
 1 

 Brain activity measured by functional brain imaging predicts breathlessness improvement 1 

during pulmonary rehabilitation  2 

 3 

Sarah L. Finnegan1 (sarah.finnegan@ndcn.ox.ac.uk) 4 

Michael Browning5,6 5 

Eugene Duff 7  6 

Catherine J. Harmer 5,6 7 

Andrea Reinecke 5 8 

Najib M. Rahman 3,4 9 

Kyle T.S. Pattinson1 (kyle.pattinson@nda.ox.ac.uk) 10 

 11 

 12 

1 Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield 13 

Department of Clinical Neurosciences, University of Oxford, Oxford, UK. 14 

2 Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK 15 

3 Nuffield Department of Medicine, University of Oxford, Oxford, UK 16 

4 Oxford NIHR Biomedical Research Centre, Oxford OX3 7JX 17 

5. Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK;  18 

6. Oxford Health NHS Foundation Trust, Warneford Hospital Oxford 19 

7. Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK 20 

 21 

Corresponding author: Sarah L. Finnegan; sarah.finnegan@ndcn.ox.ac.uk 22 

6th Floor, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU; 01865 234 544 23 

 24 

 25 

 26 

Research in context 27 

 28 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.26.21266908doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.11.26.21266908
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Evidence before the study. Despite considerable research we still do not know which patient 29 

characteristics predict clinical improvements in breathlessness following pulmonary 30 

rehabilitation. Recent evidence suggests that the brain processes associated with 31 

breathlessness-expectation play an important contributory role in breathlessness severity. 32 

However, this has never been examined as a predictor of pulmonary rehabilitation outcome. 33 

The ability to predict outcomes has a number of potential benefits, including identifying targets 34 

for personalised medicine and the better allocation of scare healthcare resources via parallel 35 

care pathways. 36 

Added value of the study. This study analysed data from a longitudinal experimental 37 

medicine study of 71 patients with COPD over a course of pulmonary rehabilitation, that used 38 

functional magnetic resonance imaging testing breathlessness-expectation mechanisms in 39 

the brain. Participants were randomised in a double-blind procedure to receive either 250mg 40 

oral D-cycloserine or a matched placebo. Using baseline variables to train machine learning 41 

models we revealed that only models containing brain markers of breathlessness-expectation 42 

successfully predicted improvements in dyspnoea-12 score (sensitivity 0.88, specificity 0.77). 43 

D-cycloserine use was independently associated with breathlessness improvements. Models 44 

that only contained questionnaire and clinical measure did not predict outcome (sensitivity 45 

0.68, specificity 0.2).  46 

Implications of all the available evidence. These findings are the first evidence that 47 

breathlessness-expectation related brain activity is a strong predictor of clinical improvement 48 

in breathlessness over pulmonary rehabilitation. This implies that expectation is a key 49 

mechanism in breathlessness perception and that the manipulation of the brain’s expectation 50 

pathways merits further testing as a novel therapeutic approach for breathlessness.    51 

 52 

  53 
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Abstract 54 

Background: Chronic breathlessness in COPD is effectively treated with pulmonary 55 

rehabilitation. However, baseline patient characteristics predicting improvements in 56 

breathlessness are unknown. This knowledge may provide better understanding of the 57 

mechanisms engaged in treating breathlessness, helping to individualise therapy. Increasing 58 

evidence supports the role of expectation (i.e. placebo and nocebo effects) in breathlessness 59 

perception. In this study, we tested functional brain imaging markers of breathlessness 60 

expectation as predictors of therapeutic response to pulmonary rehabilitation, and whether D-61 

cycloserine, a brain-active drug known to influence expectation mechanisms, modulates any 62 

predictive model.  63 

Methods: Data from 72 participants with mild-to-moderate COPD recruited to a randomised 64 

double-blind controlled experimental medicine study of D-cycloserine given during pulmonary 65 

rehabilitation was analysed (ID: NCT01985750). Baseline variables, including brain-activity, 66 

self-report questionnaires responses, clinical measures of respiratory function and drug 67 

allocation were used to train machine-learning models to predict the outcome, a minimally 68 

clinically relevant change in the dyspnoea-12 score.  69 

Findings:  Only models that included brain imaging markers of breathlessness-expectation 70 

successfully predicted improvements in dyspnoea-12 score (sensitivity 0.88, specificity 0.77).  71 

