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Abstract

The reproductive number is an important metric that has been widely used to quantify
the infectiousness of communicable diseases. The time-varying instantaneous
reproductive number is useful for monitoring the real time dynamics of a disease to
inform policy making for disease control. Local estimation of this metric, for instance at
a county or city level, allows for more targeted interventions to curb transmission.
However, simultaneous estimation of local reproductive numbers must account for
potential sources of heterogeneity in these time-varying quantities – a key element of
which is human mobility. We develop a statistical method that incorporates human
mobility between multiple regions for estimating region-specific instantaneous
reproductive numbers. The model also can account for exogenous cases imported from
outside of the regions of interest. We propose two approaches to estimate the
reproductive numbers, with mobility data used to adjust incidence in the first approach
and to inform a formal priori distribution in the second (Bayesian) approach. Through
a simulation study, we show that region-specific reproductive numbers can be well
estimated if human mobility is reasonably well approximated by available data. We use
this approach to estimate the instantaneous reproductive numbers of COVID-19 for 14
counties in Massachusetts using CDC case report data and the human mobility data
collected by SafeGraph. We found that, accounting for mobility, our method produces
estimates of reproductive numbers that are distinct across counties. In contrast,
independent estimation of county-level reproductive numbers tends to produce similar
values, as trends in county case-counts for the state are fairly concordant. These
approaches can also be used to estimate any heterogeneity in transmission, for instance,
age-dependent instantaneous reproductive number estimates. As people are more
mobile and interact frequently in ways that permit transmission, it is important to
account for this in the estimation of the reproductive number.

Author summary

To control the spreading of an infectious disease, it is very important to understand the
real-time infectiousness of the pathogen that causes the disease. An existing metric
called instantaneous reproductive number is often used to quantify the average number
of secondary cases generated by individuals who are infectious at a certain time point,
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assuming no changes to current conditions. In practice, we might be interested in using
the metric to describe the infectiousness in multiple regions. However, this is
challenging when there are visitors traveling between these regions, since this could lead
to a misclassification of where an individual is actually infected and create biased
estimates for the instantaneous reproductive numbers. We developed a method that
takes account of human mobility to estimate the instantaneous reproductive numbers
for multiple regions simultaneously, which could reveal the heterogeneity of the metric.
This method aims to provide helpful information on region-specific infectiousness for
disease control measures that focus on the region with higher pathogen infectiousness.
This approach is also applicable for estimating the reproductive number in the presence
of other sources of heterogeneity, including by age.

Introduction 1

In the aftermath of the pandemic caused by the SARS-CoV-1 virus, the idea of using 2

surveillance data to estimate reproductive numbers was introduced and popularized by 3

the seminal paper by Wallinga and Teunis [1]. Subsequent methods have been 4

developed that are better suited to real time estimation, particularly the approach to 5

estimate the instantaneous reproductive number introduced by Fraser [2] and 6

implemented in the popular EpiEstim R package [3, 4]. These methods have promise to 7

be useful in surveillance and monitoring an epidemic, but as the pandemic caused by 8

SARS-CoV-2 has demonstrated, there are still needed improvements to these 9

approaches. Principal issues include accounting for reporting delays in the data, 10

underreporting of cases, and heterogeneity in transmission by geography and by 11

demographic factors, such as age. For these methods to be truly useful in the ongoing 12

COVID-19 pandemic and for future events, these issues must be addressed. Work is 13

being done on the first two issues. For instance, Li et al. [5], Gunther et al. [6] and 14

Martinez et al. [7] propose solutions to the timeliness problem. Pitzer et al. [8] 15

demonstrate the impact of reporting issues and White et al. [9] have shown how 16

estimates of R(t) can be corrected with information on the reporting fraction of diseases. 17

In this paper, we propose a framework for addressing heterogeneity in transmission, 18

specifically due to human mobility, though our methods can be more generally applied. 19

Studies have shown that there is transmission heterogeneity in COVID-19, as well as 20

other infectious diseases, which lead to a disproportional impact of the disease on some 21

groups. Multiple studies have found strong evidence of strong heterogeneity wherein a 22

small number of individuals are responsible for the vast majority of cases [10–12]. 23

Additionally, in this COVID-19 pandemic, Sy et al. [13] have shown how mobility, such 24

as subway usage, in NYC lead to disproportionate case burden among those who are not 25

maintaining physical distance. This implies it would be more efficient if we could 26

account for the heterogeneity and focus control efforts on the populations with highest 27

transmission probabilities [14]. 28

Many factors could contribute to the heterogeneity of virus transmission, including 29

important systematic factors such as lower social economic status (SES) that 30

disadvantage certain groups and could lead to higher probability of disease transmission. 31

