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Abstract 

Lifestyle-related phenotypes have been shown to be heritable and associated with DNA 

methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, 

alcohol consumption and higher body mass index (BMI) moderates the effect of these 

phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify 

genetic predisposition to these phenotypes using training (N=7,431) and validation (N=4,307) 

samples. Using paired genetic-methylation data (N=4,307), gene-environment interactions 

(i.e. PGS x lifestyle) were assessed using linear mixed-effects models with outcomes: 1) 

methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol 

consumption (459 CpGs) and BMI (85 CpGs), and 2) two epigenetic aging measures, 

PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P=1x10-14), ~0.6% 

(P=2x10-7) and ~8.7% (P=7x10-87) of variance in smoking initiation, alcohol consumption 

and BMI, respectively. Nominally significant interaction effects (P<0.05) were found at 61, 

14, and 7 CpGs for smoking, alcohol consumption and BMI, respectively. There was strong 

evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and 

GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the 

association of smoking with GrimAge was attenuated in participants genetically predisposed 

to smoke (interaction term: -0.02, P=0.06) and that the association of alcohol consumption 

with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction 

term: -0.03, P=0.04). In conclusion, genetic susceptibility to unhealthy lifestyles did not 

strongly modify their effects on blood DNA methylation. Potential associations were 

observed for epigenetic aging measures, which should be replicated in additional studies.  

 

Keywords: DNA methylation; gene-environment interaction; lifestyle; polygenic score; CpG 

site; epigenetic aging   
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Introduction 

Strong evidence shows that lifestyle-related factors influence epigenetic regulation 

mechanisms, such as DNA methylation [1-3]. For instance, tobacco use [4], alcohol 

consumption [5] and excess body weight [6] have been found to be strongly associated with 

blood DNA methylation changes. These lifestyle-related phenotypes are to some extent 

heritable [7-11]. Meta-analysis studies using imputed genotype data have estimated the 

genetic predisposition of an individual to smoke, drink alcohol or become overweight or 

obese, with SNP-based heritability estimates of ~8% for smoking initiation [7], ~4% for 

alcohol drinks per week [7] and ~22% for body mass index (BMI) [8]. Therefore, a key 

question of interest is whether such genetic predisposition to unhealthy lifestyle-related 

factors modifies their relationship with DNA methylation.  

        One way to understand such modification lies in examining gene-environment (i.e. 

gene-lifestyle) interactions in DNA methylation. Many gene-lifestyle interaction studies have 

focused on single genetic variants in candidate genes using Asian-ancestry samples [12-17]. 

For instance, strong interactions between the effects of alcohol intake and smoking on 

oesophageal and gastric cancer with risk alleles in alcohol dehydrogenase (ADH) and 

aldehyde dehydrogenase (ALDH) genes have been found in large-scale population-based 

Japanese studies [12-14]. However, Ugai et al. found no evidence of a gene-environment 

interaction between the ALDH2 alcohol-consumption predisposition variant (rs671) and 

alcohol intake for breast cancer risk among Asian women from the Breast Cancer Association 

Consortium [17]. Thus, individual genetic variants, which have small effect sizes in 

association with complex lifestyle-related traits, may not always be informative for 

evaluating overall genetic susceptibility. Furthermore, these variants are typically very rare 

among European-ancestry populations compared to Asian-ancestry groups. For example, the 

minor allele frequency (MAF) of ALDH2 rs671 is 0% in TwinsUK registry, while it is 16%, 
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19% and 21% for the Korean, Japanese and Vietnamese populations, respectively [18]. 

Therefore, when using single variants, lack of power may limit ability to detect interactions, 

especially for European-ancestry population-based data.   

        In contrast to candidate genes, polygenic scores (PGS), which summarise the estimated 

effects of many variants into a single value, have emerged as a powerful way to quantify an 

individual’s genetic predisposition to a phenotype [19]. In previous studies, PGS were found 

to account for approximately 4%, 2.5% and 14% of variance in smoking initiation [7], 

alcohol consumption per week [7] and BMI [8], respectively, i.e. about half of the estimated 

SNP-based heritability of these phenotypes. 

        In this study, we hypothesised that genetic factors that confer a predisposition to 

unhealthy lifestyle-related phenotypes would moderate their harmful effects - for example, 

individuals genetically predisposed not to drink would likely drink less over their lifetime but 

might have a higher-than-average risk of associated disease. We used DNA methylation as an 

outcome variable in the analyses since many diseases have been shown to be associated with 

aberrant DNA methylation [20-26], including measures of epigenetic aging [27-31]. Our aim 

in this study was therefore to investigate the interaction effects of observed tobacco smoking, 

alcohol consumption, and BMI with their respective PGS on DNA methylation in blood, for i) 

loci at which methylation changes with lifestyle and ii) two measures of epigenetic aging, 

PhenoAge and GrimAge.  