D-cycloserine was independently associated with breathlessness improvement. Models that 72 

included only questionnaires and clinical measures did not predict outcome (sensitivity 0.68, 73 

specificity 0.2).   74 

Interpretation: Brain activity to breathlessness related cues is a strong predictor of clinical 75 

improvement in breathlessness over pulmonary rehabilitation. This implies that expectation is 76 

key in breathlessness perception. Manipulation of the brain's expectation pathways (either 77 

pharmacological or non-pharmacological) merits further testing in the treatment of chronic 78 

breathlessness.   79 

Funding 80 

This work was supported by the JABBS Foundation   81 
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Introduction 82 

Chronic breathlessness is a key feature of chronic obstructive pulmonary disease (COPD) 83 

with symptoms often persisting despite maximal medical therapy. Pulmonary rehabilitation is 84 

the best treatment for chronic breathlessness in COPD [1] but the response is variable. Thirty 85 

percent of people who complete pulmonary rehabilitation derive no clinical benefit [2]. Despite 86 

considerable research, we still do not know which patient characteristics predict beneficial 87 

response to pulmonary rehabilitation  [2-5]. The ability to predict outcome has a number of 88 

potential benefits. These include improving our understanding of underlying mechanisms, 89 

identifying targets for personalised medicine, and may allow more accurate allocation of 90 

scarce healthcare resources. 91 

 92 

Breathlessness severity is often poorly explained by objective clinical measures [6]. This has 93 

prompted research into identifying brain perceptual mechanisms that may explain this 94 

discordance. A body of work has recently identified that brain processes relating to expectation 95 

(akin to placebo and nocebo effects) have an important role in contributing to breathlessness 96 

severity. Whether brain-derived metrics may help predict outcome from pulmonary 97 

rehabilitation is unknown, and prediction models until now have not included measures of 98 

expectation.  99 

 100 

Between-subject variability in therapeutic response is increasingly recognised as a confounder 101 

in clinical trials. A personalised medicine approach aims to identify subgroups of patients that 102 

respond to a specific therapy. In psychiatry, brain-derived metrics using functional 103 

neuroimaging have taken similar approaches to identifying subtypes of depression that may 104 

respond to bespoke therapies [7]. Such techniques rely on biomarkers, which may consist of 105 

predictive combinations of biochemical, genetic, demographic, physiological or cognitive 106 

measures. In the context of treating breathlessness, predictive biomarkers could pave the way 107 

for novel pharmacological and non-pharmacological treatments. These may either work as 108 

standalone therapies, or by enhancing other therapies, such as pulmonary rehabilitation.  109 
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 110 

In this study, we aimed to predict improvements in breathlessness during pulmonary 111 

rehabilitation by analysing baseline data from a longitudinal experimental medicine study of 112 

D-cycloserine upon breathlessness during pulmonary rehabilitation. We selected D-113 

cycloserine, which is a partial agonist at the NMDA receptor in the brain, for its action on neural 114 

plasticity and influence on brain expectation mechanisms associated with cognitive 115 

behavioural therapies [8-10] . Brain based pharmacological adjuncts may be one opportunity 116 

to boost the effects of pulmonary rehabilitation. We hypothesised baseline brain activity in 117 

response to breathlessness-related expectation would predict improvement in breathlessness 118 

over pulmonary rehabilitation, and that if D-cycloserine indeed had an effect upon expectation 119 

then it would emerge as a significant factor in the prediction model. Given that moderators of 120 

treatment success of pharmacological agents such as D-cycloserine remain unclear, this 121 

information will not only help us build a better picture of the brain-behaviour changes that may 122 

underly response to pulmonary rehabilitation and therefore its potential value as a therapeutic 123 

target.   124 

  125 
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Methods and Materials 126 

