1	Title: COVID-19 Vaccine Perceptions and Uptake in a National Prospective Cohort of		
2	Essential Workers		
3 4 5 6	AUTHORS Karen Lutrick, PhD Family & Community Medicine, College of Medicine – Tucson, University of Arizona, Tucson,		
7 8 9	Holly Groom, MPH Center for Health Research, Kaiser Permanente Northwest, Portland, OR		
10 11 12 13	Ashley L. Fowlkes, ScD Epidemiology Prevention Branch, Influenza Division, Centers of Disease Control and Prevention, Atlanta, GA		
14 15 16	Kimberly Groover, PhD Abt Associates, Atlanta, GA		
17 18 19 20	Manjusha Gaglani, MBBS Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX		
21 22 23 24	Patrick Rivers, MPP Family & Community Medicine, College of Medicine – Tucson, University of Arizona, Tucson, AZ		
25 26 27	Allison L. Naleway, PhD Center for Health Research, Kaiser Permanente Northwest, Portland, OR		
28 29 30 31	Kimberly Nguyen, DrPH, MS Assessment Branch, Immunization Services Division, Centers for Disease Control and Prevention, Atlanta, GA		
32 33 34	Meghan Herring, MPH Abt Associates, Atlanta, GA		
35 36 37	Kayan Dunnigan, MPH Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX		
38 39 40 41	Andrew Phillips, MD, MOH Occupational and Environmental Health, School of Medicine, University of Utah, Salt Lake City, UT		
42 43 44	Joel Parker, MS Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ		

- 45 Julie Mayo Lamberte, MSPH
- 46 Epidemiology Prevention Branch, Influenza Division, Centers of Disease Control and
- 47 Prevention, Atlanta, GA
- 48
- 49 Khaila Prather, MPH
- 50 Abt Associates, Atlanta, GA
- 51
- 52 Matthew S. Thiese, PhD, MSPH
- 53 Occupational and Environmental Health, School of Medicine, University of Utah, Salt Lake
- 54 City, UT
- 55
- 56 Zoe Baccam
- 57 Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ
 58
- 59 Harmony Tyner, MD, MPH
- 60 St. Luke's Infectious Disease Associates, St. Luke's Hospital, Duluth, MN
- 6162 Sarang Yoon, DO, MOH
- 63 Occupational and Environmental Health, School of Medicine, University of Utah, Salt Lake
- 64 City, UT
- 65
- 66

67 **ABSTRACT**

- 68 **Introduction:** In a multi-center prospective cohort of essential workers, we assessed
- 69 knowledge, attitudes, and practices (KAP) by vaccine intention, prior SARS-CoV-2 positivity,
- 70 and occupation, and their impact on vaccine uptake over time.
- 71 Methods: Initiated in July 2020, HEROES-RECOVER cohort provided socio-

72 demographics and COVID-19 vaccination data. Using follow-up two surveys approximately

- three months apart, COVID-19 vaccine KAP, intention, and receipt was collected; the first
- survey categorized participants as reluctant, reachable, or endorsers.
- 75 **Results:** A total of 4,803 participants were included in the analysis. Most (70%) were
- vaccine endorsers, 16% were reachable, and 14% were reluctant. By May 2021, 77% had
- received at least one vaccine dose. KAP responses strongly predicted vaccine uptake, particularly
- positive attitudes about safety (aOR=5.46, 95% CI: 1.4-20.8) and effectiveness (aOR=5.0, 95%

79	CI: 1.3-19.1). Participants prior SARS-CoV-2 infection were 22% less likely to believe the
80	COVID-19 vaccine was effective compared with uninfected participants (aOR 0.78, 95% CI:
81	0.64-0.96). This was even more pronounced in first responders compared with other occupations,
82	with first responders 42% less likely to believe in COVID-19 vaccine effectiveness (aOR=0.58,
83	95% CI 0.40-0.84). KAP responses shifted positively, with reluctant and reachable participant
84	scores modestly increasing in positive responses for perceived vaccine effectiveness (7% and
85	12%, respectively) on the second follow-up survey; 25% of initially reluctant participants
86	received the COVID-19 vaccine.
87	Discussion: Our study demonstrates attitudes associated with COVID-19 vaccine uptake
88	and a positive shift in attitudes over time. First responders, despite potential high exposure to
89	SARS-CoV-2, and participants with a history of SARS-CoV-2 infection were more vaccine
90	reluctant.
91	Conclusions: COVID-19 vaccine KAP responses predicted vaccine uptake and
92	associated attitudes improved over time. Perceptions of the COVID-19 vaccine can shift over
93	time. Targeting messages about the vaccine's safety and effectiveness in reducing SARS-CoV-2
94	virus infection and illness severity may increase vaccine uptake for reluctant and reachable
95	participants.
96	
97	

99 INTRODUCTION

100	The SARS-CoV-2 pandemic has resulted in high levels of morbidity and mortality in the			
101	US. ¹ In response, a global effort to develop COVID-19 vaccines generated evidence leading to			
102	the U.S. Food and Drug Administration (FDA) authorizing COVID-19 vaccines under an			
103	Emergency Use Authorization (EUA) mechanism, beginning in mid-December 2020. ² Essential			
104	workers, including healthcare personnel (HCP), first responders, and other frontline workers			
105	(FW), may be at an increased risk of SARS-CoV-2 infection because of their high rates of			
106	contact with patients, coworkers, or the general public ³⁻⁷ and were prioritized to receive COVID-			
107	19 vaccines by the Centers for Disease Control and Prevention (CDC) Advisory Committee on			
108	Immunization Practices during initial, staggered distribution.			
109	The COVID-19 vaccines have been shown to be safe and effective in adults and children			
110	ages 12 and older, but the initial high demand for vaccination has decreased. ⁸ Prior to COVID-19			
111	vaccine authorization and availability in December 2020, early studies in the United States (US)			
112	reported rates of willingness to receive the COVID-19 vaccine ranging widely from 40% to			
113	75%. ⁹⁻¹⁸ Additionally, first responders and FW have reported lower rates of vaccine acceptance			
114	than HCP. ^{12,14} Common reasons for vaccine hesitancy included the novelty of the COVID-19			
115	vaccines, concerns about potential adverse effects, and/or a distrust in government.9-14			
116	There is some indication that COVID-19 vaccine acceptance has changed over time in			
117	cross-sectional surveys. ^{12,19} It is unclear how individual vaccination intention has evolved as the			
118	public, has gained more information regarding symptoms and outcomes of COVID-19 disease			
119	and risks and benefits of vaccinations.			
120	Knowledge, attitudes, and practices (KAP) toward vaccination are often examined to			

121 understand factors associated with the acceptability of vaccines and inform strategies for

122	increasing vaccine uptake. ²⁰ We have addressed these knowledge gaps with a multi-center
123	prospective cohort of essential workers with the following objectives: 1) assess differences in
124	KAP by vaccine intention, prior SARS-CoV-2 positivity, and occupation group; 2) examine
125	KAP as predictors of vaccine uptake; and 3) assess individual-level change in KAP over time.
126	
127	METHODS
128	Study Design & Population
129	The HEROES-RECOVER studies represent a national network of prospective cohorts,
130	including Arizona Healthcare, Emergency Response and Other Essential Workers Surveillance
131	Study (HEROES) and Research on the Epidemiology of SARS-CoV-2 in Essential Response
132	Personnel (RECOVER) funded by the CDC with sites in Phoenix, Tucson, and other areas in
133	Arizona; Miami, Florida; Duluth, Minnesota; Portland, Oregon; Temple, Texas; and Salt Lake
134	City, Utah. Details of the protocols of the studies have been previously published. ²¹ Ongoing
135	enrollment began in July 2020 and included HCP, first responders, and FW who worked at least
136	20 hours per week and had routine occupational exposure to coworkers or the public.
137	Participants completed detailed epidemiologic surveys at enrollment and at
138	approximately three-month intervals (Follow-up surveys 1 and 2); text message-based surveys
139	were completed weekly and monitored illness or potential COVID-19 contact in the past 7 days.
140	The study is ongoing, but for this analysis participants actively enrolled during the Follow-up 1
141	survey distribution were included, with their prior SARS-CoV-2 infection, COVID-19
142	vaccination, and KAP data through May 19, 2021 utilized for analysis.
143	To identify SARS-CoV-2 infections, participants self-collected mid-turbinate nasal swabs
144	weekly for SARS-CoV-2 RT-PCR testing and provided blood specimens at enrollment and every

subsequent three months (supplemental Figure 1 for study timing). Beginning in December 2020,
participants were prompted to report uptake of COVID-19 vaccine; vaccine survey distribution
was based on vaccine availability data from state and county health departments. Vaccination
was verified by participant-provided vaccine cards, electronic medical records, or State
Immunization Information Systems. All protocols were reviewed and approved by each site's
Institutional Review Boards; study participants provided informed consent for all study
activities.