 

Materials and Methods 

Study participants 

The Melbourne Collaborative Cohort Study (MCCS) is an Australian community-based study 

that recruited 41,513 European-ancestry participants in 1990-1994 [32]. Several nested case-

control studies have been conducted to evaluate associations between blood DNA 
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methylation and the risk of eight types of cancer [33-36]. DNA was extracted from pre-

diagnostic peripheral blood taken at recruitment (1990-1994) or at a subsequent follow-up 

visit (2003-2007) in cancer-free participants. Incident cases were matched to controls on age, 

sex, country of birth and sample type (buffy coats, dried blood spots, and peripheral blood 

mononuclear cells) using incidence density sampling [32]. We used self-reported 

questionnaire-collected data on tobacco use, alcohol consumption, and measured height and 

weight to calculate BMI [4-6] for participants in the MCCS. The study was approved by the 

Cancer Council Victoria’s Human Research Ethics Committee, Melbourne, VIC, Australia, 

and all participants provided informed consent in accordance with the Declaration of Helsinki. 

Genetic and DNA methylation data 

Genome-wide genotyping was conducted on blood DNA samples from 12,584 MCCS 

participants using the Infinium OncoArray-500K BeadChip (Illumina, San Diego, CA, USA) 

[32, 37]. Following previous standardised protocols [38], we imputed autosomal genotypes 

using the Michigan imputation server [39] and IMPUTE version 2 [40] with the 1000 

Genomes Project dataset (phase 3) as the reference panel. The genotype probabilities from 

imputation were used to hard-call (uncertainty < 0.1) the genotypes for variants with an 

imputation info score�>�0.3. We then retained the hard-called variants with MAF >�0.1%, 

missing genotype rate�<�10% and Hardy-Weinberg equilibrium P-value�>�10-6. To avoid 

bias due to confounding by shared environment among close relatives, individuals were 

removed based on relatedness by excluding one participant randomly selected from any pair 

with a genetic relationship > 0.125 (3rd-degree or closer relationship) using the software 

GCTA [41]. After these quality control (QC) steps, 11,942 unrelated individuals with 

9,355,361 genetic variants (including 8,578,993 SNPs) were retained for the follow-up 

analyses.  
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        We measured DNA methylation in blood samples from 4,511 of the 11,942 participants 

using the HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA) applying 

methods described previously [32, 42, 43]. Among the 4,511 participants, DNA of 4,307 

were extracted at baseline recruitment (1990-1994). QC details for measures of genome-wide 

DNA methylation have been reported previously [34-36, 44]. Briefly, we removed probes 

with missing rate > 20% and probes on Y-chromosome, and ultimately retained 484,431 CpG 

sites with their beta values for each sample. Of these, we focused on 1,061, 459 and 85 CpG 

sites (Tables S1-S3) that were found to be strongly associated with smoking, alcohol 

consumption and BMI, respectively, with P < 10-7 in both the MCCS and external data [4-6, 

34]. Methylation M-values, calculated as log2(beta/(1-beta)), were used as these are thought 

to be more statistically valid for detection of differential methylation [45]. 

        The 7,431 individuals with genetic data but without DNA methylation data were used as 

the PGS training sample, and the 4,307 individuals with paired genetic-methylation data were 

used for PGS validation and all other analyses of this study (Table 1).  

PGS analyses 

We considered three lifestyle-related phenotypes: tobacco use, alcohol consumption and BMI. 

The largest published GWAS to date for smoking and alcohol consumption (~1,200,000 

samples) [7] and for BMI (~700,000 samples) [8] were used as base data, which provided 

estimated effect and P-value for each genetic variant; we used the same phenotypic 

definitions and variable transformations as those used in these GWAS [7, 8].  

        For tobacco use, we used smoking initiation [7] - a dichotomous phenotype for 

participants reporting ever being a regular smoker in their lifetime (current or former 

smokers), and those who reported never being a regular smoker. For alcohol consumption, 

participants reported their alcohol intake on each day during the previous week, in terms of 

the quantity and type of drink (beer, wine, spirits). Grams per day (g/day) were calculated 
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based on the average number of drinks a participant reported, as described previously [5, 46]. 

The variable was left-anchored at 1 and log-transformed to minimise the influence of 

potential outliers [7]. For BMI, we applied a rank-based inverse normal transformation to the 

raw values (in kg/m2) to better approximate a normal distribution [8].  

        PGS were calculated using the PRSice software [47, 48] with LD clumping parameters 

of R2 > 0.25 over 250-kb sliding windows. We removed ambiguous SNPs with A/T or G/C 

alleles [48]. A total of 7,431 MCCS individuals were used as a training dataset (“target data” 

in PRSice), and the PGS with the P-value threshold (from 5x10-8 to 1 by increments of 5x10-5) 

found to explain most of the variance in the phenotypes in the training dataset was chosen as 

the optimal polygenic score. The phenotypic values were adjusted for age, sex and first 20 

ancestry principal components (PCs) to account for population structure. To assess if there 

was overfitting in the association of optimal PGS with phenotype [48], we used the 4,307 

MCCS individuals, which were unrelated to the training dataset, as an out-of-sample 

validation.  

