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Summary 

Introduction: Globally, there have been more than 404 million cases of SARS-CoV-2, with 

5.8 million confirmed deaths, as of February 2022. South Africa has experienced four waves 

of SARS-CoV-2 transmission, with the second, third, and fourth waves being driven by the 

Beta, Delta, and Omicron variants, respectively. A key question with the emergence of new 

variants is the extent to which they are able to reinfect those who have had a prior natural 

infection. 

Rationale: We developed two approaches to monitor routine epidemiological surveillance 

data to examine whether SARS-CoV-2 reinfection risk has changed through time in South 
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Africa, in the context of the emergence of the Beta (B.1.351), Delta (B.1.617.2), and 

Omicron (B.1.1.529) variants. We analyze line list data on positive tests for SARS-CoV-2 

with specimen receipt dates between 04 March 2020 and 31 January 2022, collected through 

South Africa’s National Notifiable Medical Conditions Surveillance System. Individuals 

having sequential positive tests at least 90 days apart were considered to have suspected 

reinfections. Our routine monitoring of reinfection risk included comparison of reinfection 

rates to the expectation under a null model (approach 1) and estimation of the time-varying 

hazards of infection and reinfection throughout the epidemic (approach 2) based on model-

based reconstruction of the susceptible populations eligible for primary and second 

infections. 

Results: 105,323 suspected reinfections were identified among 2,942,248 individuals with 

laboratory-confirmed SARS-CoV-2 who had a positive test result at least 90 days prior to 31 

January 2022. The number of reinfections observed through the end of the third wave in 

September 2021 was consistent with the null model of no change in reinfection risk 

(approach 1). Although increases in the hazard of primary infection were observed following 

the introduction of both the Beta and Delta variants, no corresponding increase was observed 

in the reinfection hazard (approach 2). Contrary to expectation, the estimated hazard ratio for 

reinfection versus primary infection was lower during waves driven by the Beta and Delta 

variants than for the first wave (relative hazard ratio for wave 2 versus wave 1: 0.71 (CI95: 

0.60–0.85); for wave 3 versus wave 1: 0.54 (CI95: 0.45–0.64)). In contrast, the recent spread 

of the Omicron variant has been associated with an increase in reinfection hazard coefficient. 

The estimated hazard ratio for reinfection versus primary infection versus wave 1 was 1.75 

(CI95: 1.48–2.10) for the period of Omicron emergence (01 November 2021 to 30 November 

2021) and 1.70 (CI95: 1.44–2.04) for wave 4 versus wave 1. Individuals with identified 

reinfections since 01 November 2021 had experienced primary infections in all three prior 
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waves, and an increase in third infections has been detected since mid-November 2021. Many 

individuals experiencing third infections had second infections during the third (Delta) wave 

that ended in September 2021, strongly suggesting that these infections resulted from 

immune evasion rather than waning immunity. 

Conclusion: Population-level evidence suggests that the Omicron variant is associated with 

substantial ability to evade immunity from prior infection. In contrast, there is no population-

wide epidemiological evidence of immune escape associated with the Beta or Delta variants. 

This finding has important implications for public health planning, particularly in countries 

like South Africa with high rates of immunity from prior infection. Further development of 

methods to track reinfection risk during pathogen emergence, including refinements to assess 

the impact of waning immunity, account for vaccine-derived protection, and monitor the risk 

of multiple reinfections will be an important tool for future pandemic preparedness. 

Introduction 

As of 31 January 2022, South Africa had more than 3.6 million cumulative laboratory-

confirmed cases of SARS-CoV-2, concentrated in four waves of infection (Figure 1). The 

first case was detected in early March 2020 and was followed by a wave that peaked in July 

2020 and ended in September. The second wave, which peaked in January 2021 and ended in 

February, was driven by the Beta (B.1.351 / 501Y.V2 / 20H) variant, which was first detected 

in South Africa in October 2020 (1). The third wave, which peaked in July and ended in 

September 2021, was dominated by the Delta (B.1.617.2 / 478K.V1 / 21A) variant (2). In late 

November 2021, the Omicron (B.1.1.529 / 21K) variant was detected in Gauteng Province, 

the smallest yet most populous province, and associated with rapidly increasing case numbers 

(3). The estimated effective reproduction number in Gauteng based on PCR-confirmed cases 

was 2.3 as of 18 November, which was as high as had been seen at any point during prior 
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three waves, and peaked above 3 in late November (4, 5). The proportion of positive PCR 

tests with S-gene target failure (SGTF), a marker of the BA.1 sublineage of the Omicron 

variant, subsequently increased across all provinces (6). 

Following emergence of three variants of concern in South Africa, a key question 

remains of whether there is epidemiologic evidence of increased risk of SARS-CoV-2 

reinfection with these variants (i.e., immune escape from natural infection). Laboratory-based 

studies suggest that convalescent serum has a reduced neutralizing effect on the Beta, Delta, 

and Omicron variants compared to wild type virus in vitro (7–12); however, this finding does 

not necessarily translate into immune evasion at the population level. 

To examine whether reinfection risk has changed through time, it is essential to 

account for potential confounding factors affecting the incidence of reinfection: namely, the 

changing force of infection experienced by all individuals in the population and the growing 

number of individuals eligible for reinfection through time. These factors are tightly linked to 

the timing of epidemic waves. We examine reinfection trends in South Africa using two 

approaches that account for these factors to address the question of whether circulation of 

variants of concern has been associated with increased reinfection risk, as would be expected 

if their emergence was driven or facilitated by immune evasion. 