These factors often cluster geographically. The impact of these factors on the virus 32

transmission could be reflected on the reproductive numbers. Ideally we will be able to 33

discover the heterogeneity by examining the differences of the reproductive numbers 34

between different regions. However, due to human mobility, the heterogeneity of the 35

reproductive numbers among different regions could be masked. This is because human 36

mobility could distribute the infectees by certain infectors to different regions, leading 37

to misclassification of the incidence of one region to another. 38

We propose a framework for accounting for heterogeneity in disease transmission 39
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when estimating the time-varying instantaneous reproductive number for each region. 40

This could help monitor changes in transmission to guide public health measures, for 41

example, implementing more stringent disease control measures for the region with 42

higher virus transmission. Our framework requires data to inform the source or patterns 43

of heterogeneity. We focus on human mobility data to estimate the reproductive 44

number for multiple regions or population groups. However, we note that the framework 45

is suitable for for understanding the effects of other important factors on the 46

heterogeneity of the reproductive number, such as age. 47

We present an analytical framework with two approaches to estimate the dynamics 48

of transmission heterogeneity. If we believe that the heterogeneity of the reproductive 49

numbers can be recovered by accounting for population mixing due to human mobility, 50

and we have confidence that the human mobility data represent the mixing of incidence, 51

we suggest to use an efficient and straight forward approach that adjusts the incidence 52

prior to estimation. If instead we want to adjust for importation of cases and more 53

accurately quantify the uncertainty associated with the use of human mobility data 54

with standard errors, we propose a more flexible and computationally intensive 55

Bayesian approach that is more appropriate. 56

Materials and methods 57

Overview 58

We propose two approaches to estimate instantaneous reproductive numbers that 59

incorporate human mobility data to account for heterogeneity. Both approaches are 60

based on the framework of a system of renewal equations that bring human mobility 61

into consideration. The difference between these two approaches is how the estimation 62

handles potential uncertainty in the human mobility data. These methods can be 63

applied to other types of heterogeneity, such as differential age-mixing where one might 64

use information on contact patterns between age groups. Our first approach simplifies 65

the problem by assuming that human mobility data accurately represents the mixing 66

patterns and corresponding incidence misclassification without error. In this setting, we 67

propose an approach that extends the framework developed by Fraser et al. [2] to 68

estimate the heterogeneous instantaneous reproductive number by adjusting the 69

observed incidences for multiple regions using the human mobility data. In reality, there 70

is likely some randomness in human mobility and we would typically wish to quantify 71

the uncertainty due to other factors that might drive the heterogeneity of instantaneous 72

reproductive numbers. For this setting, we use a system of renewal equations that 73

incorporates human mobility data and estimate instantaneous reproductive numbers 74

under a hierarchical Bayesian framework. Both approaches are evaluated by simulations, 75

and implemented to estimate instantaneous reproductive numbers for all counties in 76

Massachusetts, USA, during the COVID-19 pandemic together with human mobility 77

data from SafeGraph. 78

Data 79

The COVID-19 incidence data is provided by CDC case report [15] and we use incidence 80

from July 2020 to March 2021 because testing and case reporting became more frequent 81

and regular starting in July 2020. We aggregate confirmed cases in Massachusetts by 82

date and county. Human mobility data is obtained from the multiscale dynamic human 83

mobility flow dataset constructed and maintained by Kang et al. [16], who computed, 84

aggregated and inferred the daily and weekly dynamic origin-to-destination (O-D) flow 85

at three geographic scales (census tract, county and state) analysing anonymous mobile 86
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phone users’ visits to various places provided by SafeGraph [17]. 87

Notation 88

Suppose that we want to estimate an instantaneous reproductive number, denoted as 89

R(t), for J stratum, where the stratum can be geographical regions, age groups, 90

communities, etc. Let Nj(t), t = 1, ..., T be the number of new cases reported at time t 91

for region j, and mj(t) = E[Nj(t)], where t = 1 is the first observation time and T is 92

the last time with available data. The distribution of serial intervals is denoted as 93