A brief overview of materials and methods is presented here with full details included within 127 

the supplementary materials. The study and statistical analysis plan were pre-registered on 128 

bioXIV (https://osf.io/bfqds/). This was an analysis of data from a longitudinal experimental 129 

medicine study of patients with COPD over a course of pulmonary rehabilitation. Parts of the 130 

study were first published in a characterisation of baseline patient clusters [11] and 131 

subsequently in the investigation of the effect of D-cycloserine on brain activity (preprint - 132 

https://tinyurl.com/3pyupwkj). The analysis conducted for this study is novel, not previously 133 

reported and is the first use of predictive analysis using this dataset.  134 

 135 

Participants 136 

71 participants (18 female, median age 71 years (46-85 years)) (Supplementary Table 1) were 137 

recruited immediately prior to enrolment in a National Health Service-prescribed course of 138 

pulmonary rehabilitation. Written informed consent was obtained from all participants prior to 139 

the start of the study. Study approval was granted by South Central Oxford REC B (Ref: 140 

118784, Ethics number: 12/SC/0713). Full demographic details are included within the 141 

supplementary materials and are published separately (preprint is available at 142 

https://tinyurl.com/3pyupwkj). 143 

 144 
Study Protocol 145 

Data for this analysis were acquired at baseline assessment held at the start of a pulmonary 146 

rehabilitation course, and following completion of the pulmonary rehabilitation at 6-8 weeks. 147 

At each study visit, identical measures were collected. Following the first visit, participants 148 

were randomized in a double-blind procedure to receive either 250mg oral D-cycloserine or a 149 

matched placebo. Participants received a single dose on four occasions 30 minutes prior to 150 

the onset of the first four pulmonary rehabilitation sessions.  151 

 152 
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Self-report questionnaires: All questionnaires were scored according to respective manuals: 153 

Dyspnoea-12 (D12) Questionnaire [12], Centre for Epidemiologic Studies Depression Scale 154 

(CES-D) [13], Trait Anxiety Inventory (TRAIT) [14], Fatigue Severity Scale [15], St George’s 155 

Respiratory Questionnaire (SGRQ) [16], Medical Research Council (MRC) breathlessness 156 

scale [17], Breathlessness catastrophising scale, adapted from the Catastrophic Thinking 157 

Scale in Asthma [18], Breathlessness vigilance, adapted from the Pain Awareness and 158 

Vigilance Scale  Breathlessness Awareness and Vigilance Scale [19].  159 

 160 

Physiological Measures: Spirometry and two Modified Shuttle Walk Tests (MSWT) were 161 

collected using standard protocols [20, 21]. Participant height and weight were recorded at 162 

each visit. Arterial oxygen saturations were collected at rest and following the MSWT.  163 

 164 

MRI Measures 165 

Image acquisition: Magnetic resonance imaging of the brain was carried out using a Siemens 166 

3T MAGNETOM Trio. A T1-weighted (MPRAGE) structural scan (voxel size: 1 x 1 x 1 mm) 167 

was collected and used for registration purposes. A T2*-weighted, gradient echo planar image 168 

(EPI) scan sequence (TR, 3000ms; TE 30ms; voxel size: 3 x 3 x 3 mm) was used to collect 169 

functional imaging data during the word cue task.  170 

 171 

Word cue task: Given sufficient fearful breathlessness exposures, the suggestion alone of the 172 

situation can be sufficient to drive a top-down neural cascade and produce breathlessness in 173 

the absence of afferent inputs. We drew on this link to probe the neural responses of 174 

breathlessness-related expectation by examining the activity of brain regions responding to 175 

breathlessness-related word cues [22, 23]. Brain activity was correlated with corresponding 176 

visual analogue ratings of breathlessness and breathlessness-anxiety collected during 177 

scanning. During the fMRI scanning, participants were presented with a word cue, e.g., 178 