152 Primary Outcomes

Vaccine intention and KAP questions were in two follow-up surveys: Follow-up survey 1 was distributed from late December 2020-February 2021, and Follow-up survey 2 -- from March 2021-May 2021. New enrollees during each follow-up period received the KAP questions at the time of enrollment.

157 Vaccine intention was derived using participants' first response to the question, "What 158 are the chances that you will get a COVID-19 vaccination?" and vaccination status at the time of 159 Follow-up survey 1. Participants were grouped into three intention categories: 1) reluctant as 160 those who answered, "almost zero chance", or "very small chance", and were unvaccinated, 2) 161 reachable as those who answered "small chance", "do not know", or "moderate" and were 162 unvaccinated, or 3) endorser as those who answered, "large chance", "very large chance", or 163 "almost certain", or were vaccinated at Follow-up survey 1. New vaccine receipt after Follow-up 164 survey 1 was monitored and the participants' vaccine intention group did not change based upon 165 Follow-up survey 2 KAP responses.

Participants were asked six questions to assess the KAP constructs regarding COVID-19:
knowledge of SARS-CoV-2 and COVID-19 vaccines; attitudes about safety, effectiveness, trust

168 in the government, and perceived risk of becoming ill if they were not vaccinated (Table 1 Table 169 1). Responses to each question were rated on a 5- to 7-level Likert scale indicating lowest to

170 highest ranking.

171 **Predictors and Confounders**

172 For models examining KAP differences and predictors of vaccination, socio-

173 demographics, including gender, age, race, ethnicity, education, household income, occupation 174

and occupational setting, and participant health status, including SARS-CoV-2 infection status,

175 COVID-19 vaccination status, and medical history were included. HCP occupation categories

176 are categorized as any individual that works in a hospital as "HCP inpatient", any individual that

177 works in any outpatient healthcare facility or long-term care facility as "HCP other". We created

178 two first responder categories: 1) firefighter (firefighters/EMS) and 2) other first responders (law

179 enforcement, correctional officers, and border patrol). FW public-facing included individuals

180 that work in education settings, retail, food service, and hospitality. Other FW include

181 individuals that work in infrastructure, manufacturing, warehouse, utility, and transportation.

182 In models examining Objectives 1 and 2, COVID-19 contact data were reported as the

183 number of hours spent at work (1) in any setting and in direct contact with individuals with

184 suspected or confirmed COVID-19 and (2) the general public in the past 7 days. They also

185 indicated the percent of time protective equipment (PPE) was used during this contact.

186 Participants were categorized as having had a SARS-CoV-2 infection prior to Follow-up

187 survey 1 if they reported detection by antibody, antigen, or RT-PCR assay prior to enrollment, or

188 if SARS-CoV-2 was detected by RT-PCR or an antibody test during the study.

189 For Objectives 2 and 3 (KAP change over time), KAP responses (defined above) were 190 used as the primary predictors of interest.

191 Statistical Analysis

192	We included all participants who completed the Follow-up 1 survey. Continuous			
193	measurements were expressed as means and standard deviations or median and interquartile			
194	range, as appropriate. Counts and percentages were used for categorical variables. Likert scores			
195	were dichotomized for each KAP question, using responses greater than midpoint as positive			
196	associations and midpoint and lower than the midpoint as neutral/negative associations (Table 1).			
197	We stratified socio-demographics, occupation and occupational setting, previous			
198	positivity, KAP responses by vaccine intention, and utilized chi-squared tests or one-way			
199	ANOVA tests to examine family-wise differences between the vaccine intention groups, with			
200	statistical significance based on p-values <0.05.			
201	To examine KAP differences (Objective 1), we used unadjusted ordinal logistic			
202	regression to examine the relationship between each KAP question in the Follow-up 1 survey			
203	and vaccine intention, each occupation, and prior positivity. Bonferroni corrections adjusted for			
204	multiple comparisons and statistical significance based on 95% confidence intervals. We also			
205	used a difference in proportion test to test pair-wise differences in answers to KAP questions.			
206	For KAP predictors (Objective 2), we utilized adjusted ordinal logistic regression to test			
207	the effect of each KAP on vaccine uptake when including socio-demographics, occupation and			
208	occupational setting, vaccine intention, and prior positivity together. Bonferroni corrections			
209	adjusted for the multiple comparisons and statistical significance based on 95% confidence			
210	intervals.			
211	For KAP change (Objective 3), we tested differences in answers to KAP questions in			
212	Follow-up 2 compared to Follow-up 1 on a subset that completed both surveys. Chi-squared tests			

213 were used to determine statistically significant differences in each KAP question at Follow-up 2

214	compared to Follow-up 1, with significance based on p-values <0.05. We descriptively examined		
215	vaccine uptake and KAPs over time for each vaccine intention group. All statistical analyses		
216	were completed using R (version 4.0.4; R Foundation for Statistical Computing) and SAS		
217	(version 9.4; SAS Institute).		
218			
219	RESULTS		
220	Overall Participants. December 2020 - February 2021, 4,803 (87%) of 5,527 participants		
221	responded to Follow-up survey 1; 1,105 (23%) HCP inpatient, 1,323 (28%) other HCP, 729		
222	(15%) first responder firefighter, 255 (5%) other first responders, 990 (21%) FW Public, and 285		
223	(6%) other FW (Table 2). Most participants were female (62%) and aged <45 years (58%).		
224	Additionally, 72% were non-Hispanic White, 14% Hispanic, 9% other, 3% Asian		
225	American/Pacific Islander, and 2% African American. Participants were highly educated,		
226	including 76% with at least a college degree, and only 15% percent reporting annual income less		
227	than \$50,000. Participants were healthy, with only 24% reporting an underlying condition, most		
228	commonly hypertension (12%), asthma (9%), and diabetes (3%). At the time of the Follow-up 1		
229	survey, 960 (20%) of participants had previously been infected with SARS-CoV-2. Total		
230	positive rates amongst FW and HCP were similar (25% and 22% respectively), with higher rates		
231	amongst first responders (32%). Thirty-six percent had received a COVID-19 vaccination at the		
232	time of the Follow-up 1 survey.		
233	Vaccination Intent. Most participants were categorized as endorsers (70%), having		
234	either indicated a high likelihood of intent to receive the COVID-19 vaccine (35%) or having		
235	already received it at the time of Follow-up 1 survey (36%); 16% of participants were considered		
236	reachable, and 14% reluctant. Prior SARS-CoV-2 infection was more common among reluctant		

- 237 (35%) and reachable participants (25%) compared with endorsers (16%). By May 19, 2021, 72%
- 238 of participants has received at least one dose of a COVID-19 vaccine (Table 2). Vaccine uptake
- varied by intention group, including reported COVID-19 vaccine receipt among 86% of
- endorsers, 53% of reachable, and 25% of reluctant.
- 241 *Objective 1: KAP as predictor for vaccine uptake*
- After adjusting for socio-demographic factors, health status, and hours of direct contact
- 243 with the public, KAP responses strongly predicted vaccine uptake. Participants reporting more
- 244 positive attitudes about COVID-19 vaccine safety were 5.5 times more likely to receive a
- 245 COVID-19 vaccine compared with those reporting more negative attitudes (aOR=5.46, 95% CI:
- 1.43-20.82) and 5 times as likely to receive a COVID-19 vaccine among participants reporting a
- belief that the vaccine is effective (aOR=4.98 95% CI: 1.30-19.14) (Table 3).
- 248 Objective 2: KAP responses by intention group, prior SARS-CoV-2 infection and occupation
- 249 **Vaccine Intention Groups.** Only 17% of reluctant (n=109) and 33% of reachable
- 250 participants (n=252) reported concern about getting sick if unvaccinated compared with 48% of
- endorsers (n=1624) (Table 2). Similarly, reluctant and reachable participants were more likely to
- report negative attitudes about vaccine safety (82% and 56%, respectively), vaccine effectiveness
- 253 (76% and 51%, respectively), and trust in the government (79% and 58%, respectively).
- Reachable participants were about half as likely and reluctant participants were
 substantially less likely to perceive the COVID-19 vaccines as safe compared to endorsers (aOR
 =0.56, 95% CI 0.31-1.00 and aOR=0.33, 95% CI: 0.28-0.38, respectively) (Error! Reference
 source not found.). Similarly, reluctant participants were 68% (aOR=0.32, 95% CI: 0.22-0.48)
- less likely than endorsers to perceive that the vaccine was effective. Interestingly, reachable