ω(τ |θ), where τ is the interval between the times of disease onset in an infector-infectee 94

pair, and θ is the parameters of the distribution. There are several assumptions for both 95

approaches that we propose: 96

1. Serial interval and reproductive number are statistically independent; 97

2. Reproductive number follows a Poisson distribution; 98

3. All infectors appear before those they infected; 99

4. Individuals mix homogeneously; 100

5. Closed population; 101

6. Complete case reporting; 102

7. The serial interval is the same as the reporting interval (i.e. the time between case 103

report dates in an infector-infectee pair). 104

Instantaneous reproductive number 105

The instantaneous reproductive number, originally developed by Fraser et al. [2], 106

estimates the average number of secondary cases generated by individuals who are 107

infectious at time t assuming no changes to current conditions. When using the 108

instantaneous reproductive number, the expected incidence at time t, which is denoted 109

as m(t), can be expressed as the following renewal equation: 110

m(t) =
∑
τ<t

R(t)w(τ)m(t− τ). (1)

In practice, the estimator for R(t) can be computed with reported incidence N(t) as: 111

R̂(t) =
N(t)∑

τ<t w(τ)N(t− τ)
. (2)

Cori et al. [3] use a Bayesian approach to estimate the R(t) with credible intervals 112

and propose smoothing the estimates by using a longer time window, assuming the R(t) 113

stay the same within that window. Thompson eto al. [4] extended the method to 114

perform estimation in the presence of imported cases. Based on the renewal equation 1, 115

and the estimation method developed by Cori et al. [3] and Thompson et al. [4] and 116

with the assumption that the proportion of infected people are similar to mobility 117

patterns of all individuals, we can formulate the process into a system of renewal 118

equations that incorporates the human mobility data. 119

Denote P as the J-by-J human mobility matrix that reclassifies incidences to the 120

presumed location of the transmission event. Let pj′j be the entry of P matrix in the 121

j′th row and jth column, and represents the proportion of population in j′ that travels 122
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to j. Then to describe incidences in multiple regions, we can extend the equation (1) to 123

a system of equations: 124

mj(t) =
J∑

j′=1

[
pj′j

∑
τ<t

Rj′(t)mj′(t− τ)ω(τ)

]
, j ∈ {1, 2, ..., J}, (3)

where
∑j

j=1 pj′j = 1. If we write it in a matrix form, we have: 125

m(t) = P⊤R(t)IJ(m(t− 1), ...,m(1))(ω(1), ..., ω(t− 1))⊤, (4)

where m(t) = (m1(t),m2(t), ...,mJ(t))
⊤ is a vector of incidences for the J regions at 126

time t, thus (m(t− 1), ...,m(1)) is a J-by-(t− 1) matrix for the incidences of J regions 127

from time t− 1 to 1. R(t) = (R1(t), R2(t), ..., RJ(t))
⊤ is a vector of instantaneous 128

reproductive numbers for the J regions at time t. 129

Based on the above system of renewal equations, we propose two approaches for the 130

estimation of heterogeneous R(t) incorporating mobility data as follows. 131

Approach I – incidence adjustment approach 132

In this approach, we use the matrix P from the human mobility data deterministically. 133

According to equation (4), assume that P is invertible, we have 134

P−⊤m(t) = R(t)IJ(m(t− 1), ...,m(1))(ω(1), ..., ω(t− 1))⊤, (5)

Note that 135

m(t) = (m1(t),m2(t), ...,mJ(t))
⊤ = (E[N1(t)], E[N2(t)], ..., E[NJ(t)])

⊤ = E[N(t)]. To 136

estimate R(t) with the reported incidence N(t), let Nlocal(t) = P−⊤N(t), and assume 137

Njlocal(t) follows a Poisson distribution: 138

P (Njlocal(t)|Nj(t− 1), ..., Nj(1), ω,Rj(t)) =
(RjΛj(t))

Njlocal
(t) exp(−Rj(t)Λj(t))

Njlocal(t)!
(6)

where Λj(t) =
∑

τ<t Nj(t− τ)ω(τ). 139

Assume that Rj(t) follows a gamma prior distribution Gamma(a, b), and within a
k-days window (from day t− k to t), the incidences all depend on the same Rj(t). we
can write the posterior of Rj(t) as:

P (Rj(t)|Njlocal(t), ..., Njlocal(t− k + 1), Nj(1), ..., Nj(t− k)) (7a)

∝ P (Njlocal(t)..., Njlocal(t− k + 1)|R(t), Nj(1), ..., Nj(t− k))P (Rj(t)) (7b)

=

(
t∏

i=t−k+1

(Rj(t)Λj(i))
Njlocal

(i)

Njlocal(i)!
exp (Rj(t)Λj(i))

)
Rj(t)

a−1

Γ(a)ba
exp

(
−Rj(t)

b

)
(7c)

∝ Rj(t)
a+

∑
i Njlocal

(i)−1 exp

(
−Rj(t)

(∑
i

Λj(i) +
1

b

))
t∏

i=t−k+1

Λj(i)
Njlocal

(i)

