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One Sentence Summary: Phylogenetic and phylodynamic methods quantify the drop in case 
introductions and local transmission with implementation of public health measures. 
 

Abstract: Genome sequences from evolving infectious pathogens allow quantification of case 
introductions and local transmission dynamics. We sequenced 11,357 SARS-CoV-2 genomes 
from Switzerland in 2020 - the 6th largest effort globally. Using a representative subset of these 
data, we estimated viral introductions to Switzerland and their persistence over the course of 
2020. We contrast these estimates with simple null models representing the absence of certain 
public health measures. We show that Switzerland’s border closures de-coupled case 
introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 
- 98% reduction in introductions during Switzerland’s strictest border closures. Furthermore, the 
Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. 
Finally, we quantified local transmission dynamics once introductions into Switzerland occurred, 
using a novel phylodynamic model. We find that transmission slowed 35 – 63% upon outbreak 
detection in summer 2020, but not in fall. This finding may indicate successful contact tracing 
over summer before overburdening in fall. The study highlights the added value of genome 
sequencing data for understanding transmission dynamics. 

 
Main Text: 

 
INTRODUCTION 

SARS-CoV-2 genomes were collected at an unprecedented scale in 2020 (1) and have been 
extensively used to characterize transmission dynamics, in particular because genetic data 
contains information on the epidemiological relationships between cases. These genomic data 
enable the reconstruction of introductions and downstream transmission chains in the absence of 
contact tracing data (2). Where contact tracing data is available, this approach has been verified 
and has additionally helped with linking unassigned individuals to known transmission chains (3, 
4). 

Several methods have been successfully used to reconstruct transmission dynamics at the 
onset of the COVID-19 pandemic using genetic data. Phylogenetic approaches reconstruct 
pathogen phylogenies and calculate relevant statistics from them without fitting any further 
explicit models. For example, phylogenetic reconstructions were used to show that reduced 
lineage size and diversity coincided with national lockdowns during the early Irish and English 
epidemics (5, 6). In Switzerland, (7) linked regional super-spreading events to a dominant 
lineage in the city of Basel using a phylogenetic reconstruction. Phylodynamic studies, on the 
other hand, assume the phylogeny arises from an underlying model of transmission between 
hosts, possibly including additional complexities like migration of hosts between regions. This 
assumption enables estimation of population-level transmission dynamics from pathogen 
genome data. For example, (8–10) showed that public health measures reduced SARS-CoV-2 
transmission rates in Israel, New Zealand, and Washington State, USA. 
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New models and careful considerations of potential biases are required to quantify the 
effects of different public health measures in different regions. Here, we developed an analysis 
framework to quantify the association between the implementation and lifting of major public 
health interventions, such as border closures, lockdown measures, and contact tracing – three 
front-line tools in the fight against COVID-19 in 2020 – on transmission dynamics. Our 
framework uses a two-step process that carefully combines phylogenetic and phylodynamic 
methods to address potential sampling biases and phylogenetic uncertainty. Within the Swiss 
SARS-CoV-2 Sequencing Consortium (S3C; (11)) we sequenced 11,357 Swiss SARS-CoV-2 
genomes until 1 December 2020. After combining these genomes with additional data available 
on GISAID (12) and down-sampling to control for biases in sampling efforts over time and 
among geographic regions, we were left with 5,520 Swiss SARS-CoV-2 genomes, representing 
up to 5% of weekly confirmed cases in Switzerland. We use these genomes to characterize 
transmission dynamics in Switzerland until the emergence and widespread dissemination of 
more transmissible variants of concern, starting in December 2020 (13). Our framework allows 
us to identify a clear effect of border closures and the spring 2020 partial lockdown on the rate of 
new introductions to Switzerland and their persistence. Furthermore, we were able to quantify 
the degree to which local transmission slowed upon outbreak detection. We find that this effect 
was strongest during summer 2020, when cases were low and contact tracing efforts likely more 
effective. To demonstrate the broader applicability of our analysis framework, we additionally 
analyzed data from New Zealand, where quarantine measures were stricter and local 
transmission was extremely limited throughout 2020. In New Zealand, we quantify a stronger 
transmission slowdown after outbreak detection, consistent with contact tracing there being 
highly effective. 
 

RESULTS  
Introductions and their persistence shed light on the effects of border closure and 
lockdown  
First, we identified putatively independent introductions of SARS-CoV-2 into Switzerland and 
estimated their persistence. To do this, we selected SARS-CoV-2 genome sequences 
corresponding to up to 5% of confirmed cases each week, stratified to be geographically 
representative when possible (Figure S1). We divided these sequences by Pango lineage, as these 
lineages should represent monophyletic clades in the global SARS-CoV-2 phylogeny (14). 
Because of the hierarchical nature of Pango lineages, we aggregated lineages dominated by 
Swiss sequences into their respective parent lineages, allowing us to assume each analyzed 
lineage originated outside Switzerland (Table S1). To provide global context, we additionally 
selected the most genetically similar sequences from abroad for each lineage. We then 
constructed an approximate maximum-likelihood phylogeny for each such lineage of Swiss and 
genetically similar foreign sequences. We subsequently identified putatively independent 
introductions into Switzerland from these phylogenies, while allowing for a fixed number of 
export events. Importantly, we identified two plausible sets of introductions into Switzerland 
resulting from two different assumptions about the ordering of transmission events at polytomies 
with both Swiss and non-Swiss descendants. The set of “few” introductions was generated 
assuming the majority of polytomic lineages are from within-Switzerland transmission, whereas 
the set of “many” introductions was generated assuming the majority are new introductions. 
Sensitivity analyses show these two polytomy assumptions capture most of the uncertainty in the 
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size and number of introductions amongst analyzed sequences (Supplementary text S1; Figure 
S2). Using additional data on which cases were from managed isolation and quarantine facilities 
in New Zealand versus identified in the community, we show that, as expected, the “many 
introductions” polytomy assumption is more realistic when the probability of infection abroad is 
high compared to the probability of locally acquired infection (Supplementary text S2). 
Throughout, we report uncertainty based on the difference between the few and many 
introductions sets. 