Identification of and characterization of reinfections 

We define a suspected reinfection as a positive SARS-CoV-2 test in an individual with at 

least one previous positive test and whose most recent positive test occurred at least 90 days 

earlier. Based on routinely collected line list data maintained by the National Institute for 

Communicable Diseases (NICD) with specimen receipt dates between 04 March 2020 and 31 

January 2022, we identified 105,323 individuals with at least two suspected infections, 1,778 
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individuals with at least three suspected infections, and 18 individuals with four suspected 

infections. 

Time between successive positive tests 

The distribution of times between successive positive tests for individuals’ first and second 

infections has peaks near 170, 350, and 520 days (Figure 2A). The shape of the distribution 

was strongly influenced by the timing of South Africa’s epidemic waves, which have been 

spaced roughly six months apart. The first peak corresponds mainly to individuals whose 

primary infection and second infection occurred in consecutive waves (e.g., initially infected 

in wave 1 and reinfected in wave 2, initially infected in wave 2 and reinfected in wave 3, or 

initially infected in wave 3 and reinfected in wave 4), while the second peak corresponds 

mainly to individuals initially infected in wave 1 and reinfected in wave 3 or initially infected 

in wave 2 and reinfected in wave 4. The third peak corresponds to individuals initially 

infected in wave 1 and reinfected in wave 4. 

Almost all suspected third infections occurred after 31 October 2021, i.e., during the 

period of Omicron circulation. The distribution of times between successive positive tests for 

individuals’ second and third infections has peaks corresponding to those whose second 

infections occurred in the second and third waves. 

Individuals with multiple suspected reinfections 

1,778 individuals were identified who had three or more suspected infections. Prior to the 

emergence of Omicron, most of these individuals initially tested positive during the first 

wave, with suspected reinfections associated with waves two and three; however, 1,492 

individuals with multiple reinfections (83.9%) experienced their third infection after 31 

October 2021, which suggests that most third infections are associated with transmission of 

the Omicron variant (Figure 3). 
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Population-level reinfection trends in South Africa 

The population at risk of reinfection has risen monotonically since the beginning of the 

epidemic, with relatively rapid increases associated with each wave (delayed by 90 days 

because of our definition of reinfection, Figure 1B). No suspected reinfections were detected 

until 23 June 2020, after which the number of suspected reinfections increased gradually. The 

7-day moving average of suspected second infections reached a peak of approximately 160 

during the second epidemic wave and 350 during the third wave (Figure 1). Following the 

third wave, the number of reinfections began to increase dramatically in mid-November 

2022. During the fourth wave, the 7-day moving average of suspected second infections 

reached nearly 2,700 and the 7-day moving average of all suspected reinfections (including 

second, third, and fourth infections) reached approximately 2,750. 

Comparison of data to projections from a null model 

We developed a catalytic model to project the expected number of reinfections through time 

under the assumption of a constant reinfection hazard coefficient (i.e., a null model of no 

change in reinfection risk). The model assumes the reinfection hazard is proportional to the 7-

day moving average of the total number of diagnosed infections (primary infections and 

reinfections). During our early monitoring of reinfection risk, we fitted the reinfection hazard 

coefficient to data from 02 June 2020 to 30 September 2020 to parameterize the null model 

of no change in the reinfection hazard coefficient through time, and projected the number of 

reinfections through 30 June 2021. Based on this, we concluded there was no population-

level evidence of immune escape and recommended on-going monitoring of reinfection 

trends (13). 

Given that there was no evidence of divergence from the null projection during the 

second wave, and to improve convergence of the MCMC fitting algorithm, for the present 

analysis, we repeated the fitting process using a window of 02 June 2020 to 28 February 2021 
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(representing the end of the month in which the second wave ended). This led to good 

convergence with regard to estimation of both the negative binomial dispersion parameter 

and the reinfection hazard coefficient (Figure S4) and allowed us to fit the model to all nine 

provinces. The 7-day moving average of observed reinfections and most individual daily 

values fall within the projection interval from the beginning of the projection period though 

the end of the third wave (Figure 4). From early November 2021, however, the 7-day moving 

average of observed reinfections reached the upper bound of the projection interval, with 

many individual daily numbers falling well above the projection interval, both nationally and 

in Gauteng (Figure 4). This observed deviation from the projection under the null model is a 

signature of immune evasion, and the timing of this deviation suggests it is associated with 

the emergence of the Omicron variant. A similar pattern has now been seen across all 

provinces (Figures S5-S7). 

Estimation of time-varying infection and reinfection hazards 

We also examined changes in the reinfection risk via a method that relies on reconstruction of 

the numbers of observed and unobserved first and second infections through time (see 

Materials and Methods for details). Based on this approach, the estimated hazard coefficient 

for primary infection increased steadily through the end of the third wave, as expected under 

a combination of relaxing of restrictions, behavioral fatigue, and introduction of variants with 

increased transmissibility (Beta and Delta). The estimated hazard coefficient for reinfection, 

in contrast, remained relatively constant throughout this period, with the exception of an 

initial spike in mid-2020 (Figure 5). Because both reinfection numbers and the population 

eligible for reinfection were very low at the time, this increase may be an artifact of intense 

follow-up of the earliest cases or simply noise due to small numbers. The mean ratio of 

reinfection hazard to primary infection hazard decreased slightly from 0.15 in wave 1 to 0.12 

in wave 2 and 0.09 in wave 3. The absolute values of the hazard coefficients and hazard ratio 
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are sensitive to assumed observation probabilities for primary infections and reinfections; 

however, the temporal trends are robust (Figure S8). 