Njlocal(i)!
(7d)

Thus, the posterior of Rj(t) also follows a gamma distribution 140

Gamma(a+
∑

i Njlocal(i)− 1, (
∑

i Λj(i) +
1
b ))

−1. The estimation can be performed by 141

implementing the existing EpiEstim R package with the incidence adjustment data. 142

Approach II – Bayesian approach 143

Based on the renewal equation with instantaneous reproductive number by previous 144

studies [2] and [18], we formulate the renewal equations for J regions as: 145

mj(t) = µj(t) +
∑
τ<t

J∑
j′=1

Rj′j(t)mj′(t− τ)ω(τ), j ∈ {1, 2, ..., J}, (8)
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where µj(t) is the rate of exogenous infections (infections out of any of the regions 146

j ∈ {1, ..., J}) occurs in region j, and ω(τ) is the probability distribution of serial 147

interval. We model Rj′j(t) = Rj′(t)pj′j , where Rj′(t) is the region specific reproductive 148

number for region j′ at time t, and pj′j represents the probability of individuals in 149

region j being infected by individuals in region j′, assuming that 150

{pj′j : j′, j ∈ 1, 2, ..., J} are known. Then we have: 151

mj(t) = µj(t) +
J∑

j′=1

[
pj′j

∑
τ<t

Rj′(t)mj′(t− τ)ω(τ)

]
,where

j∑
j=1

pj′j = 1. (9)

pj′j here attempts to capture the information of transmission probability between the 152

regions, and we denote a matrix P with entries pj′j as a transition matrix that models 153

the infected subjects flowing across the regions. For example, while estimating R(t) for 154

multiple regions, we can inform the P matrix with mobility data between the regions 155

and/or geographical distance between the regions. Within a Bayesian hierarchical 156

modeling framework, Dirichlet priors for P can incorporate prior knowledge for the 157

estimation of R(t). 158

We model Rj′(t) in (9) as: 159

log(Rj′(t)) = βj′(t) + ϵj′ , ϵj′ ∼ N(0, σj′), (10)

assuming ϵj′ has constant variance over time. 160

Assume that the distribution of serial interval ω(τ) and pj′j is known; 161

Nj(t) ∼ Poisson(mj(t)) and {Nj(t)} are independent conditional on mj(t), so we have 162

the factorization: P ({Nj(t)}|{mj(t)}) =
∏J

j=1 P (Nj(t)|mj(t)). Then we can sample the 163

posterior distribution of parameters with Bayesian hierarchical modeling: 164

log(Rj(t)) ∼ N(βj(t), σj), (11a)

mj(t) = µj(t) +

J∑
j′=1

[
Rj′(t)pj′j

∑
τ<t

mj′(t− τ)w(τ)

]
, (11b)

Nj(t) ∼ Poisson(mj(t)), j = 1, ..., J, (11c)

with certain prior specifications for {µj(t)}, {βj(t)}, {σj}. 165

We also allow a smoothing window for the estimation of Rj(t). If the length of the 166

smoothing window is k, then for time t0 we modify to be: 167

Nj(t) ∼ Poisson(mj(t0)), j = 1, ..., J, t = t, t+ 1, ..., t+ k. (12)

Simulation 168

Simulation Settings 169

Scenario 1: We consider three regions (j ∈ {a, b, c}), where there are no exogenous 170

infections (except for the initial cases on day 0), so that µj(t) = 0. Assuming pj′j and 171

ω(τ) are known, we specify a 3-by-3 matrix P with entries pj′j , where j′ is row index 172

and j is column index to approximate data we observe from [17]: 173

P =

0.8 0.15 0.05
0.2 0.6 0.2
0.1 0.3 0.6

 ,

and we generate discrete distribution ω(τ) for τ from the CDF of 174

f(τ) = Gamma(2, 0.5): 175
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ω(τ) =

{
F (τ)− F (τ − 1), 0 < τ ≤ 14

0, τ > 14

For {Rj(t)}, we specify nonlinear functions for each region (also shown in Figure ??): 176

Ra(t) = (20cos(t/500) + ((0.8t− 50))2 − (0.115t)3)/1000 + 0.8

Rb(t) = (30sin(t/150) + cos(t/20)− (t/50)2)/8− 0.006t

Rc(t) = (30cos(t/150) + 2sin(t/20) + 2(t/50)2)/20− 0.005t

To generate incidence data, we let the initializing cases to be 10 in each region, and 177

let the maximum time of observation to be T = 214. According to Equation 9, with 178

{Rj(t)}, w(τ) and matrix P , we can compute mj(t), then generate 100 replicates with 179

Nj(t) ∼ Poisson(mj(t)). Fig 1 shows the 100 Monte Carlo replicates of simulated data. 180

Fig 1. Specified R(t) functions and incidence for three regions from 100
replicates for simulation.