We estimate that the analyzed sequences originate from between 557 (few) and 2284 
(many) introductions into Switzerland. These introductions are roughly power law-distributed in 
size (Figure S3), with the 10 largest introductions accounting for 16 to 30% of sampled genomes. 
Introductions that yielded more than one sampled Swiss case in our dataset tended to be 
geographically constrained. Between 64% (few) and 92% (many) of sampled transmission chains 
(introductions with >1 sample) were sampled in only 1-2 of the 26 Swiss cantons (Figure S4A). 
As expected, larger introductions were sampled in more cantons (Figure S4B; Pearson’s R 
between introduction size and number of cantons is 0.86 for many introductions, 0.75 for few 
introductions). From a down-sampling analysis, we observe that if we were to include more 
sequences, we would identify more introductions (Figure S2C). Therefore, the analyzed genomes 
do not represent all introductions into Switzerland but, given the samples are spatio-temporally 
representative, are a representative subset of introductions. Due to incomplete sampling, each 
sampled introduction contains only a subset of all cases in the full transmission chain. 

Since we sampled sequences proportionally to confirmed cases through time (Figure 
S1A; R2 between number of confirmed cases and number of analyzed Swiss sequences each 
week 0.72), we can assume that trends through time in the number and persistence of 
introductions are representative of the underlying dynamics. Figure 1A shows the number of 
newly sampled introductions identified each week from our dataset, which peaked the week of 
15 March under both polytomy assumptions. Switzerland closed its external borders to Italy 13 
March 2020 and with the rest of the world shortly thereafter (15). To disentangle the effect of the 
border closures versus local control measures, we back-calculated the expected number of total 
(both sampled and unsampled) introductions each week under a birth-death skyline model (16). 
This calculation corrects for the probability that an introduction went extinct or remained 
unsampled each week until the end of the sampling period, given estimates of the sampling 
proportion and the time-varying effective reproductive number Re in Switzerland. Then, we 
develop a simple null model that assumes that prior to 13 March 2020, total introductions are a 
linear function of case counts in Switzerland’s largest neighboring countries (Italy, France, 
Germany, and Austria). Here we are assuming incidence in travelers to Switzerland follows 
incidence in the general community in these countries. Figure 1C shows this model fit to total 
introduction estimates generated based on each polytomy assumption and model projections 
(dashed lines) from 13 March through the partial re-opening of Switzerland’s European borders 
on 15 June 2020 (15). In the following, we report uncertainty based on the 95% HPD upper and 
lower bound estimates for Re used to estimate total introductions. Uncertainty in travel patterns 
is discussed later. Compared to the null model, we estimate a reduction of 7,000 (few 
introductions; uncertainty 4,500 - 11,000) or 79,000 case introductions (many introductions; 
uncertainty 41,000 - 130,000). Despite the high uncertainty in the absolute number of 
introductions averted depending on the polytomy assumption and the precise value of Re in 
Switzerland, we estimate a consistent percentage-wise reduction of 94.1% (few introductions; 
uncertainty 85.9 - 97.8%) or 94.2% (many introductions; uncertainty 86.2 - 97.9%). We note that 
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total European case counts peaked later than in Switzerland’s neighboring countries while our 
analysis only considers neighboring countries. Thus, the period of high import pressure may 
have extended longer than we assume, depending on where most introductions were coming 
from (Figure S5). However, our focus on neighboring countries is supported by travel statistics. 
For instance, neighboring countries comprise 99% of cross-border working permits granted by 
Switzerland for the first quarter of 2020 (approximately 330,000 individuals). These countries 
also account for 36% of registered arrivals at Swiss hotels in January and February 2020 
(approximately 450,000 individuals) (17). Thus, we assume introduction dynamics are largely 
driven by these neighboring countries. However, our estimates of the precise reduction in 
imported cases depend strongly on this assumption. 

 
Fig. 1. Genome-based estimates of SARS-CoV-2 introductions into Switzerland and their 