259	participants were less likely to report knowledge about the COVID-19 vaccine than reluctant			
260	participants (aOR=0.53, 95% CI: 0.30-0.96 and aOR=0.49 95% CI: 0.34-0.75, respectively).			
261	Prior SARS-CoV-2 Infection. Among 960 (20%) participants who reported SARS-			
262	CoV-2 infection prior to enrollment, 24% (n=229) were categorized as reluctant, 20% as			
263	reachable (n=194), and 56% (n=537) as endorsers (Table 2). COVID-19 vaccination through the			
264	study period was less common among participants with prior SARS-CoV-2 infection (n=576,			
265	59%) compared to those without prior infection (n=3188, 82%). In the adjusted models,			
266	participants with prior SARS-CoV-2 infection were 32% less likely to be concerned about			
267	getting sick if not vaccinated (aOR 0.68, 95% CI: 0.56-0.84) and 22% less likely to believe the			
268	COVID-19 vaccine was effective (aOR 0.78, 95% CI: 0.64-0.96) compared with uninfected			
269	participants. Interestingly, there were no significant differences in perceived virus knowledge,			
270	vaccine safety, or trust in government by infection status in the adjusted models (Table 3).			
271	Occupation. Overall, few HCP were COVID-19 vaccine reluctant, including 9% of HCP			
272	inpatient and 11% other HCP. Among first responders, subcategorization showed slight			
273	differences, with 16% of firefighters reluctant compared with 21% of other first responders.			
274	Similarly, 16% of public-facing FW and 20% of other FW were reluctant. Responses to KAP			
275	questions differed across occupations but were aligned with overall responses for vaccine intent			
276	groups that combine participants.			
277	There was little difference between occupational subcategories of HCP or first responders			
278	in the adjusted models (Table 3Error! Reference source not found.). Firefighters and other first			
279	responder were each approximately 40% less likely than inpatient HCP to believe the COVID-19			

280 vaccine was effective (aOR=0.58, 95% CI 0.40-0.84 and aOR=0.61, 95% CI 0.49-0.76,

respectively). The other FW category was 51% more likely to believe the COVID-19 vaccine

- was effective compared to inpatient HCP (aOR=1.49, 95% CI 1.26-1.77), followed by public-
- facing FW (aOR=1.25, 95% CI 1.02-1.53) (Error! Reference source not found.).
- 284 *Objective 3. KAP change over time*
- 285 To evaluate change in KAP over time, 2017 (49%) participants that completed both
- Follow-up 1 and 2 surveys were included. Among initially 383 reluctant participants, 94 (25%)
- received COVID-19 vaccine; 195 (56%) reachable and 1,232 (83%) endorsers were also
- 288 vaccinated. Demographic characteristics among reluctant and reachable participants who were
- 289 vaccinated after initial categorization did not differ from unvaccinated participants. Among
- endorsers, unvaccinated participants were more likely to be male (p=0.017), younger (p=0.014)),
- and firefighters (p<0.001) than endorsers that were vaccinated (

292 Table).

293	When evaluating KAP over time, reluctant participants that did not get vaccinated had a
294	9% decrease in positive responses to questions about their knowledge of the virus between
295	Follow-up survey 1 and 2 (Error! Reference source not found.). The change in positive
296	response to vaccine knowledge increased by 20% and 21% for the non-vaccinated and
297	vaccinated, respectively. However, there was a 7% increase in positive response toward vaccine
298	effectiveness in those that were not vaccinated compared to a 31% increase for vaccinated
299	participants.
300	Participants in the reachable and endorser vaccine intent groups also showed decreases in
301	positive responses for knowledge about the virus between the two time points (-19% and -22%,
302	respectively), with higher percentages of participants reporting negative/neutral responses during
303	Follow-up Survey 2 (Error! Reference source not found.). The reachable group had large
304	increases in positive responses for questions about vaccine knowledge (25% of vaccinated, 25%
305	of unvaccinated), vaccine safety (10% of vaccinated, 34% of unvaccinated), and vaccine
306	effectiveness (12% of vaccinated, 27% of unvaccinated).
307	
200	DIGCUGGION

308 **DISCUSSION**

The HEROES-RECOVER prospective cohort provided a unique opportunity to examine
COVID-19 vaccine knowledge, attitudes, and practices longitudinally in a large population of
essential workers with high occupational COVID-19 exposure. The prospective design allowed
for assessment of vaccination intent as well as vaccine uptake.
We found KAP responses were strongly associated with vaccine uptake. Our cohort

314 largely reported more positive attitudes toward the COVID-19 vaccine than other national

315 cohorts,¹²⁻¹⁵ with more than two-thirds of participants expressing strong intent to be vaccinated.
316 We also found strong associations between KAP responses and vaccine intention groups, with
317 vaccine reluctant participants more likely to have negative attitudes towards safety and
318 effectiveness and less likely to be vaccinated. While we found that a substantial proportion of our
319 high-risk cohort population reported an initial reluctance to receive COVID-19 vaccine,
320 ultimately one quarter of those reluctant were vaccinated by May 19, 2021.

Vaccine Reluctance. First responders and participants with prior SARS-CoV-2 infection were more likely to be reluctant to receive the COVID-19 vaccine than other groups. First responders had the highest percentage of vaccine reluctant participants, especially the nonfirefighter subcategory. Among endorsers, other first responders also had the lowest vaccination rates. This hesitancy towards the vaccine was also represented in lower perceptions of vaccine safety, effectiveness, and trust in government.

Participants with prior SARS-CoV-2 infection were less likely to receive the COVID-19 vaccine and make up more than one-third of the vaccine reluctant group and one-quarter of the reachable group. It is not surprising that participants previously positive for COVID-19 are less concerned about getting sick again, but better understanding why they report fewer positive attitudes toward vaccine safety and effectiveness will be important in persuading them to get vaccinated.^{22,23} Additional studies highlighting the benefits of vaccination for those with prior infection, may help to stress the importance of vaccination among this group.²⁴

These findings are consistent with other vaccine acceptability studies done nationally^{14,19} and suggest that these negative attitudes persisted even after more data became available on the safety and efficacy of available vaccines.

337 KAPs and Vaccine Uptake. Across intent to vaccinate, demographics, occupation, and 338 prior SARS-CoV-2 infection groups, three KAP domains were consistently correlated with intent 339 to vaccinate and vaccine uptake: safety, effectiveness, and the chance of getting sick if not 340 vaccinated. We found knowledge about the SARS-CoV-2 virus, or the COVID-19 vaccine had 341 no association with vaccine uptake. It is difficult to ascertain whether participants who perceive 342 themselves to be knowledgeable are truly informed, but attitudes about vaccine safety and 343 effectiveness appear to be more informative of individual intentions to vaccinate. Vaccination 344 efforts that highlight vaccine safety and effectiveness may have a stronger influence on 345 vaccination uptake than general or historical information. We found positive attitudes align with 346 vaccine uptake and imply that KAP assessments to gauge a population's intentions or concerns 347 in advance of vaccination campaigns is critical. 348 Unsurprisingly, the majority of HCP were endorsers of the vaccine, and the vast majority 349 received the COVID-19 vaccine. Some HCP occupational groups have low vaccination coverage 350 nationally,^{17,18} and so our study population may not be representative of those groups. Other

frontline workers, which for this study included teachers, retail workers, and manufacturing were not as positive towards the vaccine as HCP, though the vast majority were still considered endorsers and reachable and were vaccinated at higher rates than first responders. The COVID-19 pandemic has clearly demonstrated the critical nature of the essential worker role and need for additional investigations.