“climbing stairs” in white text on a black background for 7 seconds. Participants were then 179 

asked, “how breathless would this make you feel” (wB) and “how anxious would this make you 180 
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feel” (wA). To each question participants responded within a 7 second window using a button 181 

box and visual analogue scale (VAS). The response marker always initially appeared at the 182 

centre of the scale, with the anchors “Not at all” and “Very much” at either end. Scan duration 183 

was 7 minutes and 33 seconds. 184 

 185 
 186 
Analysis 187 
 188 
Regions of interest 189 

15 regions of interest were selected a-priori (Figure 1), encompassing regions associated with 190 

sensory and affective processing of breathlessness as well as body, symptom perception and 191 

emotional salience [22, 24, 25]. Regions were defined by standard anatomical atlas maps 192 

(Harvard-Oxford Atlas and Destrieux’ cortical atlas), thresholded at 40% probability and 193 

binarized.  194 

 195 

Figure 1. Region of interest map showing 15 brain areas. 196 

 197 

Brain Imaging Analysis 198 
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Image processing was carried out using the Oxford Centre for Functional Magnetic 199 

Resonance Imaging of Brain Software Library (FMRIB, Oxford, UK; FSL version 5.0.8; 200 

https://ww.fmrib.ox.ac.uk/fsl/), MATLAB R2018b (Mathworks, Natick, MA) and associated 201 

custom scripts. Functional MRI processing was performed using FEAT (FMRI Expert Analysis 202 

Tool, within the FSL package).  203 

 204 

Pre-processing and single subject models 205 

Data were pre-processed according to standard protocols which included motion correction 206 

and physiological noise removal, before being entered into single subject general linear 207 

models. These models captured brain activity during the periods in which the breathlessness-208 

related word cues were presented allowing us to examine expectation-related processes 209 

(Supplementary Figure 3). Further details regarding pre-processing and model specifics can 210 

be found within the supplementary materials. For each participant the mean signal in response 211 

to the breathlessness-related word cues was extracted for each brain region (Figure 1). This 212 

gave each participant 15 brain-derived scores to enter into the predictive models.    213 

 214 

Definition of response to pulmonary rehabilitation 215 

Responsiveness to pulmonary rehabilitation was defined as a change in D12 score, a well-216 

validated clinical measure of breathlessness, of three or more points, consistent with the 217 

minimal clinically important difference (MCID) [12]. To examine whether baseline D12 score 218 

differed significantly between responders and non-responders to pulmonary rehabilitation we 219 

conducted a comparison of mean baseline D12 score. In addition, a single logistic regression 220 

model was applied to the data using MATLAB’s mnrfit function to examine whether baseline 221 

D12 explained pulmonary rehabilitation outcome over and above the best model prediction. 222 

Significance was set as False Discovery Rate (FDR) corrected p<0.05. 223 

 224 

Predictive Models  225 
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Table 1. List of measures included within each of the three models (indicated by “x”). Drug ID labels 226 

corresponded to whether the participant received D-cycloserine or placebo. Dyspnoea-12 (D12), Centre 227 

for Epidemiologic Studies Depression Scale (CES-D), Trait Anxiety Inventory (TRAIT), Fatigue Severity 228 

Scale (FSS), St George’s Respiratory Questionnaire (SGRQ), Medical Research Council (MRC) 229 

breathlessness scale, Breathlessness catastrophising scale (BCS), Heart Rate (HR), Oxygen 230 

Saturation (Sats).  231 

Included data Brain only 
model 

Brain & non imaging 
measures model 

Non imaging 
measure model 

Drug ID x x x 

Responder or non-responder 
label 

x x x 

Brain activity     

Amygdala x x  

Hippocampus x x  

Anterior insula x x  

Anterior cingulate x x  

Posterior insula x x  

Putamen x x  

Superior marginal gyrus x x  

Superior frontal gyrus x x  

Precuneus  x x  

Medial prefrontal cortex x x  

Caudate x x  

Posterior cingulate  x x  

Angular gyrus x x  

Precentral gyrus x x  

Middle frontal gyrus x x  

Questionnaires    

D12  x x 

CES-D  x x 

TRAIT  x x 

FSS  x x 

SGRQ  x x 

MRC  x x 

BCS  x x 

Vigilance  x x 

Physiology    

FEV1/FVC  x x 
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MSWT – HR change  x x 

