82 

there exist difficulties to compare these results as different methods were used to investigate 83 

changes in air pollutants level. Most studies confined the segments of their study periods to 84 

only a few months, either comparing the air pollution level during and right before the 85 

lockdown period in 2020 or comparing the air pollution level of lockdown period with those 86 

in the same period of previous years. Moreover, lockdown measures had been implemented 87 

in multiple phases, with various level of restrictions in different countries (Faridi et al., 2021). 88 

Some countries enforced complete lockdown, while some implemented partial measures. 89 

Such differences led to great uncertainties when comparing air pollution reduction across 90 

different countries (Faridi et al., 2021). 91 

The observed decline in air pollutant level has been attributed to the reduction of 92 

transportation emissions and restriction on industrial, economic and production activities 93 

(Addas & Maghrabi, 2021; Faridi et al., 2021). This is potentially due to that vehicular 94 
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emissions and road transport are the most notable sources of ambient PM2.5 and NO2 95 

(European Environmental Agency, 2019). Figure 1 shows that road transport is the largest 96 

source of NOx (Including NO2) and also, the second largest source of PM2.5 (European 97 

Environmental Agency, 2019). There is a consensus among researchers that the decrease in 98 

PM2.5 and NO2 levels during lockdown could be largely due to the restricted mobility. 99 

However, only few have continued to quantify the effect of lockdown on mobility patterns 100 

and their association with air pollution levels. As one of such few studies, Bao and Zhang 101 

(2020) reported strong associations between decrease in air pollution and travel restrictions in 102 

44 cities in northern China. In the U.S, Archer et al. (2020) also found strong correlation 103 

between decline in NO2 level and reduced mobility index (MI), slight increase in PM2.5 level, 104 

as well as no correlation between PM2.5 and MI during April 2020. This was likely due to the 105 

unchanged operation of the major sources of PM2.5 in the U.S, that is, diesel-based 106 

commercial trucks and coal-based electricity generation. Overall, this suggests that the degree 107 

of the impact of restricted mobility on air pollution is context and location specific. In 108 

Singapore, only a few studies (Li & Tartarini, 2020; Zhu et al., 2020; Velasco, 2021) 109 

investigated the impact of circuit breaker on mobility and air pollution. Zhu et al. (2020) 110 

concluded that workplace mobility had a significant positive relationship with PM2.5 levels 111 

between 15th Feb to 1st June 2020. Li and Tartarini (2020) reported a 29% and 45% decrease 112 

in PM2.5 and NO2 levels during 2020 lockdown period (7th Apr – 11th May) compared to the 113 

same period in previous years. Such changes of PM2.5 and NO2 were found to be 114 

significantly associated with reduced mobility (i.e., HDB carpark availability, Apple driving 115 

mobility index, and Google Public transit index) (Li and Tartarini, 2020).  116 

 117 



   
 

 118 
Figure 1. The emission sources of the main air pollutants by sector (modified from European Environmental Agency, 2019). 119 

 120 

Besides reduced mobility, it’s well evident that meteorological factors, such as wind speed, 121 

wind, wind direction, temperature, precipitation, humidity affect air pollution level (Seinfeld 122 

and Pandis, 2016; Yousefian et al., 2020; Jiang et al., 2021; Hua et al., 2021). However, 123 

many existing studies did not quantify the effect of meteorological changes on air pollutant 124 

level during COVID-19. To date, most studies only compared the air pollution during 125 

lockdown with a baseline value (i.e., the estimated 2020 air pollutant level without COVID-126 

19 measures) calculated from historical pollution data. When meteorology was accounted for, 127 

the meteorological data were simply used for qualitative interpretation of the measured air 128 

pollutant level in 2020 (Faridi et al., 2021). Likewise, Li and Tartarini (2020) only used 129 

meteorological data to demonstrate that the monthly averaged meteorological parameters (i.e., 130 

temperature, relative humidity, daily rainfall, wind direction) in Singapore during Apr-May 131 

2020 were not significantly different from those of the same period in previous years, thereby 132 

justifying their conclusion that the meteorology condition didn’t have much influence on the 133 

air pollution level of their period of interest. However, this conclusion may not be reliable as 134 

it rests on comparison of monthly average of the studied period alone. This paper thus, argues 135 

that the effect of COVID-19 on air quality could potentially be over- or under-estimated. 136 

Otmani et al. (2020) observed increased wind speed, humidity and precipitation during 137 

lockdown in Sale city (Morrocco), which could decrease air pollutant concentration alongside 138 

the positive impact of lockdown restriction and reduced transportation. At the same time, 139 

unfavourable meteorological condition can offset the positive impacts of lockdown. Hua et al 140 

(2021) reported that the control measures reduced PM2.5 by 12 μg/m3 in Beijing, whereas the 141 
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meteorology contributed to an increase of 30 μg/m3 in PM2.5, resulting in increased PM2.5 142 

level during lockdown. Therefore, it is important to quantitatively differentiate the impacts of 143 

lockdown and meteorology on air pollutant level during COVID-19. 144 

Another research gap is that existing studies mostly assessed the temporal correlation 145 

between air pollution level and mobility pattern (Li & Tartarini, 2020; Zhu et al., 2020; Bao 146 

& Zhang, 2020; Otmani et al., 2020; Archer et al., 2020). Given both air pollution and 147 

mobility are phenomenon with both spatial homogeneity and heterogeneity, this study 148 

purports that spatial autocorrelation should be conducted for the correlation value between air 149 

pollution change and mobility change during COVID-19. Spatial autocorrelation can help to 150 

identify clusters of high correlation between air pollution and mobility, or in other words, 151 

areas where mobility variation contributed more to air pollution change. 152 

To account for the variability of the lockdown measures and to increase comparability of 153 

results, this study will analyse the air pollutants concentration trend spanning the entire year 154 