356 KAP Change Over Time. Utilizing the prospective cohort, we were able to examine 357 shifts in KAP over time, subgrouping vaccinated versus unvaccinated participants. The KAP 358 factors that were most connected to vaccination remained influential over time. We identified 359 more positive shifts in responses between the two time points in those participants ultimately

vaccinated, specifically in response to perceived safety and effectiveness across all intention
groups. Interestingly, even those participants that were not vaccinated demonstrated a positive
increase in perceived vaccine safety and effectiveness over the three-month period.
Our findings are consistent with other studies conducted prior to COVID-19 vaccine
authorization and availability.^{14,16} While vaccine intent was assessed in our study after the FDA
granted EUA, our findings capture an initial uncertainty that was seemingly overcome with time
and positive findings for vaccine safety and effectiveness.¹²

367 **Limitations.** This study is subject to several limitations. First, the follow-up surveys 368 were spread out over about six weeks due to site's individual IRB timelines. As the level of 369 information available evolved quickly during the study period, participants at sites where the 370 follow-up surveys were administered later may have had access to a meaningfully different 371 amount, or quality, of information. Secondly, all KAPs are self-reported and there may be a 372 disconnect between perceived knowledge and actual level of knowledge. Next, while we are 373 confident KAPs are successfully captured in our cohorts at the time of administration, due to the 374 novelty of the COVID-19 vaccine, KAPs will likely continue to change and evolve past this 375 analysis period. Finally, the mechanism prompting change in KAPs is not captured, so it is 376 difficult to know why certain KAPs changed as they did over time, e.g., the change in certain 377 KAPs between the two follow-up surveys may have been due to increased numbers of 378 participants receiving the vaccine with few documented serious adverse event rates, increased 379 access to information and disease/vaccine literacy, changes in national and local COVID-19 380 incidence. The demographic characteristics of the group that answered Follow-up 2 different 381 slightly from those that completed Follow-up 1: there were more female participants (64% vs 382 60%), they were older (45% 40-65 years of age compared to 36%), and there were higher

383 percentages of FW (36% vs 20%) and lower percentages of HCP (44% vs 58%). Race/ethnicity,

384 education, and income were similar between the two groups. We did not differentiate between

385 individual COVID-19 vaccine products in this analysis.

386

387 PUBLIC HEALTH IMPLICATION

388 The HEROES-RECOVER cohort provides valuable insight into the perceptions and

intentions of essential workers receiving the COVID-19 vaccine. With the current increase in

390 cases, encouraging high-risk occupational groups to receive the COVID-19 vaccine is a critical

391 next step. Our findings indicate that perceptions of the COVID-19 vaccine can shift over time

and suggest that focusing on clear messages about the vaccine's safety and effectiveness in

393 reducing SARS-CoV-2 virus infection and illness severity may increase vaccine uptake for

394 reluctant and reachable participants. Targeted messaging by key stakeholders and healthcare

395 providers for participants with prior infection and in occupations with low vaccine coverage and

low trust in the government (like first responders) would be especially useful.

397

398 LIST OF ABBREVATIONS

- 399 FDA U.S. Food and Drug Administration
- 400 **CDC** Centers for Disease Control and Prevention
- 401 **EUA** Emergency Use Authorization
- 402 KAP Knowledge, attitudes, and practices

403 **HEROES** Arizona Healthcare, Emergency Response and Other Essential Workers Surveillance

404 **RECOVER** Study and Research on the Epidemiology of SARS-CoV-2 in Essential Response

405 Personnel

406	H-R HEROES-RECOVER

- 407 **HCP** Health care personnel
- 408 **FW** Frontline workers
- 409 **PPE** Personal protective equipment
- 410

411 **Disclosures:** The findings and conclusions in this report are those of the authors and do not

412 necessarily represent the official position of the Centers for Disease Control and Prevention.

413 Allison L. Naleway reported funding from Pfizer for a meningococcal B vaccine study unrelated

- 414 to the submitted work.
- 415

416 Statement of Contributions: K Lutrick, H Groom, A Fowlkes, K Groover, P Rivers, K Nguyen, 417 M Herring, J Mayo Lamberte, K Prather, and S Yoon conceptualized the study and drafted the 418 manuscript with the help of Z Baccam. J Parker and P Rivers conducted the statistical analysis. 419 M Gaglani, A Naleway, K Dunnigan, A Phillips, M Thiese, and H Tyner were responsible for 420 review and revision of the manuscript. All authors read and approved of the final manuscript. 421 422 Acknowledgements: Supported by the National Center for Immunization and Respiratory 423 Diseases and the Centers for Disease Control and Prevention (contracts 75D30120R68013 to 424 Marshfield Clinic Research Institute, 75D30120C08379 to the University of Arizona, and 425 75D30120C08150 to Abt Associates). 426 427 Mark G. Thompson, Lauren Grant, Young M. Yoo, Gregory Joseph, Josephine Mak, Monica

428 Dickerson, Suxiang Tong, John Barnes, Eduardo Azziz-Baumgartner, Melissa L. Arvay, Preeta

429 Kutty, Alicia M. Fry, Lenee Blanton, Jill Ferdinands, Anthony Fiore, Aron Hall, Adam MacNeil, 430 L. Clifford McDonald, Mary Reynolds, Sue Reynolds, Stephanie Schrag, Nong Shang, Robert 431 Slaughter, Matthew J. Stuckey, Natalie Thornburg, Jennifer Verani, Vic Veguilla, Rose Wang, 432 Bao-Ping Zhu, William Brannen, Stephanie Bialek, CDC; Jefferey L. Burgess, Shawn Beitel, 433 Patrick Rivers, Xiaoxiao Sun, Joe K. Gerald, Katherine Ellingson, Ed Bedrick, Janko Nikolich-434 Žugich, Genesis Barron, Dimaye Calvo, Esteban Cardona, Andrea Carmona, Alissa Coleman, 435 Emily Cooksey, Kiara Earley, Natalie Giroux, Sofia Grijalva, Allan Guidos, Adrianna 436 Hernandez, James Hollister, Theresa Hopkins, Rezwana Islam, Krystal Jovel, Olivia Kavanagh, 437 Jonathan Leyva, Sally Littau, Amelia Lobos, James Lopez, Veronica Lugo, Jeremy Makar, 438 Taylor Maldonado, Enrique Marquez, Allyson Munoz, Assumpta Nsengiyunva, Joel Parker, 439 Jonathan Perez Leyva, Alexa Roy, Saskia Smidt, Isabella Terrazas, Tahlia Thompson, Heena 440 Timsina, Erica Vanover, Mandie White, April Yingst, Kenneth Komatsu, Elizabeth Kim, Karla 441 Ledezma, University of Arizona, Arizona Department of Health Services; David Engelthaler, 442 Translational Genomics Research Institute; Lauren E.W. Olsho, Danielle R. Hunt, Laura J. 443 Edwards, Meredith G. Wesley, Tyler C. Morrill, Brandon P. Poe, Brian Sokol, Andrea 444 Bronaugh, Tana Brummer, Hala Deeb, Rebecca Devlin, Sauma Doka, Tara Earl, Jini Etolue, 445 Deanna Fleary, Jessica Flores, Chris Flygare, Isaiah Gerber, Louise Hadden, Jenna Harder, 446 Lindsay LeClair, Nancy McGarry, Peenaz Mistry, Steve Pickett, Khaila Prather, David Pulaski, 447 Rajbansi Raorane, Meghan Shea, John Thacker, Matthew Trombley, Pearl Zheng, Chao Zhou, 448 Abt Associates; Spencer Rose, Tnelda Zunie, Michael E. Smith, Kempapura Murthy, Nicole 449 Calhoun, Claire Mathenge, Arundhati Rao, Manohar Mutnal, Linden Morales, Shelby Johnson, 450 Alejandro Arroliga, Madhava Beeram, Joel Blais, Jason Ettlinger, Angela Kennedy, Natalie 451 Settele, Rupande Patel, Elisa Priest, Jennifer Thomas, Baylor Scott & White Health; Jennifer L.