We performed the incidence adjustment approach (Approach I) to estimate the 181

instantaneous reproductive numbers on the simulated data described above. For the 182

Bayesian approach (Approach II), we evaluated the performance of the model using 183

different distribution assumption for the incidence Nj(t), and also using different 184

lengths of smoothing window. Then we explored whether using a prior for the transition 185

P matrix to allow for more flexibility could yield proper estimate for Rj(t). The 186

performance of the proposed model is compared with the model without considering the 187

heterogeneous of Rj(t), that is using an identity P matrix. 188

For all models, we use N(0, 0.5) as the prior distribution for β, and N(0, 1) for σ, 189

other model parameter settings are described below: 190

Model 1: constant P matrix, smoothing window is 1, assume Poisson distribution 191

for Nj(t); 192

Model 2: constant P matrix, smoothing window is 8, assume Poisson distribution 193

for Nj(t); 194

Model 3: constant P matrix, smoothing window is 8, assume Negative Binomial 195

distribution with ϕ ∼ N(0, 5) for Nj(t); 196

Model 4: random P matrix that each column follows a Dirichlet distribution 197

centering at the true P matrix with large concentration parameter, smoothing 198

window is 8, assume Poisson distribution for Nj(t); 199

Model 5: constant identity P matrix, smoothing window is 8, assume Poisson 200

distribution for Nj(t) (this model is equivalent to Fraser’s method, which do not 201

consider human mobility); 202

The estimates from the Approach I (with and without mobility information) and 203

model 4 and 5 of Approach II are shown in the main result section. Note that model 4 204

of Approach II is with mobility information, and model 5 of Approach II is without 205

mobility information. Model 1, 2, 3 of Approach II are shown in Fig S1 in S1 Appendix. 206

Scenario 2: In practice, we might have a low count of cases for some of the regions, 207

so we also evaluated the proposed approaches under the scenario where we have a lower 208

count during certain period of time. In the low count scenario, we specify the R(t) for 209

the three regions to be three piece-wise function, and it is shown in Fig 1. 210
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Ra(t) = 1.2I(t ≤ 80) + 0.5I(80 < t ≤ 120) + 1.6I(t > 120)

Rb(t) = 1.4I(t ≤ 80) + 0.3I(80 < t ≤ 120) + 1.4I(t > 120)

Rc(t) = I(t ≤ 80) + 0.2I(80 < t ≤ 120) + 1.5I(t > 120)

We initiate with 50 incidence for the tree regions, and simulated incidence from 100 211

replicates are shown in Fig 1. When performing estimation, we focus on the range from 212

day 90 to day 130, because this region cover the period where the incidence decreases to 213

zero or low counts that are close to zero. The result for estimated R(t) is shown in Fig 214

S2 in S1 Appendix. 215

Scenario 3: We also evaluate the performance of the proposed approaches in a 216

scenario where the population are traveling out of two of the regions with higher R(t) to 217

the third region with lower R(t). We expect this scenario will show that if we do not 218

consider the human mobility, we will over estimate the R(t) for the region where 219

accepting population travel from other regions with higher R(t). In this scenario, we 220

specify the P matrix to be: 221

P =

0.9 0 0
0 0.9 0
0.1 0.1 1

 .

we specify the R(t) for the three regions to be (shown in Fig 1): 222

Ra(t) = 1.3 + 0.1sin(t/20)

Rb(t) = 0.5 + 0.1sin(t/20)

Rc(t) = 0.2 + 0.1sin(t/20)

In this scenario, we initiate the 100 incidence for each of the three regions. We use 223

Approach I to perform the estimation, since when the incidence counts are high, both 224

approaches generate similar result. The result of estimated R(t) is shown in Fig S3 in 225

S1 Appendix. 226

Real Data Application 227

We implement the two approaches described above to the COVID-19 incidence data 228

from the CDC. Since case reporting was more regular starting around July 2020, we 229

focus on the case report data from July 2020 to March 2021. We aim to estimate the 230

heterogeneous instantaneous reproductive numbers for all counties (14 in total) in 231

Massachusetts, USA. 232

Human mobility patterns across the counties are examined, followed by the 233

estimation of instantaneous reproductive numbers as well as the expected incidence for 234

each county. While performing the estimation, we assume the serial interval follows a 235

gamma distribution Gamma(3.45, 0.66), which corresponds to a mean of 5.2 days and a 236