persistence. (A) shows the number of newly sampled introductions identified each week 
and (B) shows the fraction of newly sampled introductions each month that persist for at 
least 60 days from the oldest to the most-recent sample. This persistence measure is only 
defined until September because we only considers sequences obtained until 1 December 
2020. Orange and green correspond to estimates generated under the few and many 
introductions polytomy assumptions, respectively. (C) and (D) focus on dynamics around 
the Swiss border closure and partial lockdown periods, which are highlighted with shaded 
rectangles. (C) shows estimated total introductions (solid lines) compared to a null model 
(dashed lines) where total introductions are a linear function of case numbers in 
Switzerland’s neighboring countries. The null model is fit to the points prior to the border 
closure, values after that are projections. Uncertainty bounds for total introductions (error 
bars) and null model predictions (colored shaded areas) are based on the 95% upper and 
lower HPD bounds for Re when estimating total introductions. Uncertainty in travel 
patterns is not shown, see Figure S5. (D) shows the distribution of ongoing persistence 
for introductions circulating each day (solid lines), compared to a null model (dashed 
lines) where persistence is constant through time (equal to the median calculated until 15 
June). Solid lines are median time to last sampling amongst introductions newly sampled 
or still ongoing each day. The shaded areas show the interquartile range of this 
persistence distribution. 
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New introductions cannot sustain an epidemic unless they persist in the local population. 
Our analysis suggests several introductions were quite persistent in Switzerland, including one 
that may have persisted across our entire sampling period (Figure S6). On average, introductions 
persisted 5 days (many introductions; standard deviation 16 days) to 34 days (few introductions; 
standard deviation 53 days) from the oldest to the most-recent sample of each introduced lineage 
in our dataset. Lineage persistence until last sampling was lower during the partial lockdown (17 
March - 27 April; Figures 1B and D) compared to summer 2020. While only 0.5 - 8% of 
introductions in April were sampled for at least 60 days, this fraction increased to 12 - 52% in 
September, just before a large fall wave in Switzerland. We also developed a simple null model 
to assess whether the spring 2020 lockdown measures and associated behavioral changes 
affected the persistence of introduced lineages. Here, our null model is that persistence, 
measured as the time until introductions circulating each day are last sampled, does not change 
through time. We assume this delay distribution always equals the median persistence calculated 
over the spring period (until 15 June). Figure 1D contrasts this null model assumption with 
empirical persistence calculated from each day under each polytomy assumption. The 
distribution does indeed vary through time, deviating from the null model. We estimate median 
persistence of introductions at the start of the lockdown is less than or around the median 
calculated over the whole spring and rises to above this null model threshold in the post-
lockdown period. Quantitatively, introductions persisted roughly twice as long until last being 
sampled at a post-lockdown peak around 10 June compared to at the lockdown start (Figure 1D). 
We note that under the few introductions assumption, persistence estimates are upper-bounded 
by the end of our sampling period, so the increase in persistence may also be an underestimate 
(Figure 1D). 
 

Phylodynamic model indicates summer introductions slowed after detection 
Next, we investigated local transmission dynamics once SARS-CoV-2 lineages were introduced 
to Switzerland in more detail. To do this, we quantified time-varying transmission dynamics in 
Switzerland in a Bayesian phylodynamic framework. As a base model, we used the birth-death 
model with serial sampling originally described in (18). We modified the model to condition on 
the previously identified few or many introductions sets, i.e., sequences from each introduction 
have an independent origin. In a nutshell, the model assumes that once lineages are introduced, 
they are (i) transmitted between hosts, according to a time-varying transmission rate which is the 
same across all introductions; (ii) die out upon recovery/death of the host, according to a constant 
becoming-uninfectious rate; and (iii) yield genome samples with a time-varying sampling 
proportion which is the same across all introductions. We assume individuals who test positive 
adhere to self-isolation regulations, so sampling corresponds to a death event for the viral 
lineage. Under this parameterization, Re is a function of the transmission rate, becoming-
uninfectious rate, and sampling proportion. 

We developed a novel extension to this methodology by adding a transmission rate 
“damping” factor, as shown in Figure 2. The transmission rate is allowed to decrease by a 
multiplicative damping factor two days after an introduction is first sampled. We use a spike-
and-slab prior on this factor to include the possibility of no transmission slowdown. We allow 
this damping factor to vary between spring, summer, and fall 2020 - periods characterized by 
very different case numbers and testing regimes in Switzerland (Figure 3A; (19)). Using this 
model, we aim to test whether contact tracing efforts in Switzerland slowed transmission once 
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introductions were detected. We reason that test-trace-isolate can only slow transmission from 
shortly after the first case of an introduction tests positive but not beforehand, as beforehand the 
introduction was circulating cryptically. The two-day delay aims to account for the time between 
an individual giving a sample (i.e., being swabbed) and having their contacts notified. 
Specifically, this delay consists of the time to RT-PCR results, which was generally below 24 
hours in Swiss diagnostic laboratories (20), plus the time for contact tracers to reach contacts or 
an individual to receive and input their positive test code to the SwissCovid contact tracing app. 
We fit the phylodynamic model in several configurations: conditioning on either the many or few 
introductions set, using a bounded or an unbounded sampling proportion prior (see 
Supplementary text S3), and with or without a transmission damping factor. 

 

 
Fig. 2. Illustration of how transmission rate damping is modeled. (A) shows a background 

Swiss-wide time-varying effective reproductive number Re before any damping. Here we 
show the median posterior result from the model applied to the many introductions data 
as an illustration. In each of the colored areas (green = spring, orange = summer, and 
purple = fall), a different damping factor is proposed. The black boxes in (A) highlight 
the spread of two real introductions (B) and (C) generated under the many introductions 
polytomy assumption. The genome data sampled from these introductions are shown as 
red dots in (B) and (C). The appropriate damping factor on Re is applied to each 
introduction 2 days after the first genome sample (dashed lines). We used 0.6 for the 
summer damping factor and 0.9 for fall for this illustration. The likelihood of the genome 
sequence data at the tips of the phylogenies is calculated given the “applied” Re specific 
to each introduction (B and C, bottom). 