452 Kuntz, Yolanda Prado, Daniel Sapp, Mi Lee, Chris Eddy, Matt Hornbrook, Danielle Millay, 453 Dorothy Kurdyla, Ambrosia Bass, Kristi Bays, Kimberly Berame, Cathleen Bourdoin, Carlea 454 Buslach, Jennifer Gluth, Kenni Graham, Tarika Holness Enedina Luis, Abreeanah Magdaleno, 455 DeShaun Martin, Joyce Smith-McGee, Martha Perley, Sam Peterson, Aaron Piepert, Krystil 456 Phillips, Joanna Price, Sperry Robinson, Katrina Schell, Emily Schield, Natosha Shirley, Anna 457 Shivinsky, Britta Torgrimson-Ojerio, Brooke Wainwright, Shawn Westaway, Kaiser Permanente 458 Northwest; Jennifer Meece, Elisha Stefanski, Lynn Ivacic, Jake Andreae, Adam Bissonnette, 459 Krystal Boese, Michaela Braun, Cody DeHamer, Timothy Dziedzic, Joseph Eddy, Heather 460 Edgren, Wayne Frome, Nolan Herman, Mitchell Hertel, Erin Higdon, Rosebud Johnson, Steve 461 Kaiser, Tammy Koepel, Sarah Kohn, Taylor Kent, Thao Le, Carrie Marcis, Megan Maronde, 462 Isaac McCready, Nidhi Mehta, Daniel Miesbauer, Anne Nikolai, Brooke Olson, Lisa Ott, Cory 463 Pike, Nicole Price, Christopher Reardon, Logan Schafer, Rachel Schoone, Jaclyn Schneider, 464 Tapan Sharma, Melissa Strupp, Janay Walters, Alyssa Weber, Reynor Wilhorn, Ryan Wright, 465 Benjamin Zimmerman, Marshfield Clinic Research Laboratory; Angela Hunt, Jessica 466 Lundgreen, Karley Respet, Jennifer Viergutz, Daniel Stafki, St. Luke's Regional Health Care 467 System; Alberto J. Caban-Martinez, Natasha Schaefer-Solle, Paola Louzado Feliciano, Carlos 468 Silvera, Karla Montes, Cynthia Beaver, Katerina Santiago, University of Miami; Rachel T. 469 Brown, Camie Schaefer, Arlyne Arteaga, Matthew Bruner, Daniel Dawson, Emilee Eden, Jenna 470 Praggastis, Joseph Stanford, Jeanmarie Mayer, Marcus Stucki, Riley Campbell, Kathy Tran, 471 Madeleine Smith, Braydon Black, Madison Tallman, Chapman Cox, Derrick Wong, Michael 472 Langston, Adriele Fugal, Fiona Tsang, Maya Wheeler, Gretchen Maughan, Taryn Hunt-Smith, 473 Nikki Gallacher, Anika DSouza, Trevor Stubbs, Iman Ibrahim, Ryder Jordin, University of Utah; 474 Marilyn J. Odean, Whiteside Institute for Clinical Research; Allen Bateman, Erik Reisdorf,

- 475 Kyley Guenther, Erika Hanson, Wisconsin State Laboratory of Hygiene; the HEROES-
- 476 RECOVER participants.

477

479 **REFERENCES**

.,,		
480		
481	1.	Centers for Disease Control and Prevention. COVID-19.
482		https://www.cdc.gov/coronavirus/2019-ncov/index.html. Accessed May 25, 2021.
483	2.	US Food & Drug Administration. Pfizer-BioNTech COVID-19 Vaccine.
484		https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-
485		covid-19/pfizer-biontech-covid-19-vaccine. Accessed May 25, 2021.
486	3.	Cheng VC, Wong SC, Yuen KY. Estimating Coronavirus Disease 2019 Infection Risk in
487		Health Care Workers. JAMA Netw Open. 2020;3(5):e209687.
488	4.	Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-line health-
489		care workers and the general community: a prospective cohort study. <i>The Lancet Public</i>
490		Health. 2020;5(9):e475-e483.
491	5.	Rao A, Ma H, Moloney G, et al. A disproportionate epidemic: COVID-19 cases and
492		deaths among essential workers in Toronto, Canada. <i>medRxiv</i> . 2021.
493	6.	Centers for Disease Control and Prevention. Interim List of Categories of Essential
494		Workers Mapped to Standardized Industry Codes and Titles.
495		https://www.cdc.gov/vaccines/covid-19/categories-essential-workers.html. Accessed June
496		1, 2021.
497	7.	Dooling K, McClung N, Chamberland M, et al. The Advisory Committee on
498		Immunization Practices' Interim Recommendation for Allocating Initial Supplies of
499		COVID-19 Vaccine - United States, 2020. MMWR Morb Mortal Wkly Rep.
500		2020;69(49):1857-1859.
501	8.	Centers for Disease Control and Prevention. COVID data tracker: COVID-19
502		vaccinations in the United States. https://covid.cdc.gov/covid-data-tracker/#vaccinations.
503		Published 2021. Accessed May 10, 2021.
504	9.	Wood S, Schulman K. Beyond Politics - Promoting Covid-19 Vaccination in the United
505		States. N Engl J Med. 2021;384(7):e23.
506	10.	Kaiser Family Foundation. Coronavirus (COVID-19). KFF COVID-19 vaccine monitor:.
507		Kaiser Family Foundation. https://www.kff.org/coronavirus-covid-19/report/kff-covid-
508		<u>19-vaccine-monitor-december-2020/</u> . Published 2020. Accessed May 10, 2021.
509	11.	Funk C TA. Intent to Get a COVID-19 Vaccine Rises to 60% as Confidence in Research
510		and Development Process Increases. Pew Research Center.
511		https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-
512		to-60-as-confidence-in-research-and-development-process-increases/. Published 2020.
513		Accessed May 25, 2021.
514	12.	Nguyen KH, Srivastav A, Razzaghi H, et al. COVID-19 Vaccination Intent, Perceptions,
515		and Reasons for Not Vaccinating Among Groups Prioritized for Early Vaccination -
516		United States, September and December 2020. MMWR Morb Mortal Wkly Rep.
517		2021;70(6):217-222.
518	13.	Ruiz JB, Bell RA. Predictors of intention to vaccinate against COVID-19: Results of a
519		nationwide survey. Vaccine. 2021;39(7):1080-1086.
520	14.	Caban-Martinez AJ, Silvera CA, Santiago KM, et al. COVID-19 Vaccine Acceptability
521		Among US Firefighters and Emergency Medical Services Workers: A Cross-Sectional
522		Study. Journal of occupational and environmental medicine. 2021;63(5):369.

502	15	Denne K. Lenner H., Stene il CK, et al. Lefteren en attitude merendine actantial
523	15.	Pogue K, Jensen JL, Stancil CK, et al. Influences on attitudes regarding potential
524 525	16	COVID-19 vaccination in the United States. <i>Vaccines</i> . 2020;8(4):582.
525	16.	Biswas N, Mustapha T, Khubchandani J, Price JH. The Nature and Extent of COVID-19
526	17	Vaccination Hesitancy in Healthcare Workers. <i>J Community Health</i> . 2021.
527	17.	Shaw J, Stewart T, Anderson KB, et al. Assessment of US health care personnel (HCP)
528		attitudes towards COVID-19 vaccination in a large university health care system. <i>Clinical</i>
529		Infectious Diseases: An Official Publication of the Infectious Diseases Society of
530	10	America. 2021.
531	18.	Gadoth A, Halbrook M, Martin-Blais R, et al. Assessment of COVID-19 vaccine
532		acceptance among healthcare workers in Los Angeles. Medrxiv. 2020.
533	19.	Halbrook M, Gadoth A, Martin-Blais R, et al. Longitudinal assessment of COVID-19
534		vaccine acceptance and uptake among frontline medical workers in Los Angeles,
535		California. Clinical Infectious Diseases. 2021.
536	20.	Akarsu B, Canbay Ozdemir D, Ayhan Baser D, Aksoy H, Fidanci I, Cankurtaran M.
537		While studies on COVID-19 vaccine is ongoing, the public's thoughts and attitudes to the
538		future COVID-19 vaccine. Int J Clin Pract. 2021;75(4):e13891.
539	21.	Lutrick K EK, Baccam Z, Rivers P, Beitel S, Parker J, Hollister J, Sun X, Gerald JK,
540		Komatsu K, Kim E, LaFleur B, Grant L, Yoo YM, Kumar A, Mayo Lamberte J, Cowling
541		BJ, Cobey S, Thornburg NJ, Meece JK, Kutty P, Nikolich-Zugich J, Thompson MG,
542		Burgess JL. COVID-19 Infection, Reinfection, and Vaccine Effectiveness in a
543		Prospective Cohort of Arizona Frontline/Essential Workers: The AZ HEROES Research
544		Protocol. JMIR research protocols. 2021;26/05/2021:28923.
545	22.	Taylor S, Landry CA, Paluszek MM, Groenewoud R, Rachor GS, Asmundson GJ. A
546		proactive approach for managing COVID-19: the importance of understanding the
547		motivational roots of vaccination hesitancy for SARS-CoV2. Frontiers in psychology.
548		2020;11:2890.
549	23.	Goldberg Y, Mandel M, Woodbridge Y, et al. Protection of previous SARS-CoV-2
550		infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide
551		experience from Israel. medRxiv. 2021.
552	24.	Krammer F, Srivastava K, Alshammary H, et al. Antibody responses in seropositive
553		persons after a single dose of SARS-CoV-2 mRNA vaccine. New England Journal of
554		Medicine. 2021;384(14):1372-1374.
555		
556		
557		