SD of 2.8 days [19]. 237

Results 238

Our approaches are based on the renewal equation framework proposed by Fraser et al. 239

[2] for estimating the instantaneous reproductive number. We extend the framework to 240

incorporate human mobility data in a system of renewal equations to estimate the 241

instantaneous reproductive numbers for multiple regions. We propose two approaches to 242

carry out the estimation. For Approach I, we adjust the incidence in multiple regions 243

according to the human mobility data and then estimate the instantaneous reproductive 244
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number separately in each region using the EpiEstim method. We call this the incidence 245

adjustment approach. For Approach II, we perform estimation using a system of renewal 246

equations in a hierarchical Bayesian framework. We call this the Bayesian approach. 247

In this section, we show results for both the simple incidence adjustment approach 248

and the more complex system of renewal equations using simulation and data from 249

Massachusetts during the COVID-19 pandemic. 250

Simulation Results 251

Our simulation study considers three regions with substantially different transmission 252

profiles over time, but reasonably similar patterns in incidence. The incidence data are 253

simulated with pre-specified reproductive numbers over time as well as a transition 254

matrix, which can be informed by mobility data in practice, that describes how the 255

population in each region distribute to other regions. The details of the simulations are 256

described in Section . Approach I is straightforward as we use the human mobility data 257

deterministically to adjust the incidence. For Approach II, we evaluated the model 258

using different assumptions on the distribution of incidence and randomness for the 259

mobility data. In this section, we show the results from the two proposed approaches 260

along with the naive approach that does not use mobility data in Fig 2. The naive 261

approach estimates the reproductive numbers separately for each region, which is 262

equivalent to Approach I and Approach II without using the mobility data. Other 263

simulation results are in the appendix. 264

Fig 2. Estimated Incidence and R(t) by region. Solid lines are posterior means,
along with the 95% credible bands (shaded).

Fig 2 shows the main result of the simulation. For the incidence adjustment 265

approach, a fixed transition matrix P (for mobility between regions) is used for the 266

estimation, and for the Bayesian approach, Dirichlet priors with concentration 267

parameter 104 are placed on the row vectors in the transition matrix P . Both of the 268

methods provide estimated incidence for the 3 regions that are close to the incidence 269

mean for 100 Monte Carlo replicates. The estimated reproductive numbers are also 270

close to the true reproductive numbers. The credible bands of the estimated 271

reproductive numbers are quite narrow for the incidence adjustment approach, while it 272

is wider in the Bayesian approach. 273

When we do not use mobility data (i.e. P is an identity matrix), the incidence 274

estimates obtained by Approach I deviate from the true incidence mean, especially 275

earlier in the outbreak, compared to that obtained by Approach II. Although the 276

estimated incidences obtained by Approach II are close to the mean of simulated data, 277

the R(t) estimates obtained by both approaches when not accounting for mobility, are 278

very similar for each of the three regions and quite different from the true R(t) curves. 279

The results show that the estimates for R(t) are close to the true R(t) if we use the 280

mobility information in the model. But if we just stratify the data by region and 281

estimate R(t) ignoring mobility patterns between regions, we are not able to capture the 282

transmission differences. 283

COVID-19 Results 284

Overview of incidence in Massachusetts 285

Fig 3 is an overview of the incidence of COVID-19 from July 1st, 2020 to Feburary 28th, 286

2021 for the 14 counties in the State of Massachusetts, USA. Essex, Middlesex and 287

Suffolk county, the most populous counties, have relatively high incidence. The overall 288
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pattern of incidence across counties is similar, exhibiting an obvious increase after 289

November 2020 during the second wave. 290

Fig 3. Reported Incidence for all MA counties.

Population flow across counties in Massachusetts based on human mobility 291

data 292

Human mobility data is obtained from the multiscale dynamic human mobility flow 293

dataset constructed and maintained by Kang et al. [16]. They computed, aggregated 294

and inferred the daily and weekly dynamic origin-to-destination (O-D) flow at three 295

geographic scales (census tract, county and state) analysing anonymous mobile phone 296

users’ visits to various places provided by SafeGraph [17]. We use county level data in 297

Massachusetts for the modeling in this real data analysis. The human mobility data 298

consists of the estimated number of visitors traveling from one county to another in each 299

day. We use Lij(t) to denote the number of visitors from county j to county i in day t. 300