2020, rather than confining analysis to a pre-defined lockdown period. Singapore had 155 

implemented different phases of measure before opening up in 2020. Expanding period of 156 

interest from months to year can avoid bias by covering a wide range of situations from 157 

complete lockdown, partial lockdown, gradual opening up, to complete opening up phases. 158 

As a result, this study expects the long-term correlation between air pollutants level and 159 

mobility indexes to be more reliable than the correlation results calculated solely from the air 160 

pollutant and mobility data of the complete lockdown months. To quantitatively differentiate 161 

the impact of meteorology from that of lockdown, this study will estimate the baseline air 162 

pollution level for 2020 using weather data and haze occurrence records. For instance, a 163 

comparatively haze-free condition in Singapore in 2020 (Taufik, 2020) compared to 2019 164 

could suggest a smaller increase in the existing PM2.5 and NO2 levels. To uncover the spatial 165 

variation of the effect of mobility changes on air pollution, this study will perform spatial 166 

autocorrelation. 167 

In short, this study aims to 1) quantify the continuous changes in PM2.5 and NO2 168 

concentration before, during, and after the onset of COVID-19 throughout 2020 in Singapore, 169 

2) to evaluate the association between changes in PM2.5 and NO2 concentration and the 170 

mobility trends throughout 2020, and 3) to identify clusters of stronger correlation between 171 

PM2.5 or NO2 concentration and mobility by performing spatial autocorrelation. Human 172 

mobility is commonly understood as the movement of individuals either on foot or via 173 

various modes of public and private vehicular transportation. For the purpose of this study, 174 

this paper assumed that vehicular transportation operated on private demands such as private 175 
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cars and taxis closely approximates the degree of human mobility during the study period 176 

(Jiang et al., 2021). Results from this study can be used to understand the impact of 177 

anthropogenic activities, in particular the traffic patterns, on air quality and to inform 178 

effective and targeted strategies for reducing air pollution level in the future beyond the 179 

COVID-19 period. 180 

2. Material and Methods 181 

This study makes comparisons among two sets of data. The first comparison was conducted 182 

at higher temporal resolution (daily) but lower spatial resolution (regional), using PM2.5 for 183 

air pollution and Housing Development Board (HDB) carpark availability as a proxy for 184 

mobility. As approximately 81% of the entire Singaporean population lives in HDB flats 185 

(Singapore Statista, 2021), HDB carpark availability can be used as a proxy for human 186 

mobility in Singapore. The second comparison was conducted at lower temporal resolution 187 

(weekly) but higher spatial resolution (0.01º) data, using NO2 for air pollution and taxi 188 

availability as a proxy for mobility. Compared to carparks which are stationary and 189 

constrained to HDB residential locations, taxies travel around the island and can cover a 190 

wider range of locations. Therefore, taxi availability was selected as the mobility proxy for 191 

the comparison of higher spatial resolution. A higher carpark availability and a lower taxi 192 

availability implies there is a higher human mobility. 193 

2.1. Impact of COVID-19 on NO2 and PM2.5 levels  194 

NO2 data was sourced from the Sentinel-5P TROPOMI level 3 product, a global dataset at 195 

high spatial resolution of 0.01º and revisit time of around 1 day. The data was downloaded 196 

from the Google Earth Engine Data Catalog (Google Developers, 2021) for analysis. PM2.5 197 

data was sourced from the National Environment Agency (NEA) Application Programming 198 

Interface (API) (NEA, 2021b). The data is of high velocity (temporal resolution) updated 199 

every hour but is relatively coarse with observations provided for five regions (Figure 2) in 200 

Singapore. The original data pulled from API was resampled first and the details are 201 

summarized in Table 1. 202 
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Figure 2. Five regions of Singapore used in this study. 204 

Table 1. A summary of temporal and spatial resolutions before and after data resampling. 205 

  PM2.5 NO2 Weather 

Temporal 

resolution 

Original Hourly Daily Up to 1 min interval 

Resampled Daily Weekly Daily Weekly 

Spatial 

resolution 

Original 
Regional 

1.11 km Station locations 

Resampled 0.01º Regional 0.01º 

(Notes: The daily and regional weather data was used for 2020 PM2.5 baseline prediction, 206 

while weather data of weekly resolution and 0.01° spatial resolution was used for 2020 NO2 207 

baseline prediction) 208 

 209 

To study how NO2 and PM2.5 levels changed from 2019 to 2020 as a result of COVID-19, the 210 

2020 air pollutants level without COVID-19 measures were estimated and used as the basis 211 

of comparison, which will be referred to as the baseline value in this paper. Changes in NO2 212 

and PM2.5 levels were calculated from the differences between the measured air pollutant 213 

level in 2020 and the baseline.  The conventional practice of using the measured NO2 and 214 

PM2.5 in 2019 as the basis of comparison ignores the fact that air quality could be affected by 215 

the meteorological condition changes from time to time.  For example, a better air quality 216 

could be observed with a higher wind speed and precipitation even with a negligible change 217 

in mobility (Megaritis et al., 2014; Ahmad et al., 2011). Existing literature have 218 

acknowledged that meteorological parameters are important inputs for the predictions of air 219 



   
 

pollutant levels using machine learning methods (Iskandaryan et al., 2020; Rybarczyk & 220 

Zalakeviciute, 2018). Therefore, weather data including rainfall intensity, wind speed, wind 221 

direction, temperature, and relative humidity, were used as part of the input variables for NO2 222 

and PM2.5 baseline prediction. The weather data were retrieved from the NEA API (NEA, 223 