The picture changed following the end of the third wave. Although there is substantial 

uncertainty in the estimated hazard coefficient for primary infection, it appeared to decrease 

from early October 2021, with a simultaneous increase in the estimated reinfection hazard 

coefficient (Figure 5). This change became more marked from the beginning of November, 

with the mean ratio of reinfection hazard to primary infection hazard for the period from 01 

November 2021 to the beginning of the fourth wave increasing to 0.25, and a mean ratio 

during the fourth wave of 0.27. 

These findings are consistent with the estimates from the generalized linear mixed 

model based on the reconstructed data set. In this analysis, the relative hazard ratio for wave 

2 versus wave 1 was 0.71 (CI95: 0.60–0.85) and for wave 3 versus wave 1 was 0.54 (CI95: 

0.45–0.64). The relative hazard ratio for the period of Omicron emergence (01 November 

2021 to the start of the fourth wave) versus wave 1 was 1.75 (CI95: 1.48–2.10), and for wave 

4 versus wave 1 was 1.70 (CI95: 1.44–2.04). 

Discussion and limitations 

Our analyses suggest that the cumulative number of reinfections observed through the end of 

wave 3 was consistent with the null model of no change in reinfection risk through time. 

Furthermore, our findings suggest that the relative hazard of reinfection versus primary 

infection decreased with each subsequent wave of infections through September 2021, as 

would be expected if the risk of primary infection increased without a corresponding increase 

in reinfection risk. Thus, our analyses show no population-level evidence of immune escape 

associated with emergence of the Beta or Delta variants. In contrast, in November 2021, the 

number of daily new reinfections spiked and exceeded the 95% projection interval from the 
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null model, accompanied by a notable increase in the hazard ratio for reinfection versus 

primary infection. The timing of these changes strongly suggests that they were driven by the 

emergence of the Omicron variant. 

Differences in the time-varying force of infection, original and subsequent circulating 

lineages, testing strategies, and vaccine coverage limit the usefulness of direct comparisons 

of rates of reinfections across countries or studies. Pre-Omicron reinfection does however 

appear to be relatively uncommon. The PCR-confirmed reinfection rate ranged from 0% – 

1.1% across eleven studies included in a systematic review (14). While none of the studies 

included in the systematic review reported increasing risk of reinfection over time, the 

duration of follow-up was less than a year and most studies were completed prior to the 

identification of variants of concern, and all studies predated the emergence of Omicron. Our 

findings for the period prior to the emergence of Omicron are consistent with results from the 

PHIRST-C community cohort study conducted in two locations in South Africa, which found 

that infection prior to the second wave provided 84% protection against reinfection during the 

second (Beta) wave (15), comparable to estimates of the level of protection against 

reinfection for wild type virus from the SIREN study in the UK (16). 

A preliminary analysis of reinfection trends in England suggested that the Delta 

variant may have a higher risk of reinfection compared to the Alpha variant (17); however, 

this analysis did not take into account the temporal trend in the population at risk for 

reinfection, which may have biased the findings. 

Our findings regarding the Beta and Delta variants are somewhat at odds with in vitro 

neutralization studies. Both the Beta and Delta variants are associated with decreased 

neutralization by some anti-receptor binding-domain (anti-RBD) and anti-N-terminal domain 

(anti-NTD) monoclonal antibodies though both Beta and Delta each remain responsive to at 
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least one anti-RBD (8, 9, 18). In addition, Beta and Delta are relatively poorly neutralized by 

convalescent sera obtained from unvaccinated individuals infected with non-VOC virus (7–9, 

18). Lastly sera obtained from individuals after both one and two doses of the BNT162b2 

(Pfizer) or ChAdOx1 (AstraZeneca) vaccines displayed lower neutralization of the Beta and 

Delta variants when compared to non-VOC and Alpha variant (9); although this does not 

have direct bearing on reinfection risk, it is an important consideration for evaluating immune 

escape more broadly. Non-neutralizing antibodies and T-cell responses could explain the 

apparent disjuncture between our findings and the in vitro immune evasion demonstrated by 

both Beta and Delta. 

Strengths of this study 

Our study has three major strengths. First, we analyzed a large routine national data set 

comprising all confirmed cases in the country, allowing a comprehensive analysis of 

suspected reinfections in the country. Second, we found consistent results using two different 

analytical methods, both of which accounted for the changing force of infection and 

increasing numbers of individuals at risk for reinfection. Third, our real-time routine 

monitoring was sufficient to detect a population-level signal of immune evasion during the 

initial period of emergence of the Omicron variant in South Africa, prior to results from 

laboratory-based neutralization tests, providing timely information of importance to global 

public health planning. 

Limitations of this study 

The primary limitation of this study is that changes in testing practices, health-seeking 

behavior, or access to care have not been accounted for in these analyses. Estimates based on 

serological data from blood donors suggest substantial geographic variability in detection 

rates (19), which may contribute to the observed differences in reinfection patterns by 

province (Supplementary Figure S1). Detection rates likely also vary through time and by 
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other factors affecting access to testing, which may include occupation, age, and 

socioeconomic status. In particular, rapid antigen tests, which were introduced in South 

Africa in late 2020, may be under-reported despite mandatory reporting requirements. 

Although we have incorporated adjustments that account for late reporting of antigen tests, if 

under-reporting of antigen tests was substantial and time-varying it could still influence our 

findings. However, comparing temporal trends in infection risk among those eligible for 

reinfection with the rest of the population, as in approach 2, mitigates against potential failure 

to detect a substantial increase in risk. 