To visualize how the counties are clustered according to visitors traveling between them, 301

we compute the average daily population flow 1
T

∑T
t=1 Lij(t) for each county pair from 302

July 1st, 2020 to February 28th, and stratify the flow by weekdays and weekends, 303

assuming there will be different patterns for working days and non-working days. 304

There are notable differences between weekday and weekend patterns of mobility 305

that can be seen in the heatmaps and dendrograms (Fig 4) generated with 306

complete-linkage hierarchical clustering. During weekdays, most travel is between 307

regions that are geographically proximate, for example Barnstable, Bristol and 308

Plymouth. On weekends, counties further apart are in the same cluster on the heat 309

map, for example, Norfolk is in the cluster with Barnstable, Bristol and Plymouth. We 310

also show the population flow on the geographical map in Fig 5. The clustering is more 311

clear for regions that are geographically proximate for the daily average that is not 312

stratified by weekdays and weekends. From the figure showing the difference between 313

the weekdays’ daily average and weekends’ daily average, we observe that there is more 314

of the population traveling between Essex, Worcester, Norfolk, Sulfolk and Middlesex on 315

weekdays compared to weekends, and less of the population traveling between 316

Middlesex, Barnstale and Plymouth as well as between Norfolk, Barnstale and 317

Plymouth. These patterns support the clustering in the heat maps. 318

Fig 4. Heat maps for average population flow (log scaled) across regions
during weekdays and weekends. Darker colors indicate regions with more flow
between them.

Fig 5. Human mobility network among counties of Massachusetts. The figure
on the left shows the average daily population flow, and the figure on the right shows
the difference of average population flow between weekdays and weekends, a positive
value means the population flow is larger for weekdays than weekends, and a negative
value means the population flow is smaller for weekdays than weekends

To quantify the daily change of population, for day t, we can aggregate the number 319

of visitors from one county that travel to other counties to be the size of population flow 320

out in day t, and denote it as Lout(t). Also, we can aggregate the number of visitors 321

from other counties that travel to that county to be the size of population flow in on 322

day t, and denote this as Lin(t). And we use L(t) to denote the population size on day t. 323

Note that the data is for the human mobility on that day, instead of a permanent move. 324
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Population change can inform how the population in a region is mixing with other 325

regions, so we examine the percentage of population change for all counties as shown in 326

Fig 6. Population change refers to the change in population size in day t compared to 327

the population size in day t− 1 as a ratio, that is Lin(t)−Lout(t)
L(t−1) , where Lin denotes the 328

size of population flow in and Lout the size of population flow out. The population 329

change plot shows that there is a relatively high percentage of population change for 330

Barnstable, Dukes and Nantucket before October, 2020, due to the population inflow. 331

Estimated expected incidence and heterogeneous instantaneous reproductive 332

numbers 333

Fig 6 shows the estimated expected incidence and R(t) for all counties with both of our 334

proposed methods. Results from Approach I, the incidence adjustment approach, are 335

shown in red and those from Approach II, the Bayesian approach, are shown in green, 336

and the results from original Fraser’s approach (obtained by Approach II without 337

incorporating mobility data) are shown in blue. The estimated R(t) are relatively lower 338

for Barnstable, Dukes, Franklin, Hampshire and Nantucket. Three of these counties 339

(Barnstable, Dukes and Nantucket) have a larger percentage of population flow in from 340

July to October. From the result, it is possible that the increase of incidence in these 341

counties is due to inflow from counties with higher R(t). The results from Approach II 342

are similar to those from Approach I when R(t) is high, while in counties with lower 343

reproductive numbers the results from Approach II are even smaller than Approach I. 344

Fig 6. Population change, estimated Incidence and R(t) for all MA counties.
Solid lines are the posterior means for incidence and R(t), along with the 95% credible
band. The bar plots for the observed incidence are also shown. Results from Approach
I, the incidence adjustment approach, are in red and those from Approach II, the
Bayesian approach, are in green, and those from the original Fraser’s method (obtained
by Approach II without incorporating mobility data) are in blue.

Discussion 345

It is well-established for many infectious diseases that there is substantial heterogeneity 346

in transmission patterns. One might reasonably expect that some of this variability 347

occurs geographically due to a potentially complex combination of social factors and 348

some amount of stochastic effects. Estimating spatially granular reproductive numbers 349

allows for greater targeting of interventions and the potential to uncover the factors that 350

drive heightened transmission. We have described two approaches for estimating R(t) 351

that incorporate mixing patterns between distinct groups, which in our setting is 352

informed by mobility data between geographic regions. 353

We demonstrate how these two approaches perform on simulated data. Simulations 354

shows that both of the approaches are able to estimate the heterogeneous instantaneous 355

reproductive numbers for multiple regions well when the mobility data is well-specified. 356