2021c). All weather parameters were first resampled to a daily resolution, where the ordinary 224 

kriging method (Wackernagel, 2003) was then used to interpolate them into a spatial 225 

resolution of 0.01° from the daily measurements at the locations of weather stations (Figure 226 

3). The interpolated daily weather data was used for PM2.5 baseline prediction and resampled 227 

further to a weekly resolution for NO2 baseline prediction. Moreover, to account for the 228 

influence of the haze event in September 2019 on NO2 and PM2.5 levels, the relative number 229 

of haze searches in Google Trends (Google, 2021) from 2019 to 2020 were also used as an 230 

input variable. In addition, location information including the longitudes and latitudes, and 231 

categorical regions (i.e., Central, North, South, West, and East) encoded using one hot 232 

encoder were used as inputs in predicting NO2 and PM2.5 levels, respectively. The location 233 

was considered as input variables as they were related to spatially varied factors such as 234 

landcovers and land uses that could influence NO2 and PM2.5 levels (Xu et al., 2016), or 235 

contributions from consistent emissions from sectors other than road transport. 236 

 237 

 238 

Figure 3. Location of weather stations in Singapore (NEA, 2021d). 239 

In this study, two machine learning methods, Random Forest (RF) and deep neutral network 240 

(DNN), were used since they have been commonly used in different studies on air pollutant 241 

levels predictions (Zhan et al., 2018; Wang & Song, 2018). The meteorological, location, and 242 

haze information in 2019 were input variables and the NO2 and PM2.5 levels in 2019 were 243 
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outputs to train and validate each machine learning model. 80% of 2019 data was used in 244 

training and the remaining 20% was used to validate the trained model. Then the 245 

meteorological, location, and haze information in 2020 were used to predict the baseline NO2 246 

and PM2.5 levels in 2020.  The changes in PM2.5 and NO2 levels were then calculated from the 247 

differences between the measurements in 2020 and the corresponding baseline predictions. 248 

The change in PM2.5 was obtained in a daily temporal resolution from each region and the 249 

change in NO2 was obtained in a weekly temporal resolution but with a spatial resolution of 250 

0.01°.  251 

 252 

2.2. Impact of COVID-19 on taxi availability and carpark availability 253 

HDB Carpark and taxi availability were sourced from the DataMall API (LTA, 2021). 254 

Carpark data is available at 1-minute interval, and taxi availability is available at 30 second 255 

intervals. Table 2 summarises the original taxi and carpark availability data. The taxi 256 

availability data was normalised according to the total taxi amount change in the monthly 257 

data of Singapore from 2019 to 2020. The island wide monthly taxi population data was 258 

sourced from DataMall (LTA, 2021). 259 

Table 2. A summary of temporal and spatial resolutions of carpark and taxi availability 260 

before and after data resampling 261 

  Carpark Availability Taxi Availability 

Temporal resolution 
Original 1 minute 30 seconds 

Resampled Daily Weekly 

Spatial resolution 
Original Exact Locations Exact Locations 

Resampled Regional 0.01º 

 262 

The changes in taxi and carpark availability were calculated from the differences between the 263 

measurements in 2020 and 2019. The change in carpark availability for each region was 264 

obtained in a daily temporal resolution at regional scale and the change in taxi availability 265 

was obtained in a weekly temporal resolution with a spatial resolution of 0.01º. 266 

 267 

2.3. Correlations  268 

Two correlation analyses, one between PM2.5 level change and carpark availability change, 269 

and the other between NO2 level change and taxi availability change, were carried out. In 270 
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order to accommodate the large quantity of data points and the high variety of data properties 271 

of these data points, three correlation methods were carried out: Pearson, Spearman’s Rank, 272 

and Kendall Rank Correlations (Chok, 2010). Pearson correlation evaluates the linear 273 

relationship between two continuous variables. Nevertheless, Pearson correlation is very 274 

sensitive to outliers, which may lead to a weak correlation for data distributed in high 275 

skewness (Akoglu, 2018; Chok, 2010). Spearman’s Rank Correlation evaluates the 276 

monotonic relationship, which is based on the ranked values for each variable rather than the 277 

raw data, thus it is not limited to some of the assumptions (e.g., normal distribution of 278 

variables). Kendall Rank Correlation is similar to Spearman’s rank correlation but usually has 279 

a smaller value (Berg, 2021). Kendall Rank Correlation is calculated based on concordant 280 

and discordant pairs, which is less sensitive to errors such as null values in dataset (Tarsitano, 281 

2009). Due to the large quantity of data points (421 locations), it was  for the most suitable 282 

correlation method. In addition, these data points were geographically distributed, thus their 283 

data properties were expected to vary spatially. A single correlation method (e.g., Pearson) 284 

may fail to capture other types of bivariate relationships (e.g., non-normally distributed data). 285 

Therefore, the correlations between the two sets of variables, as well as their significance, 286 

were calculated using three correlation methods: Pearson, Spearman’s Rank, and Kendall 287 

Rank Correlations. All the three correlations’ coefficients vary from 1 to -1, indicating 288 

positive and negative correlations, respectively. A value close to 0 indicates a very weak 289 

correlation.  290 

For PM2.5 level and carpark availability, the three correlation methods were conducted both in 291 

an island scale and a regional scale. For NO2 level and taxi availability, the three correlation 292 

methods were performed both in an island scale and at a spatial resolution of 0.01°, with a 293 

temporal resolution of every 7 days. Only points with a minimum of 25 observations for both 294 

NO2 and taxi availability during the studied period were included in the correlation analysis. 295 