558 TABLES & FIGURES

559 Table 1. Knowledge, Attitude, and Practice (KAP) Questions

560

Торіс	Question Text	Range
Vaccine Intention	What are the chances that you will get a COVID-19 vaccination?	8-point Likert (1=Don't know, 8=Almost certain)
Chance of getting sick if not vaccinated	If you are unable to or don't get a COVID-19 vaccination, what do you think your chance of getting sick with COVID-19 this year will be?	7-point Likert (1=Almost zero, 8=Almost certain)
Virus Knowledge	How much do you know about the SARS-CoV-2 (COVID- 19) virus and the illness it causes?	5-point Likert (1=Nothing at all, 5=A great deal)
Vaccine Knowledge	How much do you know about the COVID-19 vaccine? Would you say?	5-point Likert (1=Nothing at all, 5=A great deal)
Vaccine Safety	How safe do you think the COVID-19 vaccine is?	5-point Likert (1=Not at all, 5=Extremely safe)
Vaccine Effectiveness	How effective do you think the COVID-19 vaccine is in preventing you from getting sick with COVID-19?	5-point Likert (1=Not at all, 5=Extremely effective)
Trust in government	I trust what the government says about the COVID-19 vaccine	5-point Likert (1=Strongly disagree, 5=Strongly agree)

563 Table 2. Descriptive Statistics, Stratified by Vaccine Intent Group in a Survey of Essential

564 Workers December 2020 through May 2021

	TOTAL N (%)	Reluctant N (%)	Reachable N (%)	Endorser ^a N (%)	P-valu
Totals Socio-demographic Characteristics	4803 (100%)	653 (13.6%)	770 (16.0%)	3380 (70.4%)	
Gender*					0.03
Female	2960 (61.3%)	387 (59.3%)	513 (66.6%)	2060 (60.9%)	
Male	1827 (37.8%)	265 (40.6%)	255 (33.1%)	1307 (38.7%)	
Age (years)					< 0.01
18-24	143 (3.0%)	24 (3.7%)	32 (4.2%)	87 (2.6%)	
25-44	2651 (54.9%)	358 (54.8%)	449 (58.3%)	1844 (54.6%)	
45-64	1908 (39.5%)	259 (39.7%)	265 (34.4%)	1384 (40.9%)	
65+	101 (2.1%)	12 (1.8%)	24 (3.1%)	65 (1.9%)	
Race/Ethnicity*	101 (211/0)	12 (11070)	21 (01170)	00 (10 /0)	< 0.00
Non-Hispanic-White	3449 (71.4%)	431 (66.0%)	525 (68.2%)	2493 (73.8%)	(0100
African American	90 (1.9%)	18 (2.8%)	23 (3.0%)	49 (1.4%)	
Asian Am./Island Pacific	141 (2.9%)	14 (2.1%)	13 (1.7%)	114 (3.4%)	
Hispanic-White	694 (14.4%)	117 (17.9%)	121 (15.7%)	456 (13.5%)	
Multi-Racial/Other	429 (8.9%)	73 (11.2%)	88 (11.4%)	268 (7.9%)	
Education*	429 (0.970)	75 (11.270)	00(11.470)	200 (1.970)	< 0.00
Less than college	154 (3.2%)	35 (5.4%)	40 (5.2%)	79 (2.3%)	<0.00
Some college	856 (17.7%)	186 (28.5%)	201 (26.1%)	469 (13.9%)	
College degree or above	3685 (76.3%)	413 (63.2%)	513 (66.6%)	2759 (81.6%)	
0 0	5085 (70.5%)	415 (03.2%)	515 (00.0%)	2739 (81.0%)	-0.00
Annual Income*	702 (14 (0/)	128 (10 (0))	152 (10 70/)	422 (12 50()	< 0.00
< 50 k	702 (14.6%)	128 (19.6%)	152 (19.7%)	422 (12.5%)	
50k-100k	1955 (40.7%)	244 (37.4%)	280 (36.4%)	898 (26.6%)	
100k+	2000 (41.6%)	261 (40.0%)	317 (41.2%)	1965 (58.1%)	0.00
Occupation		100 (15 0)		000 (0 6 00)	< 0.00
HCP inpatient	1105 (22.9%)	100 (15.3%)	115 (14.9%)	890 (26.3%)	
HCP other	1323 (27.4%)	148 (22.7%)	163 (21.2%)	1012 (29.9%)	
First responder firefighter	729 (15.1%)	119 (18.2%)	78 (10.1%)	532 (15.7%)	
First responder other	255 (5.3%)	54 (8.3%)	41 (5.3%)	160 (4.7%)	
FW public	990 (20.5%)	156 (23.9%)	261 (33.9%)	573 (17.0%)	
FW other	285 (5.9%)	57 (8.7%)	80 (10.4%)	148 (4.4%)	
nderlying Medical Conditions					
Asthma					0.99
No	4292 (88.9%)	578 (88.5%)	685 (89.0%)	3029 (89.6%)	
Yes	446 (9.2%)	59 (9.0%)	72 (9.4%)	315 (9.3%)	
Diabetes					0.92
No	4576 (94.7%)	615 (94.2%)	733 (95.2%)	3228 (95.5%)	
Yes	162 (3.4%)	22 (3.4%)	24 (3.1%)	116 (3.4%)	
Hypertension					0.71
No	4158 (86.1%)	556 (85.1%)	659 (85.6%)	2943 (87.1%)	
Yes	580 (12.0%)	81 (12.4%)	98 (12.7%)	401 (11.9%)	
Any above condition*					0.86
No	3176 (66.1%)	425 (65.1%)	502 (65.2%)	2249 (66.5%)	
Yes	1562 (32.5%)	212 (32.5%)	255 (33.1%)	1095 (32.4%)	
ARS-CoV-2 Infection Prior to Follow-Up 1 urvey					<0.00
No	3843 (79.6%)	424 (64.9%)	576 (74.8%)	2843 (84.1%)	
Yes	960 (19.9%)	229 (35.1%)	194 (25.2%)	537 (15.9%)	

COVID-19 Vaccine received during the study					
Received Covid-19 Vaccine,					
Follow-up 1					
No	3083 (64.2%)	653 (100%)	770 (100%)	1660 (49.1%)	
Yes	1720 (35.8%)	0 (0%)	0 (0%)	1720 (50.9%)	
Received Covid-19 Vaccine, Follow-up 2					< 0.001
No	1332 (27.7%)	489 (74.9%)	366 (47.5%)	477 (14.1%)	
Yes	3471 (72.3%)	164 (25.1%)	404 (52.5%)	2903 (85.9%)	
Responses to KAP questions					
Chances of getting sick if not vaccinated					< 0.001
Negative/Neutral	2693 (55.8%)	544 (83.3%)	515 (66.9%)	1634 (48.3%)	
Positive	1985 (41.1%)	109 (16.7%)	252 (32.7%)	1624 (48.0%)	
Virus Knowledge					< 0.001
Negative/Neutral	1575 (32.8%)	282 (43.2%)	322 (41.8%)	971 (28.7%)	
Positive	3191 (66.4%)	371 (56.8%)	442 (57.4%)	2378 (70.4%)	
Vaccine Knowledge					< 0.001
Negative/Neutral	2838 (58.8%)	505 (77.3%)	582 (75.6%)	1751 (51.8%)	
Positive	1935 (40.1%)	148 (22.7%)	187 (24.3%)	1600 (47.3%)	
Vaccine Safety					< 0.001
Negative/Neutral	1825 (37.8%)	535 (81.9%)	427 (55.5%)	863 (25.5%)	
Positive	2945 (61.0%)	114 (17.5%)	343 (44.5%)	2488 (73.6%)	
Vaccine Effectiveness					< 0.001
Negative/Neutral	1825 (37.8%)	498 (76.3%)	392 (50.9%)	935 (27.7%)	
Positive	2944 (61.0%)	152 (23.3%)	375 (48.7%)	2417 (71.5%)	
Trust in the Government					< 0.001
Negative/Neutral	2371 (49.1%)	513 (78.6%)	443 (57.5%)	1415 (41.9%)	
Positive	2404 (49.8%)	140 (21.4%)	327 (42.5%)	1937 (57.3%)	