We observed that the second approach has larger variability. This is expected since in 357

Approach II we incorporate some of our uncertainty around the accuracy of the mobility 358

data, allowing some flexibility in the case where the mobility data might not exactly 359

represent how incident cases are flowing between the regions. This means that the first 360

approach is likely more sensitive to inaccuracies in the mobility data, while the second 361

approach samples over for the mobility prior together with the other parameters, 362

allowing for some misspecification. Therefore, if we have high quality mobility data that 363

is representative of the population and incidence flow, and are only interested in 364
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obtaining reproductive numbers for multiple regions, we can use the more efficient 365

Approach I. If we want to incorporate uncertainty in the mobility data and/or 366

investigate factors that are associated with R(t), we can use Approach II. 367

In our simulation, we show that using mobility information allows us to obtain 368

estimates for R(t) that are close to the true R(t) and that this is not feasible when 369

mobility data is not used (see scenario 1 in supplement). In other words, simply 370

stratifying data by region and estimating R(t) ignoring mobility patterns between 371

regions does not appropriately capture transmission differences. This is especially 372

important when there are regions with a lower R(t) accepting population flow from 373

regions with a higher R(t). For example, people might live in counties with lower R(t), 374

but work in counties with higher R(t). If mobility information is not taken into account, 375

we could over estimate R(t) for the counties in which these people are living, and under 376

estimate the R(t) in the counties where they work. This is shown in our simulation 377

results (see scenario 3 in supplement). We realize that there could be low incidence 378

counts for some regions, and we showed that the Approach I tends to overestimate R(t) 379

compared to Approach II in this setting (see scenario 2 in supplement). Both of the 380

approaches have a larger credible band, which indicates the these approaches are not 381

ideal in the presence of low incidence count. 382

A potential additional benefit of the more computationally intensive second 383

approach is that local factors, such as age, social economic status and disease 384

containment policies can be incorporated into the estimation framework. This can 385

potentially allow one to not only estimate more accurately the differences between 386

regions, but also potentially start to more carefully understand some of the underlying 387

factors influencing the transmission differences. 388

When we consider the dynamics of COVID-19 in Massachusetts, the county-level 389

results show that the two approaches yield similar estimates, but that these are distinct 390

from the naive approach that ignores mobility. Generally, the estimated incidence data 391

is similar, but there are some differences in the estimated R(t) with mobility 392

incorporated. R(t) estimates from Approach I have larger credible band for the counties 393

with lower incidence, such as Berkshire, Dukes, Franklin and Nantucket. The second 394

approach produces smoother estimated R(t) when R(t) is small. From the simulation 395

scenario 2, we have shown that the Approach I tends to overestimate R(t) compared to 396

Approach II when there are low counts for incidence. This could be the reason for the 397

larger R(t) estimates from Approach I for Berkshire, Dukes, Franklin and Nantucket 398

during the time with low incidence count. However, for Berkshire, Dukes and 399

Nantucket, we observe a positive population change from July 1st, 2020 to October 20th, 400

2020, so we are more confident in the result from Approach II, since it is more likely 401

that the incidence in these counties are due to the population input from other counties 402

with higher R(t). 403

For both of the methods, an important assumption is that the mobility data 404

describes the flow of infectious individuals, even though it is not explicitly measuring 405

this. This might not hold if individuals dramatically change their behavior when they 406

are infectious. A potential approach to cope with this problem might be adding 407

parameters informed by behavioral data among infectious individuals as weights to the 408

mobility data to account for changed mobility due to the disease. 409

In a summary, the instantaneous R(t) is an important metric for infectious disease 410

surveillance, since it provides a real-time description of the transmission dynamics 411

among the population. While estimating R(t) for multiple regions, we expect to see 412

heterogeneity. However, estimating the heterogeneity can be challenging when there is 413

extensive population flow between regions leading to a mixing of the population that 414

can mask or misrepresent the true transmission dynamics. We have presented two 415

methods that incorporate mobility data for the estimation of spatially heterogeneous 416
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R(t). The ultimate goal of this approach is to identify the regions with higher 417

transmission in which to focus interventions as well as study potential mechanisms of 418

transmission. These methods have broad applicability to estimating R(t) in the 419

presence of any potential heterogeneities, such as age-mixing which can use mixing 420

behavior described by contact surveys such as those performed by Mossong et al. [20]. 421

Supporting information 422

S1 Appendix. Other simulation results Simulation result for Model 1, 2 and 3 in 423

scenario 1, and results for scenario 2 and 3. 424
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