Correlations were also conducted for each planning area using all observations within the 296 

corresponding planning area (Administrative boundaries in Singapore). Planning area 297 

boundaries was sourced from Urban Redevelopment Authority (URA, 2021). 298 

 299 

2.4. Spatial autocorrelation of correlation coefficients 300 

Hot and cold spot analysis was conducted using the Getis-Ord Gi* statistic method to 301 

determine statistically significant hot and cold spots for the three correlation coefficients (i.e., 302 

Pearson’s r, Spearman’s rho and Kendall’s tau) between NO2 and taxi availability changes. 303 
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To determine the most appropriate threshold distances, the incremental spatial autocorrelation 304 

by distance for 10 distance bands was analysed. The distance band with the peak z-score was 305 

selected as the threshold distance.  306 

  307 



   
 

 13

3. Results and Discussion  308 

3.1. Impact of COVID -19 on NO2 and PM2.5 levels 309 

The weekly comparison of mean NO2 tropospheric column densities in 2019 and 2020 in 310 

Figure 4(a) only illustrates weeks with NO2 measurements both in 2019 and 2020. Overall, 311 

there was a decrease in NO2 levels from 2019 to 2020 observed between Weeks 5 to 20. The 312 

decrease started from the 5th week, which was before the lockdown started. Similarly, from 313 

the daily comparison of regional PM2.5 concentrations in 2019 and 2020 in Figure 4(b), an 314 

overall decrease in PM2.5 levels from 2019 to 2020 was observed. This decrease was observed 315 

to be more significant in September 2020, because the severe haze event detected in 316 

September 2019 and the haze-free condition in Sep 2020 together contributed to a large 317 

difference. However, little difference was found for the regional PM2.5 levels due to a limited 318 

data spatial resolution.  319 
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Figure 4. A general comparison of (a) NO2 and (b) PM2.5 measurements in 2019 and 2020. 321 

Using RF and DNN methods , NO2 and PM2.5 baselines in 2020 were predicted. Both 322 

machine learning models were trained and tested first using 2019 data before baseline 323 

predictions. Figure 5 shows the time series data in 2019 that was used in the model training, 324 

including NO2 meteorological and haze information.  325 

 326 
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Figure 5. NO2, meteorological and haze information in 2019. 328 

Using the two machine learning methods, the comparison of the predicted NO2 and the 329 

measured NO2 levels in 2019 is shown in Figure 6, from training and testing datasets, 330 

respectively. The mean absolute error (MAE), the root means square error (RMSE), as well 331 

as R2 from RF and DNN training and testing datasets are summarized in Table 3. Both 332 

methods show similar performance with similar levels of errors (i.e., 5.9e-06 in MAE for RF 333 

and 6.0e-06 for DNN, and same RMSE) and accuracy (i.e., 0.971 for RF and 0.964 for DNN). 334 

Due to its less computation time, RF was subsequently selected to predict the NO2 baseline in 335 

2020, as well as to train the PM2.5 model and predict PM2.5 baseline in 2020.  336 



   
 

 337 

Figure 6. Predicted NO2 versus the measured NO2 levels (10-3 mol/m2) from the (a) training 338 

and (b) testing datasets using RF and (c) training and (d) testing datasets using DNN. 339 

 340 

Table 3. Summarized errors from RF and DNN in NO2 modelling. 341 

  MAE (mol/m2) RMSE (mol/m2) R2 

RF Training 2.3e-06 4.5e-06 0.996 

Testing 5.9e-06 1.1e-05 0.971 

DNN Training 4.0e-06 7.9e-06 0.984 

Testing 6.0e-06 1.1e-05 0.964 

 342 

Figure 7 shows the 2019 PM2.5, meteorological and haze time series data used in the model 343 

training. Using RF method, the predicted PM2.5 and the measured PM2.5 levels from the 344 

training and testing datasets in 2019 were obtained (Figure 8). The MAE, RMSE and R2 in 345 

training and testing datasets are summarized in Table 4. The model did not perform well at 346 

high PM2.5 levels (beyond 60 µg/m3), and a difference between predicted and measured 347 

values was observed during validation. This could potentially result from the limited number 348 



   
 

of high PM2.5 records (i.e., only during the haze period) for training and testing. However, as 349 

there was no severe haze in 2020 and the measured PM2.5 did not exceed 60 µg/m3. Hence, 350 

the predicted results maintain their validity.  351 

 352 

Figure 7. PM2.5, meteorological and haze information in 2019. 353 

 354 
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Figure 88. Predicted PM2.5 versus the measured PM2.5 levels (10-3 mol/m2) from the (a) 356 

training and (b) testing datasets using RF. 357 

 358 

Table 4. Summarized errors from RF in PM2.5 modelling. 359 

  MAE (µg/m3) RMSE (µg/m3) R2 

RF Training 1.1 1.7 0.964 

Testing 3.0 5.1 0.607 

 360 

From the comparison of feature importance of each input variable in the RF model (Figure 9), 361 

a relatively similar degree of importance for NO2 modelling while a much higher importance 362 

of haze (> 0.5) in PM2.5 modelling were found. Locations and wind properties (speed and 363 

direction) are comparatively more important (i.e., larger than 0.12) in NO2 modelling. 364 

Comparatively, the importance of location is very low in PM2.5 modelling, implying little 365 

difference in the PM2.5 comparison across different regions, potentially due to the large study 366 

area of the regions preventing finer detection of variation.  367 
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Figure 9. Feature importance in (a) NO2 and (b) PM2.5 modelling using RF. 369 

From the comparison of the measured NO2 levels between 2019 and 2020 in Figure 10 (a), a 370 

decrease in NO2 levels before Week 20 in 2020 was observed. However, by comparing 371 

measured values in 2020 and the predicted baseline use RF method, there was an increase in 372 

NO2 levels from Week 11 to Week 18, followed by a significant decrease (i.e., about 38%) in 373 