Reluctant participants indicated low likelihood of being vaccinated, Reachable participants mentioned a moderate likelihood of being unvaccinated, and Endorser participants indicated a high likelihood of being vaccinated or were already vaccinated; ^a People who answered the KAP questions after being vaccinated were considered endorsers to get vaccinated; ^b Only asked to unvaccinated participants in non-AZ sites; Likert responses were condensed from 5 to 8 categories (depending on the question) to negative/neutral and positive

* Proportions may differ due to missing data not shown or small numbers sequestered

568 Table 3. Difference in Knowledge, Attitude, and Practice (KAP) Questions Stratified by

569 Vaccination Status, Intention Group, Occupation, and Prior SARS-CoV-2 Positivity in a Cohort

570 of Essential Workers (N=4803)^a

571

	Un	adjusted		Adjusted ^b		
	OR	95% CI	OR	95% CI		
Vaccinated during the study (not vac	ccinated is th	e reference group)				
Virus Knowledge	1.58	1.40 - 1.79				
Vaccine Knowledge	2.49	2.17 - 2.87				
Vaccine Safety	9.81	8.42 - 11.44	5.46	1.43 - 20.82		
Vaccine Effectiveness	8.29	7.10 – 9.67	4.98	1.30 – 19.14		
Trust in government	4.40	3.87 - 5.00				
Chances of getting sick	4.15	3.58 - 4.81				
By Intention Group (Endorser is the	reference G	roup)				
Reluctant						
Virus Knowledge	0.53	0.45 - 0.62				
Vaccine Knowledge	0.30	0.26 - 0.35	0.49	0.34 - 0.72		
Vaccine Safety	0.08	0.06 - 0.09	0.23	0.15 - 0.33		
Vaccine Effectiveness	0.12	0.10 - 0.14	0.32	0.22 - 0.48		
Trust in government	0.20	0.17 - 0.23	0.43	0.30 - 0.61		
Chances of getting sick	0.23	0.20 - 0.27	0.48	0.32 - 0.74		
Reachable						
Virus Knowledge	0.52	0.45 - 0.60				
Vaccine Knowledge	0.34	0.30 - 0.40	0.53	0.30 - 0.96		
Vaccine Safety	0.33	0.28 - 0.38	0.56	0.31 - 1.00		
Vaccine Effectiveness	0.40	0.35 - 0.47				
Trust in government	0.58	0.51 - 0.67				
Chances of getting sick	0.59	0.51 - 0.68				
Occupation (HCP inpatient is the ref	ference grou	p)				
HCP other						
Virus Knowledge	0.81	0.70 - 0.94				
Vaccine Knowledge	0.97	0.84 - 1.12				
Vaccine Safety	0.91	0.79 - 1.06				
Vaccine Effectiveness	1.02	0.87 - 1.18				
Trust in government	0.98	0.85 - 1.13				
Chances of getting sick	0.89	0.77 - 1.03				
First responder firefighter						
Virus Knowledge	0.37	0.31 - 0.44	0.48	0.39 – 0.59		
Vaccine Knowledge	0.43	0.36 - 0.51	0.57	0.46 - 0.71		
Vaccine Safety	0.43	0.36 - 0.51	0.60	0.48 - 0.74		
Vaccine Effectiveness	0.41	0.34 - 0.49	0.61	0.49 - 0.76		
Trust in government	0.62	0.52 - 0.73				
Chances of getting sick	0.72	0.61 - 0.85				
First responder other						
Virus Knowledge	0.20	0.15 - 0.25	0.25	0.18 - 0.36		
Vaccine Knowledge	0.19	0.15 - 0.25	0.34	0.24 - 0.49		
Vaccine Safety	0.34	0.26 - 0.43	0.46	0.32 - 0.67		
Vaccine Effectiveness	0.41	0.32 - 0.53	0.58	0.40 - 0.84		
Trust in government	0.48	0.37 - 0.60	0.67	0.47 - 0.95		
Chances of getting sick	0.71	0.56 - 0.91				
FW Public						
Virus Knowledge	0.30	0.26 - 0.36	0.41	0.34 - 0.50		
Vaccine Knowledge	0.30	0.25 - 0.35	0.41	0.33 - 0.50		
Vaccine Safety	0.65	0.55 - 0.76				
Vaccine Effectiveness	0.75	0.64 - 0.88	1.25	1.02 - 1.53		
Trust in government	0.95	0.82 - 1.11	1.38	1.02 - 1.03 1.14 - 1.68		
Chances of getting sick	0.94	0.81 - 1.10	1.33	1.13 – 1.56		
FW other	0.74	0.01 1.10	1.55	1.15 - 1.50		
Virus Knowledge	0.28	0.22 - 0.35	0.41	0.35 - 0.49		
, hus this widdge	0.20	0.22 0.33	0.71	0.00 0.47		

Vaccine Knowledge	0.36	0.28 - 0.45	0.49	0.41 - 0.57
Vaccine Safety	0.59	0.47 - 0.75		
Vaccine Effectiveness	0.72	0.56 - 0.91	1.49	1.26 - 1.77
Trust in government	0.86	0.68 - 1.08		
Chances of getting sick	0.52	0.41 - 0.65		
Prior SARS-CoV-2 Infection (No kno	wn prior inf	fection as the refer	ence group)	
Virus Knowledge	0.91	0.85 - 0.98		
Vaccine Knowledge	0.62	0.57 - 0.68	0.78	0.64 - 0.95
Vaccine Safety	0.51	0.47 - 0.55		
Vaccine Effectiveness	0.48	0.44 - 0.52	0.78	0.64 - 0.96
Trust in government	0.62	0.58 - 0.67		
Chances of getting sick	0.46	0.42 - 0.51	0.68	0.56 - 0.84

^a P-values not reported due to inconsistencies that occur with multi-level categorical variables. Statistical significance based on 95% confidence intervals.

^b Non-significant adjusted point estimates and confidence intervals not reported. Bonferroni corrections were used for each of vaccination status, intention group, occupation, and prior positivity. The model was adjusted for socio-demographics, occupation and occupational setting, vaccine intention, and prior positivity for SARS-CoV-2 infection.