Civil unrest during July 2021 severely disrupted testing in Gauteng and KwaZulu-

Natal, the two most populous provinces in the country. Case data are unreliable during the 

period of unrest and a key assumption of our models - that the force of infection is 

proportional to the number of positive tests - was violated during this period, resulting in 

increased misclassification of individuals regarding their status as to whether they are at risk 

of primary or re-infection. The effect of this misclassification on the signal of immune escape 

during the period of Omicron’s emergence would likely be small and would be expected to 

bias subsequent reinfection hazard estimates downwards. 

The purpose of our analysis is to detect changes in the relative reinfection risk 

through time, rather than to precisely estimate what the reinfection risk is at any particular 

point in time. While issues related to underdetection of both primary infections and 

reinfections are likely to affect the projection intervals against which we compare observed 

reinfections, we believe that our assessment of changes in the reinfection hazard are fairly 

robust to these detection issues. In effect, Approach 1 follows an open cohort of individuals 

who have had a first detected infection. Through time, this may include an increasing number 

of individuals whose first true infection was missed and whose first diagnosed infection is in 

fact a reinfection. These individuals would presumably be at a reduced risk of acquiring a 
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new infection relative to those whose first detected infection was their first true infection. 

Two other factors would bias the results in the same direction: undetected reinfections in the 

cohort of individuals having had a first detected infection and deaths within this cohort, 

which are not accounted for due to not having a mortality line list that can be linked to the 

positive test data. All three factors artificially inflate the estimated denominator of individuals 

at risk for a second detected infection, thereby reducing the apparent reinfection risk. These 

factors may explain the slightly lower observed than projected number of reinfections 

throughout the Delta wave but did not have a substantial enough effect to prevent detection of 

the increased reinfection risk associated with the Omicron variant. 

The other main limitation of this study is that reinfections were not confirmed by 

sequencing or by requiring a negative test between putative infections. Nevertheless, the 90-

day window period between consecutive positive tests reduces the possibility that suspected 

reinfections were predominantly the result of prolonged viral shedding. Furthermore, due to 

data limitations, we were unable to examine whether symptoms and severity in primary 

episodes correlate with protection against subsequent reinfection. 

Lastly, while vaccination may increase protection in previously infected individuals 

(20–23), vaccination coverage in South Africa was very low during much of the study period, 

with 22.5% of the population fully vaccinated by 30 November 2021 (24). Nevertheless, 

increasing vaccination uptake may reduce the risks of both primary infection and reinfection. 

The vaccination status of individuals with suspected reinfections identified in this study was 

unknown. Application of our approach to other locations with higher vaccine coverage would 

require a more nuanced consideration of the potential effect of vaccination. Further areas for 

future methodological development include accounting for potential of waning of natural and 

vaccine-derived immunity, as well as methods to track changes in the risk of multiple (three 

or more) infections. 
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Given the limitations outlined above, estimates of the extent of immune evasion based 

on our approach, which aims to detect changing trends rather than make precise estimates, 

should be treated with caution. 

Conclusion 

We find evidence of a substantial increase in the risk of reinfection that is temporally 

consistent with the timing of the emergence of the Omicron variant in South Africa, 

suggesting that Omicron’s selection advantage is at least partially driven by an increased 

ability to infect previously infected individuals. 

In contrast, we find no evidence that reinfection risk increased as a result of the 

emergence of Beta or Delta variants, suggesting that the selective advantage that allowed 

these variants to spread derived primarily from increased transmissibility, rather than immune 

evasion. The discrepancy between the population-level evidence presented here and 

expectations based on laboratory-based neutralization assays for Beta and Delta highlights 

the need to identify better correlates of immunity for assessing immune escape in vitro. 

Immune evasion from prior infection has important implications for public health 

globally. As new variants emerge, methods to quantify the extent of immune evasion for both 

natural and vaccine-derived immunity, as well as changes in transmissibility and disease 

severity will be urgent priorities to inform facility readiness planning and other public health 

operations. 

Methods 

Data sources 

Data analyzed in this study came from two sources maintained by the National Institute for 

Communicable Diseases (NICD): the outbreak response component of the Notifiable Medical 
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Conditions Surveillance System (NMC-SS) deduplicated case list and the line list of repeated 

SARS-CoV-2 tests. All positive tests conducted in South Africa appear in the combined data 

set, regardless of the reason for testing or type of test (PCR or antigen detection), and include 

the large number of positive tests that were retrospectively added to the data set on 23 

November 2021 (25). We note that, of the 18,585 cases reported on 23 November, 93% had a 

specimen receipt date before 01 November 2021, and 6% had specimen receipt dates on or 

after 21 November 2021. 

A combination of deterministic (national identity number, names, dates of birth) and 

probabilistic linkage methods were utilized to identify repeated tests conducted on the same 

person. In addition, provincial COVID-19 contact tracing teams identify and report repeated 

SARS-CoV-2 positive tests to the NICD, whether detected via PCR or antigen tests. The 

unique COVID-19 case identifier which links all tests from the same person was used to 

merge the two datasets. Irreversibly hashed case IDs were generated for each individual in 

the merged data set. 

Primary infections and suspected repeat infections were identified using the merged 

data set. Repeated case IDs in the line list were identified and used to calculate the time 

between consecutive positive tests for each individual, using specimen receipt dates. If the 

time between sequential positive tests was at least 90 days, the more recent positive test was 

considered to indicate a suspected new infection. We present a descriptive analysis of 

suspected third and fourth infections, although only suspected second infections (which we 

refer to as “reinfections”) were considered in the analyses of temporal trends. Incidence time 

series for primary infections and reinfections are calculated by specimen receipt date of the 

first positive test associated with the infection, and total observed incidence is calculated as 

the sum of first infections and reinfections. The specimen receipt date was chosen as the 

reference point for analysis because it is complete within the data set; however, problems 
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have been identified with accuracy of specimen receipt dates for tests associated with 

substantially delayed reporting from some laboratories. For these tests, which had equivalent 

entries for specimen receipt date and specimen report date that were more than 7 days after 

the sample collection date, the specimen receipt date was adjusted to be 1 day after the 

sample collection date, reflecting the median delay across all tests. 