 

Across these model configurations, we recover roughly the same trends in Re as 
estimates based on confirmed case numbers beginning with the first analyzed sequence from 27 
February (Figure S7B). Compared to confirmed case-based estimates, we estimate a sharper 
decline in Re coinciding with lockdown measures. Depending on the polytomy assumption, we 
estimate Re was 2.2 (many introductions; 95% HPD 1.5 - 2.9) or 3.5 (few introductions; 95% 
HPD 2.9 - 4.2) in the week of 9 March. Re fell to 0.3 (many introductions; 95% HPD 0.2 - 0.4) 
or 0.4 (few introductions; 95% HPD 0.2 - 0.6) in the week of 16 March 2020 (posterior median 
estimates with no damping factor and an unbounded sampling proportion prior). With a bounded 
sampling proportion, peak Re estimates are slightly higher (Figure S7). Results in fall 2020 are 
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highly dependent on the sampling proportion prior, where Re estimates better match confirmed 
case-based estimates when the sampling proportion is treated as a fitting parameter (i.e., with an 
unbounded prior, resulting in unrealistic estimates of the sampling proportion; see Figure S7A).  

From the model fit with a damping factor, we estimate a 35% (few introductions; 95% 
HPD 29 - 41) - 63% (many introductions; 95% HPD 56 - 70) slowdown in transmission after 
introductions are first sampled in summer 2020 (posterior median estimates with an unbounded 
sampling proportion prior). In comparison, there is little support for a slowdown effect upon the 
first sampling during fall 2020 (Figure 3). These results are qualitatively robust to bounding the 
sampling proportion prior (Figure S8). In contrast, damping factor estimates in spring 2020 are 
inconsistent, depending on the polytomy assumption. Low genomic diversity in SARS-CoV-2 
during this period causes high phylogenetic uncertainty (21; see also the differences in several 
selected introductions in Figure S9). This results in quite different estimates for the damping 
factor depending on the polytomy assumption used. In summary, we report a summer 2020 
“slowdown” dynamic in SARS-CoV-2 transmission in Switzerland, where transmission slows 
after the first genome in a new introduction is sampled. This slowdown is not observed in fall 
2020. 

 

 
Fig. 3. Phylodynamic estimates for the transmission damping factor in Switzerland and 

New Zealand compared to case numbers. Case numbers in (A) Switzerland and (B) 
New Zealand during 2020 are shown as a 7-day rolling average of daily new confirmed 
cases (22). (C) and (D) show estimates for if and how much transmission rates were 
dampened after introductions were sampled during different time periods in (C) 
Switzerland and (D) New Zealand. The inference was done twice, once conditioning on 
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introductions identified assuming many introductions (light gray) and once assuming few 
introductions (dark gray). Thus, the difference between estimates in light and dark gray 
are due to phylogenetic uncertainty. Results shown are from the model with an 
unbounded sampling proportion prior, results with a bounded sampling proportion prior 
are similar (Figure S8). 
 

New Zealand data shows slowdown effect is not Switzerland-specific 
While Switzerland is centrally located in Europe and well-connected to other countries, 
especially those in the (normally) barrier-free Schengen zone, New Zealand is a relatively 
isolated island nation. Additionally, New Zealand aimed to eradicate SARS-CoV-2 throughout 
2020 using strong measures, such as keeping its borders closed and enforcing strict quarantine-
on-arrival (23), while Switzerland partially reopened its borders to Europe on 15 June. We 
applied the same analysis framework for introduction estimation and phylodynamic inference to 
SARS-CoV-2 sequences from New Zealand as a comparison to our Switzerland-specific results. 
For the phylodynamic analysis, we estimated independent damping factors before and after an 
epidemic breakpoint in mid-May 2020 when local transmission was briefly eradicated (9, 24). 
Case numbers were subsequently held at lower levels through December 2020 (Figure 3B, 24).  

From the model fit with a damping factor, we estimate transmission damping in New 
Zealand before and after 15 May to be comparable with or stronger than in Switzerland during 
summer and fall 2020 (Figure 3D), regardless of the polytomy assumption used. Thus, the 
existence of a transmission damping effect is not specific to Switzerland. From the model fit 
without a damping factor, our estimates for the sampling proportion and Re are inconsistent. In 
particular, the sampling proportion is estimated to be unrealistically high when conditioning on 
the many introductions data set. However, including the damping factor in the model reconciles 
estimates based on each polytomy assumption, yielding more realistic estimates for the sampling 
proportion and pre-damping Re (Figure S10). 