MSWT – Sats change  x x 

MSWT – Distance   x x 

MSWT – BORG change  x x 

BMI  x x 

Pack Years  x x 

Age  x x 

Sex  x x 
 232 

 233 

Physiological Measures: Spirometry and two Modified Shuttle Walk Tests (MSWT) were 234 

collected using standard protocols [20, 21]. Participant height and weight were recorded at 235 

each visit. Sex was self-reported. Arterial oxygen saturations were collected at rest and 236 

following the MSWT.   237 

 238 

Models were programmed using R version 3.6.1 (2019-07-05). Modelling procedure remained 239 

the same for each of the three models (Figure 2).  240 

1. All measures were centred and scaled. Checks were performed to determine whether 241 

any measures were highly correlated (R>0.8) or linear combinations of each other 242 

(Supplementary Figure 3).  243 

2. To correct for imbalance in the number of responders/non-responder a resampling 244 

procedure. Imbalanced classes can affect classifier performance. Random 245 

OverSample Examples (ROSE) was carried out. ROSE, an R package, creates an 246 

artificially balanced sample using a smoothed bootstrap approach [26].  247 

3. An elastic net procedure was used to identify the number most relevant features for 248 

inclusion into the model. Elastic net procedure was selected for its ability to regularise, 249 

improve data sparsity via feature selection and cluster correlated measures together 250 

(for more details see supplementary materials). Features were selected based on 251 

ranked coefficients. 252 
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4. Model training parameters – C, kappa and sigma were selected based on an internal 253 

repeated cross-validation procedure (10-fold cross validation repeated 3 times). In all 254 

instances automated tuning parameter selection for the values, with a tune length of 255 

5, was utilised within R’s caret package. Train-test data were kept separate across 256 

folds, with the algorithm never having access to the entire dataset. The best tuning 257 

parameters were selected automatically by R’s caret package from across cross 258 

validation folds.   259 

5. These parameters were used to train a Support Vector Classifier (SVC) with radial 260 

kernel to predict outcomes in the entire dataset.  261 

6. Model performance was assessed internally using accuracy, sensitivity, specificity and 262 

area under the curve (AUC). Full confusion matrices are presented. Model significance 263 

was assessed with a one-tailed binomial test of model accuracy compared to the null 264 

information rate. 265 
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  266 

Figure 2. A schematic of the modelling procedure adapted from an illustration by Chekroud and 267 
colleagues [27]. 1. Participants received two labels, the first corresponding to drug or placebo and the 268 
second “responder” or “non-responder” to treatment. 2. An elastic net procedure was used to rank and 269 
select the top features. 3. Selected features were used to develop model training parameters in a 270 
repeated-cross validation procedure in which the algorithm never has access to the entire dataset. 4. 271 
The Trained SVM was then provided with the entire dataset to classify. In addition to model statistics, 272 
full confusion matrices were output to assess sensitivity and specificity.   273 
 274 

 275 
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 276 
Results 277 

Responders and non-responders  278 

41 / 71 participants in the primary dataset met the criteria of a change in D12 score of three 279 

or more points to be considered a responder [12] (24 D-cycloserine, 17 placebo), and 30 did 280 

not (13 D-cycloserine, 17 placebo). No significant interaction between responders and non-281 

responders and drug was identified using Chi squared analysis ((1,N=71) = 1.6, p=0.21).  282 