All analyses were conducted in the R statistical programming language (R version 

4.0.5 (2021-03-31)). 

Timing of reinfections 

We calculated the time between successive infections as the number of days between the last 

positive test associated with an individual’s first identified infection (i.e., within 90 days of a 

previous positive test, if any) and the first positive test associated with their suspected 

subsequent infection (i.e., at least 90 days after the most recent positive test). We analyzed 

the distribution of these times for all second and third infections, and for the subset of second 

and third infections occurring since 01 November 2021. 

Statistical analysis of reinfection trends 

We analysed the NICD national SARS-CoV-2 routine surveillance data to evaluate whether 

reinfection risk has changed since emergence of variants of concern in South Africa. We 

evaluated the daily numbers of suspected reinfections using two approaches. First, we 

constructed a simple null model based on the assumption that the reinfection hazard 

experienced by previously diagnosed individuals is proportional to the incidence of detected 

infections and fit this model to the pattern of reinfections observed through 28 February 

2021. The null model assumes no change in the reinfection hazard coefficient through time. 

We then compared observed reinfections after the fitting period to expected reinfections 

under projections from the null model. 
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Second, we evaluated whether there has been a change in the relative hazard of 

reinfection versus primary infection, to distinguish between increased overall transmissibility 

of the variants and any additional risk of reinfection due to potential immune escape. To do 

this, we calculated a hazard coefficient at each time point for primary and second infections 

and compared their relative values through time. 

Approach 1: Catalytic model assuming a constant reinfection hazard coefficient 

Model description For a case testing positive on day 𝑡 (by specimen receipt date), we 

assumed the reinfection hazard is 0 for each day from 𝑡 + 1 to 𝑡 + 89 and 𝜆𝐼)! for each day 

𝜏 ≥ 𝑡 + 90, where 𝐼)! is the 7-day moving average of the detected case incidence (first 

infections and reinfections) for day 𝜏. The probability of a case testing positive on day 𝑡 

having a diagnosed reinfection by day 𝑥 is thus 𝑝(𝑡, 𝑥) = 1 − 𝑒"∑ $!"#
!"$%&' %&!, and the expected 

number of cases testing positive on day 𝑡 that have had a diagnosed reinfection by day 𝑥 is 

𝐼'(𝑝(𝑡, 𝑥), where 𝐼'( is the detected case incidence (putative first infections only) for day 𝑡. 

Thus, the expected cumulative number of reinfections by day 𝑥 is 𝑌) = ∑ 𝐼'(𝑝(𝑡, 𝑥)'*)
'*+ . The 

expected daily incidence of reinfections on day 𝑥 is 𝐷) = 𝑌) − 𝑌)"(. 

Model fitting The model was fitted to observed reinfection incidence through 28 

February 2021 assuming data are negative binomially distributed with mean 𝐷). The 

reinfection hazard coefficient (𝜆) and the inverse of the negative binomial dispersion 

parameter (𝜅) were fitted to the data using a Metropolis-Hastings Monte Carlo Markov Chain 

(MCMC) estimation procedure implemented in the R Statistical Programming Language. We 

ran 4 MCMC chains with random starting values for a total of 10,000 iterations per chain, 

discarding the first 1,000 iterations (burn-in). Convergence was assessed using the Gelman-

Rubin diagnostic (26). 
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Model-based projection We used 1,500 samples from the joint posterior distribution 

of fitted model parameters to simulate possible reinfection time series under the null model, 

generating 100 stochastic realizations per parameter set. We then calculated projection 

intervals as the middle 95% of daily reinfection numbers across these simulations. 

We applied this approach at the national and provincial levels. 

Approach 2: Estimation of time-varying infection and reinfection hazards 

We estimated the time-varying empirical hazard of infection as the daily incidence per 

susceptible individual. This approach requires reconstruction of the number of susceptible 

individuals through time. We distinguish between three “susceptible” groups: naive 

individuals who have not yet been infected (𝑆(), previously infected individuals who had 

undetected infections at least 90 days ago and have not yet had a second infection (𝑆,-), and 

previously infected individuals who had a prior positive test at least 90 days ago and have not 

yet had a second infection (𝑆,). We estimate the numbers of individuals in each of these 

categories on day 𝑡 as follows: 

𝑆((𝑡) = 𝑁 −:𝑃
.*'

.*+

(𝑡) 

where 𝑁 is the total population size and 𝑃(𝑡) = 𝑃/01(𝑡)/𝑝/01 is the total number of primary 

infections on day 𝑡, of which 𝑃/01(𝑡) were observed and 𝑃2.1134(𝑡) = 𝑃(𝑡) − 𝑃/01(𝑡) were 

missed. 

𝑆,-(𝑡) = : 𝑃2.1134

'"56

.*+

(𝑖) −:𝑈
'"(

.*+

(𝑖) 

where 𝑈(𝑡) = ℎ,(𝑡)𝑆,-(𝑡) is the number of new infections among individuals whose first 

infection was missed. These individuals are assumed to experience the same infection hazard 
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as individuals whose primary infection was diagnosed and who have not yet been reinfected, 

estimated as ℎ,(𝑡) =
78$/:()*+
;+(')

. Because individuals are not eligible for reinfection until at 

least 90 days after their primary infection, we set 𝑈(𝑡) = ℎ,(𝑡) = 0 when 𝑡 < 90. 