 
DISCUSSION  

We quantify the change in cross-border and local transmission dynamics with the introduction or 
lifting of major public health measures in Switzerland based on genome sequence data. First, we 
quantify the reduction in case introductions during the period of Switzerland’s strictest border 
closures. Travel from Italy was tightly restricted beginning 13 March and with the rest of the 
world beginning 16 March 2020. These measures were partially lifted on 15 June, when 
Switzerland re-opened to European countries in the Schengen zone (15). We used phylogenetic 
estimates for the number and timing of viral introductions into Switzerland to show that newly 
sampled introductions peaked during the week of 15 March, coinciding with the implementation 
of border closures. Due to many identical or near-identical SARS-CoV-2 lineages circulating 
widely in Europe during spring 2020, the total number of introductions to Switzerland is highly 
uncertain. We considered two extreme cases, encompassing most of the phylogenetic uncertainty 
in the size and number of introductions. We additionally corrected these estimates based on the 
time-varying probability that an introduction went unsampled. After disentangling the effect of 
border closures and local control measures in this way, we show that border closures de-coupled 
introduction dynamics from case counts in neighboring countries. Compared to a simple null 
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model assuming that the incidence in travelers corresponds to the incidence in Switzerland’s 
neighboring countries, we quantify an 86 - 98% reduction in case imports from 13 March – 15 
June. While the de-coupling of case introductions and incidence in neighboring countries is 
clear, our estimates for precisely how many and what fraction of introductions were averted are 
subject to several strong assumptions, namely that incidence in travelers is the same as the 
average in the different source populations, and that the majority of imported cases would have 
come from Switzerland’s neighboring countries. Finally, we note that the fraction of polytomic 
lineages that were independent introductions likely decreased throughout spring 2020 as local 
incidence rose, travel declined, and the probability of locally acquired infection rose 
(Supplemental text S2). We expect the truth to lie somewhere between the estimates generated 
under our two polytomy assumptions.  

Second, we quantify the reduction in local transmission during Switzerland’s partial 
lockdown in spring 2020 compared to the pre- and post-lockdown time period. A suite of 
lockdown measures, including closure of schools, non-essential shops, restaurants, and 
entertainment and leisure establishments was introduced on 17 March 2020. Many non-essential 
shops re-opened on 27 April, before schools and most other shops reopened on 11 May (25). We 
estimate that sampled introductions circulating on 17 March persisted only about half as long 
until last sampling as in mid-June. We also estimate that only 0.5 - 8% of newly sampled 
introductions in April persisted more than 60 days until last being sampled, compared to 12 - 
52% in September. These findings agree with previous findings (26), which demonstrated a 
reduction in the number of transmission clusters and the risk of transmission within clusters in 
the Canton of Vaud, Switzerland after the implementation of lockdown measures. Finally, we 
obtained genome-based estimates for the time-varying effective reproductive number Re in 2020 
from our phylodynamic model. We estimate that Re dropped from 2.2 - 3.5 the week of 9 March 
to 0.3 - 0.4 the week of 16 March, coinciding with lockdown measures. Two models fit to 
hospitalization and death (27) and confirmed case (28) data in Switzerland gave similar or 
slightly lower pre-lockdown Re estimates of 2.1 - 3.8 and 1.6 - 1.9, respectively, and similar or 
slightly higher post-lockdown Re estimates of 0.3 - 0.6 and 0.6 - 0.8 after 29 March, 
respectively. Our phylodynamic estimates, which account for an influx of introduced cases, 
suggest a sharper reduction in Re coinciding with the Swiss lockdown than these estimates based 
on epidemiological data. This could be due to accounting for imported cases or the case-count 
smoothing used by (27, 28). 

Finally, we quantified a summertime “slowdown” dynamic in Switzerland in which 
introductions initially spread faster, then slowed 35 - 63%. This dynamic was not observable in 
fall 2020 in Switzerland. A plausible explanation of this dynamic is a successful test-trace-isolate 
implementation that roughly halved transmissions once an introduction was identified during 
summer 2020 in Switzerland. We cannot make a statement about the relative speed of 
transmission chains pre- and post- first sampling in spring 2020. This is because many lineages 
are ambiguous as to whether they were imported and died out quickly, or resulted in extensive, 
ongoing local transmission. Therefore, conditioning the birth-death phylodynamic model on few 
or many introductions during this period yields very different results. For the damping factor 
analysis, we make the strong assumption that transmission in all lineages descending from an 
introduction slows simultaneously 2 days after the first genome sample belonging to the 
introduction is collected. This may be justified if efficient informal backward contact tracing 
occurred or if individuals in sister lineages were identified around the same time but their 
samples were not sequenced or not included in our analysis. Then, there are other possible 
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explanatory factors at play. First, travelers returning to Switzerland during summer 2020 have 
been implicated in transmitting more than non-travelers (29). Thus, a passive transmission 
slowdown might have happened as introduced lineages moved into the non-traveler population. 
We would expect travelers in fall to have similar contact networks as those in summer, but we do 
not quantify a transmission slowdown in Switzerland in fall. This coincides with high case 
numbers during a fall wave, when Swiss contact tracing was reported to be overburdened (30). 
Second, contacts of positive cases are likely tested more intensely, potentially yielding “bursts” 
of samples around the first detected cases that subsequently disappear. If so, we can still interpret 
the slowdown dynamic as evidence that test-trace-isolate implementation was working, but it is 
difficult to determine precisely by how much transmission actually slowed. 

International comparisons also lend perspective to the transmission slowdown effect we 
quantify from Swiss genome data. Using the same analysis framework, we quantified a 
significant slowdown effect in New Zealand during two different time periods. Thus, this 
slowdown effect is not unique to Switzerland in summer 2020. Importantly, (4) showed - using 
genome sequence data - that New Zealand contact tracing was highly effective in identifying 
SARS-CoV-2 infection clusters. Then, (31) exploited an accidental, partial breakdown of English 
contact tracing to show that normal contact tracing in early fall 2020 reduced transmissions by 
63% in the 6 weeks following a positive case. This measure is within the range of our estimates 
for a transmission slowdown in Switzerland in summer 2020. 