 283 

Feature selection – brain imaging only model 284 

The elastic net procedure identified 13 of 15 brain derived metrics and drug as relevant for 285 

model inclusion. These features were: brain activity within amygdala, caudate, prefrontal 286 

cortex, hippocampus, superior frontal gyrus, anterior insula, drug, posterior cingulate cortex, 287 

putamen, posterior insula, middle frontal gyrus, precuneus, precentral gyrus and angular 288 

gyrus.  289 

 290 

Feature selection – brain and non-imaging measure model 291 

The elastic net procedure identified 12 of 15 brain derived metrics, 13 of 20 non-imaging 292 

measures including drug as relevant for model inclusion. These features were brain activity 293 

within: superior frontal gyrus, hippocampus, angular gyrus, superior marginal gyrus, 294 

amygdala, prefrontal cortex, precuneus, anterior cingulate cortex, anterior insula, middle 295 

frontal gyrus, posterior insula and putamen. Behavioural features identified as relevant for 296 

model inclusion were D12, anxiety, depression, MRC, the three St George’s domains (active, 297 

impact, symptoms), MWST BORG, heart rate and Sats change, fatigue, age and BMI.   298 

 299 

Feature selection – non-imaging measures model 300 

Of the 20 questionnaire and physiological features available, only D12 survived the feature 301 

selection process. 302 

 303 
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Model results – Internal validation  304 

Three models with variables selected by the elastic net procedure were assessed for their 305 

ability to discriminate responders from non-responders (Table 3). 306 

 307 

The combination of brain and behaviour metrics produced the best classification performance 308 

(accuracy - 0.83 (95% CI 0.75-0.90); sensitivity – 0.88; specificity – 0.77; p<0.001) (Table 3). 309 

Weighted variable importance was found to be similar across features, as demonstrated by 310 

the thickness of the lines in Figure 3. The brain only model was able to correctly categorise 311 

participants with statistically significant likelihood (accuracy 0.70 (95% CI 0.58-0.81).  312 

 313 

  314 
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Table 2. Logistic regression coefficients for predictive power of the computationally derived brain-315 

behaviour model (model prediction labels), and baseline D12 on pulmonary rehabilitation outcome, 316 

measured as a change in D12 score above the minimal clinical important difference. Significance is 317 

expressed as False Discovery Rate (FDR) -corrected p-values.    318 

 Coefficient P value 

Intercept 3.571 0.007 

Model prediction labels -2.809 <0.001 

Baseline D12 0.071 0.191 

 319 

 320 
 321 

Table 3. Model statistics for brain imaging only, brain and non-imaging measure models and non-322 

imaging measures only model. All models contained Drug ID as an additional term. AUC – area under 323 

the curve. CI – confidence interval. P-value is expressed as the result of a one-tailed binomial test of 324 

model accuracy compared to the null information rate.  325 

 Brain only full 
model 

Brain & non-imaging 
measures full model 

Non-imaging measures 
full model 

Accuracy 0.70 0.83 0.66 
95% CI 58-81 0.72-0.90 0.54-0.77 

Sensitivity 0.93 0.88 0.68 
Specificity 0.40 0.77 0.20 

AUC 0.79 0.87 0.70 
p-value 0.02* <0.001** 0.09 

Confusion 
matrices 

Reference Reference Reference 
Yes No Yes No Yes No 

Prediction 
 

Yes 38 18 36 7 28 11 

No 3 12 5 23 13 19 
 326 

  327 
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 328 

 329 

Figure 3. Schematic representation of the best predictive model. Predictive brain imaging and non-330 
imaging measures are shown linked to treatment response by weighted lines, indicating variable 331 
importance. MSWT – Modified Shuttle Walk Test; Sats – Oxygen saturation; HR – Heart Rate; MRC – 332 
Medical Research Council;  333 
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Discussion 335 

Key Findings 336 

Using supervised machine learning, this study successfully identified markers that predict 337 

clinically relevant improvements in breathlessness over a course of pulmonary rehabilitation. 338 

The best model combined brain-imaging markers of breathlessness-expectation, self-report 339 

questionnaires and physiology measures, and demonstrated high sensitivity and specificity.  340 