𝑆,(𝑡) = : 𝑃/01

.*'"56

.*+

(𝑖) −:
𝑋.
𝑝/01+

.*'

.*+

 

where 𝑝/01+ is the probability of detection for individuals who have had a previously 

identified infection, and 𝑋. is the number of individuals with a second detected infection on 

day 𝑖. Only the possibility of second infections are accounted for in the model, which was 

developed to monitor reinfection risk against a background in which reinfections were rare. 

This setup allows recursive calculation of 𝑈(𝑡) and therefore 𝑈/01(𝑡) = 𝑈(𝑡)𝑝/01,, 

where 𝑝/01, is the probability of a second infection being observed in an individual whose 

first infection was missed, and 𝑃/01(𝑡) = 𝐶' − 𝑈/01(𝑡), where 𝐶' is the number of individuals 

with their first positive test on day 𝑡 (i.e., detected cases). 

Individuals in 𝑆,- and 𝑆, are assumed to experience the same daily hazard of 

reinfection, estimated as ℎ,(𝑡) =
78$/:()*+
;+(')

. The daily hazard of infection for previously 

uninfected individuals is then estimated as ℎ((𝑡) =
>8$

;-(')
. 

If we assume that the hazard of infection is proportional to the 7-day moving average 

of infection incidence (𝐼'C = 𝑃D(𝑡) + 𝑈C(𝑡) + 𝑋'E/𝑝/01+), we can then examine the 

infectiousness of the virus through time as 𝜆((𝑡) = ℎ((𝑡)/𝐼'C and 𝜆,(𝑡) = ℎ,(𝑡)/𝐼'C. We 

constructed uncertainty intervals around 𝜆((𝑡), 𝜆,(𝑡), and their ratio, taking into account both 

measurement noise and uncertainty in the observation parameters (see Supplementary 

Materials for details). 
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We also used this approach to construct a data set with the daily numbers of 

individuals eligible to have a primary infection (𝑆((𝑡)) or suspected second infection (𝑆,(𝑡)) 

by wave. Wave periods were defined as the time surrounding the wave peak for which the 7-

day moving average of case numbers was above 15% of the wave peak. We then analyzed 

these data using a generalized linear mixed model to estimate the relative hazard of infection 

in the population eligible for suspected second infection, compared to the hazard in the 

population not eligible for suspected second infection. For this analysis, we assume 𝑝/01 =

0.1 and 𝑝/01+ = 0.5, which falls within the plausible range of observation probabilities (see 

Figure S8). 

Our primary regression model was a Poisson model with a log link function, 

groupinc = Poisson(𝜇): 

𝑙𝑜𝑔(𝜇) ∼ group ∗ wave+ offset(𝑙𝑜𝑔(groupsize)) + (day) 

The outcome variable (groupinc) was the reconstructed daily number of observed infections 

in the two groups (𝑃/01(𝑡) and 𝑋'). Our main interest for this analysis was in whether the 

relative hazard was higher in the second wave, third wave, pre-wave period in which 

Omicron emerged, and/or fourth wave, relative to during the first wave, thus potentially 

indicating immune evasion. This effect is measured by the interaction term between group 

and wave. The offset term is used to ensure that the estimated coefficients can be 

appropriately interpreted as per capita rates. We used day as a proxy for force of infection 

and reporting patterns and examined models where day was represented as a random effect 

(to reflect that observed days can be thought of as samples from a theoretical population) and 

as a fixed effect (to better match the Poisson assumptions). As focal estimates from the two 

models were indistinguishable, we present only the results based on the random effect 

assumption. 
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Figures and figure captions 

Figure 1. Daily numbers of detected primary infections, individuals eligible to be considered 

for reinfection, and suspected reinfections in South Africa. A: Time series of detected 

primary infections. Black line indicates 7-day moving average; black points are daily values. 

Colored bands represent wave periods, defined as the period for which the 7-day moving 

average of cases was at least 15% of the corresponding wave peak (purple = wave 1, pink = 

wave 2, orange = wave 3, turquoise = wave 4). B: Population at risk for reinfection 
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(individuals whose most recent positive test was at least 90 days ago and who have not yet 

had a suspected reinfection). C: Time series of suspected reinfections. Blue line indicates 7-

day moving average; blue points are daily values. 

Figure 2. Time between consecutive infections, based on the time between successive 

positive tests. Note that the time since the previous positive test must be at least 90 days to be 

considered a reinfection. A: Time in days between the last positive test of the first infection 

and the first positive tests of the suspected second infection. B: Time in days between the last 

positive test of the putative second infection and the first positive tests of the suspected third 

infection. Colors represent suspected reinfections diagnosed on or after 01 November 2021. 