Together, our results quantify the reduction of case importation and local transmission in 
Switzerland during the spring 2020 partial lockdown and partial border closure periods. Further, 
we provide genome-based quantification of a summertime transmission slowdown in 
Switzerland that may be linked to successful contact tracing efforts. This slowdown is not 
observed in fall when contact tracing efforts were overwhelmed in Switzerland but is observed in 
data from New Zealand in 2020. We have shown that our inference framework is straightforward 
to apply to different datasets and produces quantitative estimates that we envision can help 
policy-makers weigh general and specific measures against the respective burdens they impose. 
    

MATERIALS AND METHODS 
Genomic surveillance by the Swiss SARS-CoV-2 Sequencing Consortium in 2020 

Altogether 11,357 SARS-CoV-2 genome sequences sampled in Switzerland during 2020 were 
generated by the Swiss SARS-CoV-2 Sequencing Consortium (11). This sequencing effort 
represents the majority (79%) of Swiss SARS-CoV-2 genome sequences collected in 2020 and 
represents the 6th largest contribution of SARS-CoV-2 sequences globally in 2020 (Table S2), 
based on data available on GISAID as of June 2022 (https://www.gisaid.org/; (12)). Here, we 
briefly describe how these samples were generated.  

RNA extracts from qPCR-positive patient nasal or oropharyngeal swabs were provided 
by Viollier AG, a Swiss medical diagnostics company. RNA was extracted using either the 
Abbott m2000sp or Seegene STARMag 96x4 Universal Cartridge kits. Extracts were then 
transferred to the Genomics Facility Basel or the Functional Genomics Center Zurich for whole-
genome sequencing. Both centers used the ARTIC v3 primer scheme (32) to generate tiled, 
approximately 400bp-long amplicons. Library preparation was done with the New England 
Biolabs (NEB) library preparation kit. Libraries were sequenced on Illumina MiSeq or NovaSeq 
machines, resulting in 2 x 251 basepair reads. Bioinformatics processing was performed using V-
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pipe (33), including read trimming and filtering with PRINSEQ (34), alignment to GenBank 
accession MN908947 (35) with bwa (36), and consensus base calling. Positions with <5x 
coverage were masked, positions with >5% and >2 reads supporting a minor base were called 
with IUPAC ambiguity codes, and positions with >50% reads supporting a deletion were called 
as a deletion. We rejected samples with <20,000 non-N bases. The consensus sequences are 
available in the Global Initiative on Sharing Avian Influenza Data (GISAID) repository (12) 
under submitting lab “Department of Biosystems Science and Engineering, ETH Zürich”. 
 

Dataset construction and sampling procedure 
From all sequences available on GISAID (accessed 31 May 2021), we filtered the collection date 
to on or before 1 December 2020, removed non-human sequences, and sequences <27,000 bases 
long. We also filtered sequences flagged by the Nextclade tool (37) for suspiciously clustered 
SNPs (QC SNP clusters status metric not “good”; >= 6 mutations in 100 bases), too many private 
mutations (QC private mutations status metric not “good”; >= 10 mutations from the nearest tree 
node), or overall bad quality (Nextclade QC overall status “bad”). We aligned sequences to the 
reference genome MN908947.3 using MAFFT (38). Finally, we followed the Nextstrain 
pipeline’s recommendation to mask the first 100 and last 50 sites of the alignment (39) since the 
start and end of SARS-CoV-2 sequences are prone to sequencing errors (40). 

From all available Swiss sequences, we sampled up to 5% of confirmed case counts in 
each Swiss canton each week until 1 December 2020. Confirmed case data was provided by the 
Swiss Federal Office of Public Health (now available on https://www.covid19.admin.ch) (Figure 
S1). At the time of data access, cases were only attributed at the cantonal level beginning in mid-
May. Before then, we sampled randomly from across Switzerland. Where not enough sequences 
were available from a canton in a week, we used all available sequences. To reduce the size of 
the alignments for phylogenetic analysis, we divided the focal Swiss set into Pango lineages (14), 
similar to (10). Lineages composed of >50% Swiss sequences were aggregated into their parent 
lineage(s) until <= 50% were Swiss. This aims to ensure that each analyzed lineage originated 
outside of Switzerland. Table S1 lists the analyzed aggregated lineages and the number of 
sequences per lineage. 

We then added the most genetically similar sequences from abroad to each lineage 
alignment to add a global context. This aims to help distinguish between SARS-CoV-2 variants 
unique to Switzerland (likely within-Switzerland transmission) and variants also circulating 
abroad (possibly recent introductions or exports). We considered all non-Swiss sequences from 
each lineage available on GISAID that pass the quality filtering steps detailed above and applied 
the Nextstrain priority script (39) to rank these sequences by their genetic similarity to Swiss 
sequences in each lineage alignment. Briefly, the priority script ranks a set of foreign context 
sequences by the Hamming distance to their nearest neighbor within a set of focal sequences. 
Context sequences are further penalized for having high numbers of masked positions or for 
being more distant neighbors of the same focal sequence. We selected twice as many context 
sequences as focal Swiss sequences for each analyzed lineage alignment. Our results are based 
on a final set of 5,520 focal sequences from Switzerland and 11,009 genetically similar 
sequences from abroad, which were divided into 148 lineage alignments (Table S1). 
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Phylogenetic analysis 
We estimated an approximate maximum likelihood phylogeny for each lineage alignment using 
IQ-TREE (41) under an HKY substitution model (42) with empirical base frequencies and four 
gamma rate categories to account for site-to-site heterogeneity (43). We added one of the earliest 
collected SARS-CoV-2 genomes Wuhan/WH01/2019 (GISAID strain EPI_ISL_406798, 
GenBank accession MT019529.1) as an outgroup for rooting to each alignment and estimated 
branch lengths in calendar time units using least-squares dating (LSD) (44) implemented in IQ-
TREE. We used a strict molecular clock and a minimum mutation rate of 8 × 10!" substitutions 
per site per year (s/s/y), based on estimates by Nextstrain (45). We constrained the most-recent 
common ancestor to be between 15 November and 24 December 2019, also based on estimates 
by Nextstrain (45), and set the minimum branch length to zero. Sequences that violated the strict 
clock assumption (Z-score threshold > 3) were removed and near-zero length branches (<
1.7 × 10!# substitutions per site) were collapsed into polytomies, reflecting the fact that the 
sequence data alone is not sufficient to resolve the ordering of these transmission events. Given 
the root date constraints, the mutation rate conformed to the lower bound of 8 × 10!" with 
extremely narrow confidence intervals. After removal of sequences violating the strict clock 
assumption, 5,452 sequences remained across all lineage trees. 