NO2 levels in Week 20. Similarly, without baseline prediction, the effect of COVID-19 on 374 

PM2.5 levels could also be overestimated. For instance, in Figure 10 (b), by comparing the 375 

measured PM2.5 levels in 2019 and 2020, there was a significant decrease in PM2.5 levels up to 376 

67% during lockdown period. However, by comparing the predicted baseline and the 377 

measurements in 2020, the decrease was only up to 36%. In both NO2 and PM2.5 baseline 378 
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prediction, the effect of haze and meteorological parameters in each location was taken into 379 

consideration, providing a more reliable estimation on the change in air pollutant levels 380 

during COVID-19, including both the lockdown and opening-up period. By only taking 381 

lockdown period into study and simply comparing the measured NO2 and PM2.5 levels in 382 

2020 and 2019, the observed decrease during the lockdown could result in a direct intuition 383 

that lockdown helped in reducing NO2 and PM2.5 levels significantly, which may 384 

overestimate the effect of lockdown. However, the overall change in PM2.5 is not obvious. 385 

This could be due to a change in PM2.5 emissions from other sources occurring at the same 386 

time when there was a change in PM2.5 emissions from road transport. Given household 387 

emission is one of the top sources of PM2.5 emission (Figure 1), the work-from-home 388 

arrangement during COVID-19 can possibly lead to an increased household emission, 389 

offsetting the decreased vehicular PM2.5 emission on the road. 390 

 391 



   
 

 392 

Figure 1010. Comparison among measured (a) NO2 levels and (b) PM2.5 levels in 2019, 2020 393 

and predicted baselines in 2020. 394 

 395 

3.2. Impact of COVID-19 on carpark and taxi availability  396 

Figure 11 shows the weekly comparison of (a) taxi availability and (b) carpark availability 397 

across Singapore in 2019 and 2020. The taxi availability was normalised by the monthly total 398 

taxi count. From an overview, across the island, the total number of available taxis has little 399 

difference between 2019 and 2020 with no clear pattern. However, it is worth noting that the 400 



   
 

 22

total number of available taxis in April – June 2020 is higher than the that for the same period 401 

in 2019 by up to 12.6%. On the other hand, the weekly comparison of carpark availability 402 

across Singapore dropped significantly at the beginning of April (Week 13) in 2020 by up to 403 

9.8% and remained lower than that in 2019 till the end of 2020. In general, pattern of the 404 

change in carpark availability was more apparent than that of taxi availability. The sudden 405 

drop in carpark availability following the start of lockdown in Singapore in early April 406 

suggests that more private vehicles were parked at home and implies a lower mobility. This is 407 

congruent with the findings from Li & Tartarini (2020). Similarly, the increase in the number 408 

of available taxis during the lockdown in 2020 as compared to 2019 also implies a decrease 409 

in human mobility. After the lockdown, carpark availability increased slowly, but remained 410 

lower than the same period last year, indicating the continued impact of COVID-19 on 411 

mobility. However, taxi availability decreased back to the same level as 2019 in a relatively 412 

short period of time. 413 



   
 

 414 

Figure 11. A general comparison of (a) taxi availability and (b) carpark availability in 2019 415 

and 2020 416 

 417 

3.3. Correlation of PM2.5 and carpark availability 418 

Across Singapore, the correlation between PM2.5 levels and carpark availability changes is 419 

extremely weak and insignificant (Table 5). Among the five regions, the correlation result 420 

PM2.5 only shows a statistically significant but weak positive correlation in the Central region. 421 

This is due to the small change observed in PM2.5 levels as discussed in Section 4.1. 422 

Moreover, little variation was detected across the five regions mainly due to the data being 423 

averaged into five regions, limiting a finer detection of spatial patterns.  424 
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Table 5. Summary of 3 types of correlation results in between PM2.5 level and the average 425 

carpark availability changes in the whole island and 5 regions. 426 

Region Pearson  Spearman's Rank  Kendall Rank 

r p  rho p  tau p 

Whole Island 0.029 0.212  0.026 0.279  0.017 0.275 

Central 0.122* 0.021  0.103* 0.049  0.071* 0.046 

East 0.077 0.149  0.093 0.079  0.062 0.079 

North -0.052 0.331  -0.057 0.282  -0.039 0.266 

South 0.043 0.413  0.032 0.547  0.023 0.521 

West 0.078 0.139  0.063 0.237  0.043 0.228 

*  Statistics are significant at 95% significance level. 427 

 428 

3.4. Correlation between NO2 and taxi availability 429 

The mean coefficients of Pearson Correlation, Spearman’s Rank Correlation and Kendall 430 

Rank Correlation between the correlation of NO2 level and taxi availability changes across 431 

Singapore are -0.320 (p= 0.049), -0.289 (p= 0.081), -0.210 (p= 0.067), respectively.  432 

In general, the three correlation methods show similar spatial distributions at a spatial 433 

resolution of 0.01° (Figures 12). Areas such as the South and East Coast area, show 434 

significant negative correlations, suggesting that the change in taxi availability in these places 435 

has a stronger correlation with the change in NO2 levels when the correlation analysis was 436 

performed for each point at a higher spatial resolution. The Pearson correlation coefficients 437 

for some points were less than -0.5, exceeding the island-wide average of -0.32, while the 438 

correlation coefficients for some points in the northern area were positive, indicating a 439 

variation in correlations across the island. The reason for the positive correlation in the north 440 

may be due to the inherent limitations of the taxi availability. There are a few points in the 441 

north that have very limited number of taxis available (i.e., below 20 units per week), as well 442 

as the corresponding change, making the change in taxi availability there may not be 443 

representative for the mobility change. This spatial variation may also explain the 444 

insignificant correlation results observed in the regional analysis between PM2.5 and carpark 445 

availability changes. 446 
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 447 