In both panels, bars for these individuals are colored by the wave during which the previous 

infection occurred (purple = wave 1, pink = wave 2, orange = wave 3, light grey = inter-

wave). 
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Figure 3. Timing of infections for individuals with multiple suspected reinfections. Circles 

represent the first positive test of the first detected infection; triangles represent the first 

positive test of the suspected second infection; squares represent the first positive test of the 

suspected third infection; crosses represent the first positive test of the suspected fourth 

infection. Colored bands represent wave periods, defined as the period for which the 7-day 

moving average of cases was at least 15% of the corresponding wave peak (purple = wave 1, 

pink = wave 2, orange = wave 3, turquoise = wave 4). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2021.11.11.21266068doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.11.21266068
http://creativecommons.org/licenses/by/4.0/


Pulliam et al. medRxiv, DOI: 10.1101/2021.11.11.21266068v3 

Page 30 of 42 

Figure 4. Observed and expected temporal trends in reinfection numbers. Blue lines (points) 

represent the 7-day moving average (daily values) of suspected reinfections. Grey lines 

(bands) represent mean predictions (95% projection intervals) from the null model. The null 

model was fit to data on suspected reinfections through 28 February 2021. Comparison of 

data to projections from the null model over the projection period. The divergence observed 

reinfections from the projection interval in November is suggestive of immune escape. A and 

B: National. C and D: Gauteng. 
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Figure 5. Estimates of infection and reinfection hazards. A: Estimated time-varying hazard 

coefficients for primary infection (black) and second infections (blue). Colored bands 

represent wave periods, defined as the period for which the 7-day moving average of cases 

was at least 15% of the corresponding wave peak (purple = wave 1, pink = wave 2, orange = 

wave 3, turquoise = wave 4). B: Ratio of the empirical hazard for reinfections to the 

empirical hazard for primary infections. 
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Supplementary Materials for “Increased risk of SARS-CoV-2 reinfection associated 
with emergence of Omicron in South Africa” (Pulliam et al. medRxiv, DOI: 
10.1101/2021.11.11.21266068) 

Supplementary Text 
1. Supplementary Methods 
1.1 Data validation and known data issues 

To assess validity of the data linkage procedure and thus verify whether individuals 
identified as having suspected reinfections did in fact have positive test results at least 90 
days apart, we conducted a manual review of a random sample of suspected second infections 
occurring on or before 20 January 2021 (n=585 of 6026; 9.7%). This review compared fields 
not used for linkages (address, cell-phone numbers, email addresses, facility, and health-care 
providers) between records in the NMC-SS and positive test line lists. Where uncertainty 
remained and contact details were available, patients or next-of-kin were contacted 
telephonically to verify whether the individual had received multiple positive test results. 

Of the 585 randomly selected individuals with possible reinfections in the validation 
sample, 562 (96%) were verified as the same individual based on fields not used to create the 
linkages; the remaining 23 (4%) were either judged not a match or to have insufficient 
evidence (details captured by the clinician or testing laboratory) to determine whether the 
records belonged to the same individual. 

Between 5 and 11 December 2022, server issues at the National Health Laboratory 
Service’s Central Data Warehouse prevented one of the identifiers used in the probabilistic 
linkages from being pulled through into the dataset. Retrospective evaluation of the use of the 
identifier revealed that it had been required for 0.3% of the links made prior to this time. The 
impact of this data discrepancy is therefore thought to be minimal.  
 
1.2 Descriptive analysis 

We compared the age, gender, and province of individuals with suspected reinfections to 
individuals eligible for reinfection (i.e., who had a positive test result at least 90 days prior to 
31 January 2022). 

We did not calculate overall incidence rates by wave because the force of infection is 
highly variable in space and time, and the period incidence rate is also influenced by the 
temporal pattern of when people become eligible for reinfection. Incidence rate estimates 
would therefore be strongly dependent on the time frame of the analysis and not comparable 
to studies from other locations or time periods. 
 
1.3 Construction of uncertainty intervals for hazard coefficients and hazard ratio 

The uncertainty intervals shown in Figure 5 were constructed to take into account both 
measurement error and uncertainty in the assumed observation probabilities. To capture 
uncertainty in the observation probabilities, we uniformly sampled 1,000 values from the 
polygon of plausible values for 𝑝/01 and 𝑝/01+ (Figure S8). For each parameter combination, 
we used the model described in the main text (approach 2) to reconstruct the numbers of 
primary and second infections by day, as well as the relevant susceptible populations at risk. 
We then used each reconstructed data set to construct a 95% confidence interval for the 
associated Poisson rate, after Sahai and Kurshid (1), and for the associated incidence rate 
ratio, after Ulm (2). The confidence limits for the hazard coefficients were approximated by 
dividing the confidence limits for the Poisson rates by the reconstructed value of the total 
incidence for each reconstructed data set. 

The final uncertainty intervals were then constructed from the distribution of confidence 
limits based on the 1,000 reconstructed data sets. The median value presented in Figure 5 is 
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the median estimate from across the data sets, and the confidence limits represent the 2.5% 
and 97.5% quantiles of the lower and upper confidence limits, respectively. 
 
2. Supplementary Results 
2.1 Distribution of suspected reinfections by province 

Suspected reinfections were identified in all nine provinces (Figure S1). The reinfection 
rate was highest in Western Cape, where 20,952 of 516,857 eligible primary infections 
(4.05%) had suspected reinfections and lowest in Northern Cape (2,464 of 92,718; 2.66%). 
For comparison, the national reinfection rate was 92,718; 3.58% (105,323 of 2,942,248 
eligible primary infections). Numbers for all provinces are provided in Table S1. 
 

 

Fig. S1. Descriptive analysis of suspected reinfections: Percentage of eligible primary infections with suspected 
reinfections, by province. 
 

Table S1. Distribution of suspected reinfections by province, South Africa, March 2020 to January 2022. 
 