  
Identifying introductions 

We identified putative Swiss transmission chains (collections of two or more genome sequences 
resulting from within-Switzerland transmissions) from each lineage tree while allowing for a 
fixed number of export events. We used the following criteria applied on a recursive tip-to-root 
tree traversal: at least two Swiss sequences are part of a clade in the tree and the subtree spanned 
by these Swiss sequences is monophyletic upon removing (a) up to three export events where (b) 
only one export event may occur along each internal branch. Exports are clades containing non-
Swiss sequences. We chose a conservative value for (b) while still allowing some exports and 
note that the number of inferred transmission chains is robust to different values for (a) given (b) 
(Figure S2A). We assume the identified transmission chains and remaining singleton Swiss 
sequences each represent an independent introduction into Switzerland. 

We repeated this procedure twice for each lineage tree, making different assumptions 
upon reaching a polytomy where non-Swiss descendent(s) of the polytomy would cause the 
proposed introduction to violate criterion (a). First, we split all Swiss clades descending from the 
polytomy into independent introductions. The second time, we aggregated descendent Swiss 
clades, going in descending size order, into a single introduction. If in doing this we reached 
criterion (a), we continued aggregating descendants into a second introduction, and so on. The 
above procedures are heuristic, but analogous to the ACCTRAN (accelerated transformations) 
and DELTRAN (delayed transformations) methods for assigning character transformations when 
multiple scenarios are equally parsimonious (46). In summary, we identify introductions twice, 
generating estimates that represent two plausible sets of many and few introductions at 
polytomies, where sequence data is not informative about the order of the branching events. 
  

Uncertainty in identifying introductions 
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We evaluated the effect of several variables on the number and size of identified introductions, 
as discussed in Supplementary text S1. We found that our two different polytomy assumptions 
are sufficient to capture most of the uncertainty in the number and size of introductions due to 
the specific heuristic criteria used to identify introductions from a phylogenetic tree (Figure 
S2A). As expected, increasing the ratio of foreign context to focal Swiss sequences analyzed 
identifies more, smaller introductions compared to a lower ratio. However, our two different 
polytomy assumptions at a 2:1 ratio are again sufficient to capture most of this uncertainty 
(Figure S2B).  

 
Quantifying the reduction of introductions during the time of border closures 

Prior to fitting our null model for introductions through time, we back-calculated the total 
number of introductions each week expected under a birth-death skyline model, as described in 
the section “Phylodynamic analysis” below. Under this model, one can calculate the probability 
p(t) that a new introduction at time t would have no sampled descendants by 1 December 2020. 
This formula is given in (16). We used weekly time bins, taking the median and 95% HPD upper 
and lower bounds for Re from our phylogenetic analysis (see below), a constant sampling 
proportion of 5% based on our known sampling scheme, and a constant become-uninfectious rate 
of 36.5 per year, which corresponds to an average of 10 days to becoming uninfectious (roughly 
in line with estimates provided by the Swiss Federal Office of Public Health (47)). We divided 
the number of sampled introductions each week by 1 - p(t), the probability an introduction at the 
start of the week would yield a sampled descendant by 1 December 2020. This yields an estimate 
for the total number of introductions each week (both sampled and unsampled), while accounting 
for varying local transmission dynamics. For a more extended description of the implementation 
of this correction, see the Supplementary text S4. 

Then, we assumed a simple null model in which introductions are a linear function of 
case counts in Switzerland’s largest neighboring countries: Italy, France, Germany, and Austria. 
We used a 7-day rolling average of case count data from the European Centre for Disease 
Prevention and Control (ECDC) (22). Further, we considered up to 18 days delay between the 
actual introduction event and an introduction being sampled. This is based on the 8-day lag from 
importation to first local transmission estimated by (6) in the U.K. and a 10-day infectious 
period. We back-calculated total introductions as described above for each plausible delay value 
using either the median or 95% upper or lower HPD Re estimate from our phylodynamic 
analysis (see below). We fit the model independently to each of these weekly estimates up to 13 
March. We selected the delay yielding the best model fit (lowest root mean squared error using 
the median Re estimate) for each set of few or many introductions. These were 4 and 5 days, 
respectively. Finally, we projected introductions after 13 March using the fitted model 
coefficients and ongoing case counts in the surrounding countries. We did not fit the model to 
data after border closures were partially lifted because travel behavior was still affected by risk 
of infection, risk of new restrictions being introduced, and ongoing stay-at-home guidance. This 
is apparent in data collected by the Swiss Tourism Federation, which demonstrates a marked 
drop in overnight stays by foreign residents in Switzerland from approximately 6.3 million in the 
winter season November 2019 - April 2020 to 3.1 million in the summer season May - October 
2020 (48). As a sensitivity analysis, we also fit the model using confirmed cases in all non-Swiss 
European countries as defined in the ECDC’s case count data (22) (Figure S5). 
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Quantifying the reduction of persistence of introductions during the lockdown 