Figure 12. Pearson (a), Spearman’s Rank (b), Kendall Rank (c) Correlation coefficient 448 

between NO2 level and taxi availability changes in Singapore 449 

 450 

3.5. Spatial autocorrelation of correlation coefficients 451 

Spatial autocorrelation were run for each NO2 data point, as well as for each planning area 452 

using all observations within the corresponding planning area. The hot and cold spot analysis 453 

using the three correlation methods (Pearson, Spearman’s Rank and Kendall Rank) revealed 454 

generally similar spatial patterns (Figures 13). Notably, there is a clear north-south division in 455 

the statistically significant hot and cold spots, with the cold spots in the South and East Coast 456 

area, and hot spots in the north. For the non-parametric Spearman’s and Kendall correlations, 457 

the strength of the confidence in the south is slightly weaker, but still significant. This 458 

suggests that in the South and East Coast areas, a decrease in mobility represented by an 459 

increase in taxi availability could more possibly lead to a reduction in NO2 due to the cluster 460 

of stronger correlations compared to other areas.  461 

(a) (b) 

(c) 
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 462 

Figure 13. Hot and cold spots of Pearson (a), Spearman’s Rank (b), Kendall Rank (c) 463 

Correlation coefficient between NO2 level and taxi changes, for each point representing 0.01° 464 

pixel, and URA Planning Areas. 465 

 466 

4. Conclusions 467 

Studies worldwide have observed declines in air pollution due to COVID-19 lockdowns. 468 

Similarly, this study also found that in 2020, both NO2 and PM2.5 declined (by a maximum of 469 

38% and 36%, respectively) from the estimated 2020 baseline in Singapore. However, this 470 

decline from the baseline is smaller than the decline from 2019 to 2020. This implies the 471 

effect of COVID-19 on reducing NO2 and PM2.5 levels in Singapore could be over-estimated, 472 

if air pollution changes are studied without the baseline prediction taking meteorological 473 

factors into consideration. Taxi availability increased and carpark availability decreased by a 474 

maximum of 12.6% and 9.8%, respectively, in 2020 from 2019 during lockdown. In general, 475 

change in NO2 was found more associated with the change in human mobility. Only weak 476 

correlations were found between PM2.5 levels and carpark availability. However, NO2 and 477 

(a) (b) 

(c) 
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taxi availability showed significant correlations and notable spatial patterns of the correlation 478 

coefficients were found, especially in the South and East Coast. As such, measures to reduce 479 

traffic or vehicular pollution in the South and East Coast could be effective in reducing NO2 480 

levels in these regions. Moreover, we  assumed that the change in NO2 and PM2.5 are mainly 481 

due to the change of mobility and the emissions from other sectors are mostly consistent in 482 

this study, so future studies can also investigate changes in household or industrial emissions 483 

in addition to mobility patterns. 484 

  485 



   
 

 28

References  486 

Addas, A. and Maghrabi, A., 2021. The Impact of COVID-19 Lockdowns on Air Quality—A 487 

Global Review. Sustainability, 13(18), p.10212. 488 

Ahmad, S. S., Biiker, P., Emberson, L., & Shabbir, R. (2011). Monitoring nitrogen dioxide 489 

levels in urban areas in Rawalpindi, Pakistan. Water, Air, & Soil Pollution, 220(1), 490 

141-150. 491 

Akoglu, H. (2018). User's guide to correlation coefficients. Turkish journal of emergency 492 

medicine, 18(3), 91-93. 493 

Anderson, B., Dirks, K., (2020) A preliminary analysis of changes in outdoor air quality in 494 

the City of Southampton during the 2020 COVID-19 outbreak to date: a response to 495 

DEFRA’s Call for Evidence1 on Estimation of changes in air pollution emissions, 496 

concentrations and exposure during the COVID-19 outbreak in the UK. Southampton. 497 

Universty of Southampton 11pp. Available at: https://eprints.soton.ac.uk/439813/ 498 

Archer, C., Cervone, G., Golbazi, M., Al Fahel, N. and Hultquist, C., 2020. Changes in air 499 

quality and human mobility in the USA during the COVID-19 pandemic. Bulletin of 500 

Atmospheric Science and Technology, 1(3-4), pp.491-514. 501 

Atalan, A. (2020) ‘Is the lockdown important to prevent the COVID-19 pandemic? Effects on 502 

psychology, environment and economy-perspective’, Annals of Medicine and Surgery, 503 

56, 38–42. 504 

Bao, R. & Zhang, A. (2020) ‘Does lockdown reduce air pollution? Evidence from 44 cities in 505 

northern China’, Science of The Total Environment, 731, 139052. 506 

Berg, R.G. van den (2021) Kendall’s Tau - Simple Introduction. Available at: 507 

https://www.spss-tutorials.com/kendalls-tau/ (Accessed: 23 November 2021). 508 

Chok, N. S. (2010). Pearson's versus Spearman's and Kendall's correlation coefficients for 509 

continuous data (Doctoral dissertation, University of Pittsburgh). 510 

Di Domenico, L., Pullano, G., Sabbatini, C.E., Boëlle, P.-Y. & Colizza, V. (2020) ‘Impact of 511 

lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies’, BMC 512 

Medicine, 18, 240. 513 

Dickens, B.L., Koo, J.R., Lim, J.T., Park, M., Quaye, S., Sun, H., Sun, Y., Pung, R., Wilder-514 

Smith, A., Chai, L.Y.A., Lee, V.J. & Cook, A.R. (2020) ‘Modelling lockdown and 515 

exit strategies for COVID-19 in Singapore’, The Lancet Regional Health - Western 516 