573

	I	Reluctant		F	Reachable			Endorser		
	Not Vaccinated	Vaccinated	p-value	Not Vaccinated	Vaccinated	p-value	Not Vaccinated	Vaccinated	p-value	
	(N=289)	(N=94)	1	(N=152)	(N=195)	•	(N=246)	(N=1232)	•	
Gender		· · ·	0.624			0.475	· · ·		0.017	
Female	168 (58.1%)	58 (61.7%)		104 (68.4%)	138 (70.8%)		133 (54.1%)	783 (63.6%)		
Male	121 (41.9%)	36 (38.3%)		47 (30.9%)	56 (28.7%)		112 (45.5%)	445 (36.1%)		
Age (years)			0.439			0.372				
18-24	11 (3.8%)	3 (3.2%)		9 (5.9%)	11 (5.6%)		10 (4.1%)	19 (1.5%)	0.014	
25-44	158 (54.7%)	44 (46.8%)		89 (58.6%)	100 (51.3%)		132 (53.7%)	596 (48.4%)		
45-64	111 (38.4%)	45 (47.9%)		50 (32.9%)	73 (37.4%)		99 (40.2%)	579 (47.0%)		
65+	9 (3.1%)	2 (2.1%)		4 (2.6%)	11 (5.6%)		5 (2.0%)	38 (3.1%)		
Race/Ethnicity			0.975			0.310			0.241	
Non-Hispanic-White	188 (65.1%)	60 (63.8%)		99 (65.1%)	125 (64.1%)		169 (68.7%)	883 (71.7%)		
African American	8 (2.8%)	3 (3.2%)		7 (4.6%)	2 (1.0%)		4 (1.6%)	13 (1.1%)		
Asian American	6 (2.1%)	2 (2.1%)		2 (1.3%)	3 (1.5%)		4 (1.6%)	30 (2.4%)		
Hispanic-White	54 (18.7%)	16 (17.0%)		26 (17.1%)	34 (17.4%)		48 (19.5%)	186 (15.1%)		
Multi-Racial	13 (4.5%)	4 (4.3%)		7 (4.6%)	16 (8.2%)		8 (3.3%)	69 (5.6%)		
Other	20 (6.9%)	9 (9.6%)		11 (7.2%)	15 (7.7%)		13 (5.3%)	51 (4.1%)		
Education			0.906			0.313			< 0.001	
Less than High school	0 (0%)	0 (0%)		2 (1.3%)	0 (0%)		0 (0%)	1 (0.1%)		
HS diploma/GED	15 (5.2%)	6 (6.4%)		8 (5.3%)	8 (4.1%)		11 (4.5%)	26 (2.1%)		
Some college	78 (27.0%)	25 (26.6%)		45 (29.6%)	50 (25.6%)		59 (24.0%)	140 (11.4%)		
College degree/above	187 (64.7%)	60 (63.8%)		95 (62.5%)	131 (67.2%)		172 (69.9%)	1041 (84.5%)		
Annual Income			0.177			0.308			< 0.001	
< 50 k	63 (21.8%)	10 (10.6%)		33 (21.7%)	32 (16.4%)		46 (18.7%)	108 (8.8%)		
50k-100k	104 (36.0%)	40 (42.6%)		47 (30.9%)	78 (40.0%)		74 (30.1%)	389 (31.6%)		
100k-150k	62 (21.5%)	22 (23.4%)		45 (29.6%)	46 (23.6%)		62 (25.2%)	328 (26.6%)		
150k-200k	27 (9.3%)	8 (8.5%)		16 (10.5%)	20 (10.3%)		35 (14.2%)	173 (14.0%)		
200k+	20 (6.9%)	9 (9.6%)		9 (5.9%)	8 (4.1%)		23 (9.3%)	194 (15.7%)		
Previously Tested Positive			0.405			0.003			< 0.001	
No	181 (62.6%)	64 (68.1%)		96 (63.2%)	153 (78.5%)		166 (67.5%)	1046 (84.9%)		
Yes	108 (37.4%)	30 (31.9%)		56 (36.8%)	42 (21.5%)		80 (32.5%)	186 (15.1%)		
Occupation			0.749	. ,		< 0.001	. ,	. ,	< 0.001	
HCP Inpatient	45 (15.6%)	17 (18.1%)		30 (19.7%)	22 (11.3%)		50 (20.3%)	268 (21.8%)		
HCP Other	63 (21.8%)	16 (17.0%)		46 (30.3%)	28 (14.4%)		42 (17.1%)	321 (26.1%)		

Table 4. Demographics of Vaccine Intention Groups, Stratified by Vaccination Status at Time of Follow-up Survey 2 in a Cohort of	
Essential Workers	

First responder firefighter	55 (19.0%)	15 (16.0%)		20 (13.2%)	16 (8.2%)		62 (25.2%)	121 (9.8%)	
First responder other	29 (10.0%)	9 (9.6%)		5 (3.3%)	19 (9.7%)		16 (6.5%)	89 (7.2%)	
FW Public	67 (23.2%)	28 (29.8%)		36 (23.7%)	90 (46.2%)		40 (16.3%)	365 (29.6%)	
FW other	22 (7.6%)	7 (7.4%)		10 (6.6%)	17 (8.7%)		27 (11.0%)	68 (5.5%)	
Asthma			0.873			0.418			0.718
No	259 (89.6%)	85 (90.4%)		141 (92.8%)	173 (88.7%)		221 (89.8%)	1091 (88.6%)	
Yes	22 (7.6%)	6 (6.4%)		9 (5.9%)	17 (8.7%)		22 (8.9%)	122 (9.9%)	
Diabetes			0.565			0.217			0.409
No	274 (94.8%)	87 (92.6%)		148 (97.4%)	182 (93.3%)		237 (96.3%)	1167 (94.7%)	
Yes	7 (2.4%)	4 (4.3%)		2 (1.3%)	8 (4.1%)		6 (2.4%)	46 (3.7%)	
Hypertension			0.571			0.835			0.541
No	252 (87.2%)	79 (84.0%)		129 (84.9%)	166 (85.1%)		216 (87.8%)	1058 (85.9%)	
Yes	29 (10.0%)	12 (12.8%)		21 (13.8%)	24 (12.3%)		27 (11.0%)	155 (12.6%)	

	Virus Knowledge		Vaccine Kno	Vaccine Knowledge Vaccine Safety		afety	Vaccine Effe	ctiveness	Trust in government	
	n(%)	p-value	n(%)	p-value	n(%)	p-value	n(%)	p-value	n(%)	p-value
Reluctant										
Never Vaccinated	-26 (-9.0%)	0.044	58 (20.0%)	< 0.001	13 (4.5%)	0.170	21 (7.2%)	0.032	-5 (-1.7%)	0.635
Vaccinated	-8 (-8.5%)	0.305	20 (21.2%)	0.002	25 (26.6%)	< 0.001	29 (30.9%)	< 0.001	13 (13.8%)	0.049
Reachable										
Never Vaccinated	-29 (-19.0%)	0.001	38 (25.0%)	< 0.001	15 (9.9%)	0.044	18 (11.9%)	0.035	0 (0.0%)	1.000
Vaccinated	2 (1.0%)	0.876	49 (25.2%)	< 0.001	67 (34.4%)	< 0.001	52 (26.6%)	< 0.001	26 (13.3%)	0.011
Endorser										
Never Vaccinated	-53 (-21.5%)	< 0.001	53 (21.5%)	< 0.001	8 (3.2%)	0.476	6 (2.4%)	0.585	11 (4.4%)	0.303
Vaccinated	13 (1.1%)	0.596	235 (19.1%)	< 0.001	147 (11.9%)	< 0.001	136 (11.1%)	< 0.001	117 (9.5%)	< 0.001

Table 5. Change in Positive Response to Knowledge, Attitude, and Practice (KAP) Questions by Intention and Actual Vaccination from Follow-up Survey 1 to Follow-up Survey 2

Supplemental Appendix

Supplemental Figure 1. Timeline of key HEROES and RECOVER study activities July 2020-May 2021

Supplemental Figure 2. Change in Positive Response to Knowledge, Attitude, and Practice (KAP) Questions from Follow-Up Survey 1 to Follow-Up Survey 2, by Intention and Actual Vaccination

	Chance of getting sick if not vaccinated	Virus Knowledge	Vaccine Knowledge	Vaccine Safety	Vaccine Effectiveness	Trust in government
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
COVID-19 Vaccine Intention						
Reluctant	3.47 (1.40)	3.66 (0.876)	2.97 (0.919)	2.83 (0.846)	2.98 (0.849)	2.56 (1.19)
Reachable	4.23 (1.37)	3.64 (0.851)	2.98 (0.843)	3.50 (0.805)	3.54 (0.774)	3.32 (1.14)
Endorser	4.62 (1.47)	3.95 (0.839)	3.57 (0.886)	3.93 (0.794)	3.88 (0.775)	3.64 (1.20)
Occupation						
HCP inpatient	4.54 (1.48)	4.14 (0.766)	3.62 (0.882)	3.87 (0.838)	3.83 (0.798)	3.54 (1.22)
HCP other	4.44 (1.47)	4.04 (0.805)	3.60 (0.898)	3.82 (0.884)	3.82 (0.868)	3.52 (1.26)
First responder firefighter	4.26 (1.52)	3.71 (0.833)	3.20 (0.896)	3.48 (0.907)	3.43 (0.843)	3.20 (1.24)
First responder other	4.26 (1.52)	3.40 (0.873)	2.84 (0.869)	3.35 (0.913)	3.43 (0.860)	3.02 (1.24)
FW public	4.49 (1.51)	3.61 (0.861)	3.04 (0.859)	3.68 (0.875)	3.70 (0.812)	3.50 (1.22)
FW other	4.00 (1.46)	3.57 (0.868)	3.11 (0.840)	3.66 (0.845)	3.70 (0.800)	3.43 (1.25)
Prior SARS-CoV-2 Infection						
No	4.52 (1.43)	3.87 (0.848)	3.40 (0.912)	3.78 (0.867)	3.77 (0.813)	3.51 (1.23)
Yes	3.91 (1.67)	3.82 (0.885)	3.17 (0.935)	3.46 (0.916)	3.44 (0.897)	3.18 (1.25)
				0.001	10 1 1	

Supplemental Table 1. KAP by Intention group, Occupation, and prior SARS-CoV-2 Infection

All relationships were tested by Chi-square test and are statistically significant at p<0.001 so omitted for clarity