We developed a second simple null model to test whether the Swiss partial lockdown from 17 
March to 27 April 2020 coincided with a change in the persistence of introductions. This null 
model assumes that in the absence of measures, introductions circulating on any given day 
persist equally long. In other words, introductions die out (are no longer sampled) according to a 
delay distribution that is constant through time. For each date, we calculated the time from that 
date to the last sample for each introduction persisting on that date. Singleton introductions are 
trivially assumed to persist for 1 day. Then, we report the median and interquartile range of this 
delay distribution from each date. 

  
Phylodynamic analysis 

After identifying introductions, we performed phylodynamic inference on them using the 
BDSKY (birth-death skyline) method (16) in BEAST2 (49). To avoid model mis-specification 
due to the more transmissible alpha variant, we analyzed data only until 1 December 2020. We 
also pruned introductions to only include genomes generated by the S3C, as these were explicitly 
surveillance samples. This left 4,136 genome sequences for phylodynamic analysis. The 
phylodynamic inference relies on two main models: a nucleotide substitution model describing 
an evolutionary process and a population dynamics model describing a transmission and 
sampling process. For the nucleotide substitution model, we assumed an HKY (42) model with 
four Gamma rate categories to account for site-to-site rate heterogeneity (43). We used the 
default priors for kappa and the scale factor of the Gamma distribution. We assumed a strict 
clock with the clock rate fixed to 8 × 10!" s/s/y, as estimated by (45). 

For the population dynamics model, we used BDSKY (16). In BDSKY, the identified 
introductions are the result of a birth-death with sampling process parameterized by an effective 
reproductive number, a becoming-uninfectious rate, and a sampling proportion. As in (10), we 
inferred these population dynamical parameters jointly from the different introductions. More 
concretely, each introduction is assumed to result from an independent birth-death process 
having its own origin time, but sharing all other parameters with the processes associated with 
the other introductions. We applied a uniform prior on the time of origin for each introduction, 
between 15 February and the oldest sample in the introduction. This constrains introductions to 
have an origin no earlier than 15 February, excluding the possibility of introductions and 
subsequent local transmission before the date the first confirmed Swiss case was reported 
infected abroad in Italy (50). After 15 February, our prior expectation is a uniform rate of 
introductions through time. We fixed the become-uninfectious rate to 36.5 per year, as above. 
We allowed Re to vary week-to-week, with an Ornstein-Uhlenbeck smoothing prior applied to 
the logarithm of this parameter. The stationary distribution is LogNormal(0.8, 0.5) and we 
applied an Exp(1) hyperprior on the relaxation parameter of the process. This prior constrains Re 
to a wide range of reasonable values (95% range 0.8 – 5.9) and penalizes large changes in Re 
from week-to-week. Finally, we allowed the sampling proportion to vary when Swiss testing or 
genome sampling regimes changed significantly (Table S3). For our main analysis, we applied a 
broad LogUniform(10−4, 1) prior on the sampling proportion, since we do not know how many 
individuals were truly infected. Alternatively, we also tried a LogUniform(10−4, 0.05) prior since 
we upper-bounded our sampling to 5% of confirmed cases each week (Supplementary text S3). 
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  Finally, we added an additional transmission damping factor to the model. This factor is a 
multiplicative damping of Re applied to each introduction from 2 days after the oldest to the 
most-recent sampling date in the introduction. Since we hypothesized contact tracing was not 
functioning as well during periods of high case numbers, we estimated a separate damping factor 
for each of three periods:  before 15 June 2020 (spring), 15 June to 30 September 2020 
(summer), and 30 September to 1 December 2020 (fall). We used the same uninformative spike 
and slab prior for the damping factor in each period, with an inclusion probability of 0.5 and a 
uniform prior between 0 and 1, if included. For a description of the implementation of this model 
extension, see the Supplementary text S4. 
 For each phylodynamic model configuration (bounded and unbounded sampling 
proportion prior, with and without the contact tracing damping factor) and set of introductions 
(many and few), we ran five independent MCMC chains. We discarded the first 10% of each 
chain as burn-in and combined the remaining samples across the five chains. We evaluated the 
effective sample size (ESS) using Tracer (51) and verified that the ESS was at least 100 for all 
inferred parameters. 
New Zealand analysis 

Genome sequence selection was done as for the Swiss analysis, except that we down-sampled 
available sequences from GISAID to 40% of confirmed case counts each week rather than 5% 
and we used national case count numbers rather than stratified by region. Phylogenetic analysis 
was performed as for the Swiss data. The phylodynamic analysis was also the same, except that 
we assumed a constant sampling proportion through time and for the bounded sampling 
proportion prior we used a LogUniform(10−4, 0.4) prior to match the down-sampling scheme. 
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