Pacific, 1, 100004. 517 



   
 

 29

Doumbia, E., Brasseur, G., Gaubert, B., Liu, Y., Tilmes, S., Lacey, F., Deroubaix, A. & 518 

Wang, T. (2021) Changes in global air pollutant emissions during the COVID-19 519 

pandemic: a dataset for atmospheric chemistry modeling. 520 

European Environmental Agency, 2019. Emissions of the main air pollutants by sector group 521 

in the EEA-33. Europe: European Environmental Agency. 522 

Faridi, S., Yousefian, F., Janjani, H., Niazi, S., Azimi, F., Naddafi, K. and Hassanvand, M., 523 

2021. The effect of COVID-19 pandemic on human mobility and ambient air quality 524 

around the world: A systematic review. Urban Climate, 38, p.100888. 525 

Fu, F., Purvis-Roberts, K.L. & Williams, B. (2020) ‘Impact of the COVID-19 Pandemic 526 

Lockdown on Air Pollution in 20 Major Cities around the World’, Atmosphere, 527 

Multidisciplinary Digital Publishing Institute, 11, 1189. 528 

Google. (2021). Google Trends: Explore what the world is searching. Available at 529 

https://trends.google.com/trends/?geo=SG (accessed November 2021). 530 

Google Developers. (2021). Earth Engine Data Catalog. Available at 531 

https://developers.google.com/earth-engine/datasets (accessed November 2021). 532 

Hua, J., Zhang, Y., de Foy, B., Shang, J., Schauer, J., Mei, X., Sulaymon, I. and Han, T., 533 

2021. Quantitative estimation of meteorological impacts and the COVID-19 534 

lockdown reductions on NO2 and PM2.5 over the Beijing area using Generalized 535 

Additive Models (GAM). Journal of Environmental Management, 291, p.112676. 536 

Iskandaryan, D., Ramos, F., & Trilles, S. (2020). Air quality prediction in smart cities using 537 

machine learning technologies based on sensor data: A review. Applied Sciences, 538 

10(7), 2401. 539 

Jiang, P., Fu, X., Fan, Y.V., Klemeš, J.J., Chen, P., Ma, S. & Zhang, W. (2021) ‘Spatial-540 

temporal potential exposure risk analytics and urban sustainability impacts related to 541 

COVID-19 mitigation: A perspective from car mobility behaviour’, Journal of 542 

Cleaner Production, 279, 123673. 543 

Jiang, Z., Shi, H., Zhao, B., Gu, Y., Zhu, Y., Miyazaki, K., Lu, X., Zhang, Y., Bowman, 544 

K.W., Sekiya, T. and Liou, K.-N. (2021). Modeling the impact of COVID-19 on air 545 

quality in southern California: implications for future control policies. Atmospheric 546 

Chemistry and Physics, 21(11), pp.8693–8708. 547 

Kanniah, K.D., Kamarul Zaman, N.A.F., Kaskaoutis, D.G. & Latif, M.T. (2020) ‘COVID-548 

19’s impact on the atmospheric environment in the Southeast Asia region’, Science of 549 

The Total Environment, 736, 139658. 550 



   
 

 30

Kerimray, A., Baimatova, N., Ibragimova, O.P., Bukenov, B., Kenessov, B., Plotitsyn, P. & 551 

Karaca, F. (2020) ‘Assessing air quality changes in large cities during COVID-19 552 

lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan’, 553 

Science of The Total Environment, 730, 139179. 554 

Lai, S., Ruktanonchai, N., Zhou, L., Prosper, O., Luo, W., Floyd, J., Wesolowski, A., 555 

Santillana, M., Zhang, C., Du, X., Yu, H. and Tatem, A., 2020. Effect of non-556 

pharmaceutical interventions to contain COVID-19 in China. Nature, 585(7825), 557 

pp.410-413. 558 

Li, J. & Tartarini, F. (2020) ‘Changes in Air Quality during the COVID-19 Lockdown in 559 

Singapore and Associations with Human Mobility Trends’, Aerosol and Air Quality 560 

Research, Taiwan Association for Aerosol Research, 20, 1748–1758. 561 

Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Ziyi, Li, H., Shi, L., Li, R., Azari, 562 

M., Wang, Y., Zhang, X., Liu, Zhiqiang, Zhu, Y., Zhang, K., Xue, S., Ooi, M.C.G., 563 

Zhang, D. & Chan, A. (2020) ‘Air quality changes during the COVID-19 lockdown 564 

over the Yangtze River Delta Region: An insight into the impact of human activity 565 

pattern changes on air pollution variation’, Science of The Total Environment, 732, 566 

139282. 567 

Liu, Q., Malarvizhi, A.S., Liu, W., Xu, H., Harris, J.T., Yang, J., Duffy, D.Q., Little, M.M., 568 

Sha, D., Lan, H. and Yang, C. (2021). Spatiotemporal changes in global nitrogen 569 

dioxide emission due to COVID-19 mitigation policies. Science of the Total 570 

Environment, 776, 146027. 571 

LTA Singapore. (2021). LTA DataMall. Available at 572 

https://datamall.lta.gov.sg/content/datamall/en.html (accessed November 2021). 573 

Megaritis, A. G., Fountoukis, C., Charalampidis, P. E., Denier Van Der Gon, H. A. C., Pilinis, 574 

C., & Pandis, S. N. (2014). Linking climate and air quality over Europe: effects of 575 

meteorology on PM 2.5 concentrations. Atmospheric Chemistry and Physics, 14(18), 576 