Province No reinfection One reinfection Two reinfections Total 
EASTERN CAPE 284,397 8,285 127 292,809 
FREE STATE 159,055 5,505 87 164,647 
GAUTENG 891,193 36,149 597 927,939 
KWAZULU-NATAL 501,040 16,409 256 517,705 
LIMPOPO 119,323 3,968 87 123,378 
MPUMALANGA 147,573 5,394 92 153,059 
NORTH WEST 148,183 4,845 106 153,134 
NORTHERN CAPE 90,254 2,438 26 92,718 
WESTERN CAPE 495,905 20,552 400 516,857 
UNKNOWN 2 0 0 2 
Total 2,836,925 103,545 1,778 2,942,248 
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2.2 Breakdown of suspected reinfections by sex and age group 
Among 2,878,217 eligible primary infections with both age and sex recorded, 62,690 of 

1,630,428 females (3.85%) and 42,099 of 1,247,789 males (3.37%) had suspected 
reinfections. Relative to individuals with no identified reinfection, reinfections were 
concentrated in adults between the ages of 20 and 55 years (Figure S2). Numbers for all age 
group-sex combinations are provided in Table S2. 

 

Fig. S2. Descriptive analysis of suspected reinfections: A: Age distribution of individuals with suspected 
reinfections (blue) versus eligible individuals with no detected reinfection (yellow), by sex. Solid lines indicate 
females; dashed lines indicate males. B: Age distribution of primary infections (left) and second infections 
(right) by wave (purple = wave 1, pink = wave 2, orange = wave 3, turquoise = wave 4). 
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Table S2. Breakdown of suspected reinfections by sex and age group (years), South Africa, March 2020 to 
January 2022. 
 
Sex Age group No reinfection One reinfection Two reinfections Total 
F (0,20] 203,687 4,361 50 208,098 
F (20,40] 623,098 33,299 656 657,053 
F (40,60] 528,525 20,505 353 549,383 
F (60,80] 182,785 3,004 33 185,822 
F (80,Inf] 29,643 426 3 30,072 
M (0,20] 170,647 3,353 27 174,027 
M (20,40] 454,922 20,364 397 475,683 
M (40,60] 422,514 14,841 220 437,575 
M (60,80] 142,421 2,673 31 145,125 
M (80,Inf] 15,186 188 5 15,379 
 Total 2,773,428 103,014 1,775 2,878,217 
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Fig. S3. 
Number of detected primary infections (black), suspected reinfections (blue), and suspected 
third infections (red), by province. Lines represent 7-day moving averages. The y-axes are 
shown on a square root scale. 
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Fig. S4. 
Convergence diagnostics and density of the posterior distribution for MCMC fits (approach 
1). A and B: MCMC chains for each parameter. C: Gelman-Rubin values (a.k.a. potential 
scale reduction factors) for each parameter; values less than 1.1 indicate sufficient mixing of 
chains to suggest convergence. D, G, I: posterior density for each parameter and the log 
likelihood. E, F, H: 2-D density plots showing correlations between parameters and the log 
likelihood. 
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Fig. S5. 
Observed and expected temporal trends in reinfection numbers, for the second and third most 
populous provinces. Blue lines (points) represent the 7-day moving average (daily values) of 
suspected reinfections. Grey lines (bands) represent mean predictions (95% projection 
intervals) from the null model. A and B: KwaZulu-Natal. C and D: Western Cape. 
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Fig. S6. 
Observed and expected temporal trends in reinfection numbers. Blue lines (points) represent 
the 7-day moving average (daily values) of suspected reinfections. Grey lines (bands) 
represent mean predictions (95% projection intervals) from the null model. A and B: Eastern 
Cape. C and D: Free State, E and F: Limpopo. 
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Fig. S7. 
Observed and expected temporal trends in reinfection numbers. Blue lines (points) represent 
the 7-day moving average (daily values) of suspected reinfections. Grey lines (bands) 
represent mean predictions (95% projection intervals) from the null model. A and B: 
Mpumalanga. C and D: North West, E and F: Northern Cape. 
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Fig. S8. 
Sensitivity analysis of hazard ratio estimates to assumed observation probabilities for primary 
and second infections. Estimates are shown for the full range of probabilities for which the 
overall mean relative hazard is between 0 and 1. The white polygon encloses the most 
plausible estimates (i.e. consistent with relative reinfection risk observed in the SIREN study 
(3) and observation probabilities for primary infection consistent with estimates based on 
seroprevalence data (4)). For all parameter combinations in the plausible range, 𝑝/01+ > 𝑝/01, 
suggesting that having had a previous test is a good marker for who will test again. Top: 
Mean relative empirical hazard for reinfections versus primary infections in each wave, as a 
function of assumed observation probabilities for primary infections (𝑝/01) and reinfections 
(𝑝/01+). A: wave 1, B: wave 2, C: wave 3. Bottom: Percent change in the mean relative 
empirical hazard for reinfections versus primary infections in waves 2 (D) and 3 (E) relative 
to wave 1, as a function of assumed observation probabilities for primary infections (𝑝/01) 
and reinfections (𝑝/01+). 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2021.11.11.21266068doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.11.21266068
http://creativecommons.org/licenses/by/4.0/


Pulliam et al. medRxiv, DOI: 10.1101/2021.11.11.21266068v3 

Page 42 of 42 

 

Fig. S9. 
Sensitivity analysis of empirical hazard ratio estimates to assumed observation probability for 
second infections among individuals whose first infection was undetected (𝑝/01,). In the 
main analysis we assume that this observation probability is equivalent to other individuals 
who have not yet had a detected infection (𝑝/01, = 𝑝/01, or a scaling factor of 1). Here, we 
compare this to the case when this probability is equal to 0 (𝑝/01, = 0, or a scaling factor of 
0). We consider these to be bounding cases. The figure shown here is for 𝑝/01 = 0.1 and 
𝑝/01+ = 0.5. 
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