Whether or not a participant received D-cycloserine was a significant feature in this model. 341 

Our findings demonstrate the first predictive model of change in breathlessness across 342 

pulmonary rehabilitation and, for the first time, the clinical relevance of expectation-related 343 

brain activity as a therapeutic target in the treatment of breathlessness. 344 

 345 

 346 

To date, no study has produced a model capable of predicting an individual’s change in 347 

breathlessness over pulmonary rehabilitation from baseline traits [2-4]. Although previous 348 

studies have shown correlations between baseline variables and outcomes [5], none have 349 

attempted to predict outcomes at an individual level.  This study is therefore the first to directly 350 

predict an individual’s change in breathlessness over pulmonary rehabilitation. This was 351 

achieved using sensitive brain imaging techniques in order to capture personalised responses 352 

to breathlessness expectation which has, until recently remained relatively unexplored. 353 

  354 

Expectation has been linked with symptom severity across conditions including 355 

breathlessness and pain [28, 29], and is well recognised to underly the placebo and nocebo 356 

effects. An example of the nocebo effect in breathlessness is provided by a study of healthy 357 

volunteers in which, using a conditioning paradigm, a harmless odour was initially paired with 358 

induced breathlessness. Subsequently, the odour alone was shown to drive brain activity in 359 

the periaqueductal gray and anterior cingulate cortex leading to breathlessness despite the 360 

absence of afferent respiratory input [29]. In Abdallah et al [30], expectation-related brain 361 

activity was associated with poorer responses to opioids in breathlessness, potentially 362 
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explaining why clinical trials of opioids in the management of breathlessness have been 363 

unsuccessful [31, 32].  364 

 365 

Fear and anxiety are key components of expectation, which recent research suggests may 366 

play a key role in the mechanisms and maintenance of breathlessness [22, 33, 34]. Despite 367 

this, expectation-related effects have not previously been considered in prediction studies of 368 

pulmonary rehabilitation outcome. Our previous work showed a clear correlation between 369 

expectation-related brain activity in areas that include the anterior insula, anterior cingulate 370 

cortex and prefrontal cortex, and improvements in breathlessness over pulmonary 371 

rehabilitation [22]. However, while these studies suggest baseline cognitive state may be a 372 

therapeutically relevant target, importantly, the methods employed so far did not attempt to 373 

predict the response of an individual. Taken together, converging lines of evidence point 374 

towards expectation-related processes as a clear potential therapeutic target. 375 

 376 

In this study we focused on brain activity changes within a set of pre-selected regions of 377 

interest associated with breathlessness-expectation and body and symptom perception [22, 378 

24, 25]. In the original trial we hypothesised that D-cycloserine would augment the therapeutic 379 

effects of pulmonary rehabilitation across this network, via its effects on neural plasticity and 380 

promotion of expectation related learning [10, 35].   381 

 382 

Using data driven techniques, 13 of the 15 brain derived metrics (and drug) were identified as 383 

relevant for model inclusion. Selected brain areas spanned the components of relevant body 384 

and symptom perception and emotional salience networks. The resulting brain-only model, 385 

while statistically significant (p=0.02) and possessing good sensitivity (0.93), did not 386 

distinguish responders from non-responders with sufficient specificity (0.40).  387 

 388 

By, enriching the brain-only models with questionnaire and physiology measures improved 389 

performance considerably. In this enriched model, 12 brain derived metrics and 13 non-390 
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imaging derived metrics, which included self-report questionnaire measures, physiology and 391 

drug, were identified as relevant for model inclusion. Measures of accuracy (0.83), sensitivity 392 