10283-10298. 577 

Ministry of Health (2020a) ‘CIRCUIT BREAKER TO MINIMISE FURTHER SPREAD OF 578 

COVID-19’. Available at: https://www.moh.gov.sg/news-highlights/details/circuit-579 

breaker-to-minimise-further-spread-of-covid-19 (accessed November 2021). 580 

Ministry of Health (2020b) ‘END OF CIRCUIT BREAKER, PHASED APPROACH TO 581 

RESUMING ACTIVITIES SAFELY’. Available at: https://www.moh.gov.sg/news-582 



   
 

 31

highlights/details/end-of-circuit-breaker-phased-approach-to-resuming-activities-583 

safely (accessed November 2021). 584 

Ministry of Transport, 2021. MOT Singapore – Gain new perspectives on land, sea & air 585 

transport. [online] Mot.gov.sg. Available at: <https://www.mot.gov.sg/Transport-586 

Matters/motoring/Detail/how-erp-works-as-a-speed-booster> [Accessed 12 November 587 

2021]. 588 

National Environment Agency. (2021a). ‘Air Quality’. Available at: 589 

https://www.nea.gov.sg/our-services/pollution-control/air-pollution/air-quality 590 

(accessed November 2021). 591 

National Environment Agency. (2021b). ‘Regional hourly PM2.5 value measured in μg/m3’, 592 

Data.gov.sg. Available at: https://data.gov.sg/dataset/pm2-5 (accessed November 593 

2021). 594 

National Environment Agency. (2021c). ‘Realtime Weather Readings across Singapore’, 595 

Data.gov.sg. Available at: https://data.gov.sg/dataset/realtime-weather-readings 596 

(accessed November 2021). 597 

National Environment Agency. (2021d). ‘Observing The Weather’ Available at: 598 

http://www.weather.gov.sg/learn_observations/ (accessed November 2021). 599 

Otmani, A., Benchrif, A., Tahri, M., Bounakhla, M., Chakir, E.M., El Bouch, M. and Krombi, 600 

M. (2020). Impact of COVID-19 lockdown on PM10, SO2 and NO2 concentrations in 601 

Salé City (Morocco). Sci. Total Environ. 735: 139541. 602 

https://doi.org/10.1016/j.scitotenv.2020.139541 603 

Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air 604 

quality modelling: A systematic review. Applied Sciences, 8(12), 2570. 605 

Seinfeld, J.H. and Pandis, S.N. (2016). Atmospheric chemistry and physics : from air 606 

pollution to climate change. Hoboken, Nj: Wiley. 607 

Singapore Statista. (2021). Singapore: population living in public housing 2018. Statista. 608 

https://www.statista.com/statistics/966747/population-living-in-public-housing-609 

singapore/ 610 

Sun, X., Wandelt, S., Zheng, C. & Zhang, A. (2021) ‘COVID-19 pandemic and air 611 

transportation: Successfully navigating the paper hurricane’, Journal of Air Transport 612 

Management, 94, 102062. 613 

Tan, C. (2020) ‘Roads become more free-flowing and safer but speeding cases surge’, The 614 

Straits Times, 13 May. 615 



   
 

 32

Tarsitano, A., 2009. Comparing the effectiveness of rank correlation statistics. P: Dip. di 616 

Economia e Statistica, University of della Calabria. 617 

Taufik, k. (2020). Commentary: Little smoke this haze season – but fires rage on in Indonesia. 618 

Retrieved 3 November 2021, from 619 

https://www.channelnewsasia.com/commentary/indonesia-forest-fire-peat-haze-palm-620 

oil-jokowi-omnibus-bill-681301 621 

Velasco, E. (2021) ‘Impact of Singapore’s COVID-19 confinement on atmospheric CO2 622 

fluxes at neighborhood scale’, Urban Climate, 37, 100822. 623 

Wackernagel, H. (2003). Ordinary kriging. In Multivariate geostatistics (pp. 79-88). Springer, 624 

Berlin, Heidelberg. 625 

Wang, J., & Song, G. (2018). A deep spatial-temporal ensemble model for air quality 626 

prediction. Neurocomputing, 314, 198-206. 627 

World Health Organization (2021) ‘Coronavirus Disease (COVID-19) - events as they 628 

happen’. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-629 

2019/events-as-they-happen (accessed October 2021). 630 

Xu, G., Jiao, L., Zhao, S., Yuan, M., Li, X., Han, Y., ... & Dong, T. (2016). Examining the 631 

impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. 632 

Atmosphere, 7(5), 62. 633 

Yin, L., Zhang, H., Li, Y., Liu, K., Chen, T., Luo, W., Lai, S., Li, Y., Tang, X., Ning, L., 634 

Feng, S., Wei, Y., Zhao, Z., Wen, Y., Mao, L. and Mei, S., 2021. A data driven agent-635 

based model that recommends non-pharmaceutical interventions to suppress 636 

Coronavirus disease 2019 resurgence in megacities. Journal of The Royal Society 637 

Interface, 18(181), p.20210112. 638 

Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K. and 639 

Hassanvand, M.S. (2020). Temporal variations of ambient air pollutants and 640 

meteorological influences on their concentrations in Tehran during 2012–2017. 641 

Scientific Reports, 10(1), p.292.  642 

Zhan, Y., Luo, Y., Deng, X., Grieneisen, M. L., Zhang, M., & Di, B. (2018). Spatiotemporal 643 

prediction of daily ambient ozone levels across China using random forest for human 644 

exposure assessment. Environmental Pollution, 233, 464-473. 645 

Zhu, Yan, Ke Mao and Xuyao Zhang “Air Pollution and Mobility in Singapore during 646 

COVID-19 Pandemic”, Technical Working Paper #04-2020, Asia Competitiveness 647 

Institute Technical Working Paper Series (September 2020).  648 

 649 