(0.88) and specificity (0.77) all suggest this model was able to significantly (p<0.001) predict 393 

pulmonary rehabilitation outcome.  394 

 395 

Within the non-imaging measure only model, D12 alone was selected by the elastic net and 396 

was not found to be significantly (p=0.09, sensitivity=0.68, specificity=0.20) predictive of 397 

pulmonary rehabilitation outcome. No other of the 13 non-imaging derived metrics available 398 

was found to contribute to the model. That only D12 was selected suggests that the remaining 399 

measures, which were important predictors of rehabilitation outcome in the enriched model, 400 

interact strongly with brain activity. These results highlight the value of approaching 401 

breathlessness from a multimodal data perspective. 402 

 403 

The retained brain activity features implicate a range of brain networks encompassing 404 

functions of cognitive control, symptom perception and sensory integration. Activity within 405 

these regions has been shown to predict outcome to cognitive behavioural therapy in social 406 

anxiety disorder [36] and obsessive-compulsive disorder [37]. In our paradigm, in which 407 

patients were shown breathlessness related word-cues, triggering expectation related 408 

processes, activity within cognitive control network may indicate the allocation of attentional 409 

resources. The retained questionnaires within the brain and non-imaging measure model 410 

together highlight another important domain of breathlessness: symptom perception. We 411 

suggest that baseline symptom perception may act to directly influence the interpretation of 412 

the new experiences of pulmonary rehabilitation as positive or negative.  413 

 414 

D-cycloserine has shown promise in trials examining anxiety, posttraumatic stress disorder 415 

and other mental health conditions [8-10], where acute dosages administered prior to 416 

exposure based therapies appear to augment changes to expectation, boosting therapeutic 417 

effects as a result. As a drug which acts on expectation-related brain activity pathways it is 418 
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therefore not surprising that whether a participant received D-cycloserine or placebo was a 419 

retained as a feature in both the brain only model, and to a lesser extent the brain and non-420 

imaging model.  421 

 422 

Limitations and future work  423 

The major limitation of this study is the lack validation of the model in an external dataset. 424 

While some studies hold out a proportion of the original data to create an external validation 425 

dataset, this technique was not possible here due to restrictions of sample size. To address 426 

these limitations, we used a cross validation approach in which the support vector machine 427 

was exposed to multiple iterations of the sub-sampled dataset during model training, and 428 

therefore never “saw” the entire dataset until the test phase. Models with a large number of 429 

measures compared to events (responder or non-responder) risk overfitting and demonstrate 430 

poor generalisability to novel datasets. Our dataset contained 35 potential features and 431 

therefore was at risk of overfitting. To address this issue, we reduced the number of data-432 

dimensions via feature selection, employed cross-validation and used an automated tuning of 433 

the regularisation parameter “C”. However, while these techniques may ameliorate some of 434 

the risk of overfitting, a future study with larger sample size, or independently collected 435 

datasets, would take the next steps to externally validate the brain-behaviour model and allow 436 

assessment of generalisability. Finally, a key feature of support vector machines is that they 437 

fit high-dimensional discriminatory planes between multiple measures to predict an outcome. 438 

While this multivariate approach does afford greater sensitivity in distinguishing between non-439 

separable distributions, it also leads to less intuitive interpretations. Assigning directions to the 440 

relationships between variables or onto outcomes is not possible with this technique. Thus, 441 

the researcher must plan to scrutinise models via interventional studies.  442 

 443 

 444 

While larger sample sizes are now required to translate these mechanistic models into clinical 445 

relevance, the data provides evidence that breathlessness expectation related brain activity 446 
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at baseline strongly influences how patients respond to treatment in a predictable manner. 447 

Further work is now needed in order to move towards model validation and eventual clinical 448 

application. 449 

 450 

 451 

Conclusions  452 

This study offers the first steps towards brain-based predictive biomarkers for pulmonary 453 

rehabilitation outcome. We have shown that by models including objective brain markers of 454 

breathlessness-expectation are able to predict, for the first time, which patients will have 455 

clinically important improvements in breathlessness over pulmonary rehabilitation. Such 456 

models could reduce the burden of complex decisions placed on the clinicians and pave the 457 

way for targeted behavioural and pharmacological interventions.       458 

 459 

 460 

 461 

 462 

 463 

 464 

  465 
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