        For comparison with the optimal PGS, and to retain only SNPs having a strong effect on 

phenotypes of interest, we also calculated a ‘genome-wide significant PGS’ using only 

variants with a P-value < 5x10-8 and LD clumping parameters of R2 > 0.25 over 250-kb 

sliding windows, and evaluated the association of this PGS with phenotype for both training 

and validation datasets. 

 

Statistical analyses 

Using the 4,307 MCCS participants with paired genetic-methylation data, we examined the 

interaction effects of observed tobacco use, alcohol consumption, and BMI with their 

respective PGS on DNA methylation at individual CpG sites (1,061, 85, and 459 CpGs 

associated with smoking, alcohol consumption and BMI, respectively [4-6, 34]), using linear 
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mixed-effects regression models with M-values as an outcome. The model was also adjusted 

for age, sex, first 20 ancestry PCs, sample type, white blood cell composition (percentage of 

CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes estimated using 

the Houseman algorithm [49]) and the two other lifestyle-related phenotypes as fixed effects, 

and study, batch plate, and chip as random effects. Interaction effects were then assessed by 

examining the interaction term using the Wald test. It is noted that in these association 

analyses, we used a continuous comprehensive smoking index (CSI) variable [4] as it 

includes more information about smoking (cumulative lifetime exposure to tobacco smoke) 

than smoking initiation, which does not distinguish between current and former smokers or 

consider other smoking-related variables. For alcohol consumption and BMI, we used the 

phenotypic values defined in section “PGS analyses”. 

        We also used the same models to examine interaction effects of these lifestyle-related 

phenotypes with their PGS on epigenetic aging measures, namely PhenoAge [27] and 

GrimAge [28], two composite predictors of mortality. These were calculated using the online 

calculator [50], and adjusted for age as described previously [31]. 

 

Results 

Sample characteristics of the MCCS participants used in this study are shown in Table 1.  

        We calculated optimal and genome-wide significant PGS of three lifestyle-related 

phenotypes for each participant, summarised in Table 2. In the validation sample, we found 

that the optimal PGS (derived from a training sample, see Figures S1-S3) explained ~1.4% 

(P = 1x10-14), ~0.6% (P = 2x10-7) and ~8.7% (P = 7x10-87) of variance in smoking initiation, 

alcohol consumption in previous week and BMI, respectively. The genome-wide significant 

PGS included substantially fewer SNPs and explained less variance. 
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        The interactions between the three lifestyle-related phenotypes and their respective 

optimal PGS in association with DNA methylation at 1,061 smoking-associated CpGs, 459 

alcohol consumption-associated CpGs and 85 BMI-associated CpGs are shown in Tables S1-

S3. Considering a nominal significance threshold of P < 0.05, the numbers of CpGs with 

significant interaction effects are shown in Table 3, none of them being greater than expected 

by chance. Considering a Bonferroni significance threshold for each of the three phenotypes 

(P < 0.05/1061 = 4.7x10-5, P < 0.05/459 = 1.1x10-4 and P < 0.05/85 = 5.9x10-4, respectively), 

we found a significant interaction for a BMI-associated CpG, cg11376147, chr11:57261198 

(BMI main effect = -0.06, 95% CI: -0.08, -0.03, P = 8.7x10-7; interaction effect with PGS = -

0.04, 95% CI: -0.06, -0.02, P = 3.8x10-4), Table S3.  

The interactions between the lifestyle-related phenotypes and their optimal PGS in 

association with PhenoAge and GrimAge are shown in Table 4. There was strong evidence 

that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, 

except for alcohol consumption with PhenoAge (P = 0.09). There was weak evidence that the 

association of CSI with GrimAge was attenuated in participants genetically predisposed to 

smoke with interaction term: -0.022 (95% CI: -0.046, 0.002), P = 0.06 and that the 

association of alcohol consumption with PhenoAge was attenuated in those genetically 

predisposed to drink alcohol with interaction term: -0.03 (95% CI: -0.059, -0.001), P = 0.04.   

        The results using the genome-wide significant PGS at CpGs of interest are also shown in 

Tables S1-S3 and summarized in Table S4. Using the Bonferroni correction, a potential 

interaction was detected at an alcohol-associated CpG cg02470690, chr6:27839548 (alcohol 

consumption main effect = -0.06, 95% CI: -0.09, -0.03, P = 3.5x10-5; interaction effect with 

PGS = 0.06, 95% CI: 0.03, 0.09, P = 6.7x10-5), but not for other lifestyle-related phenotypes 

or measures of epigenetic aging (Table S5).  
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Discussion  

This is to our knowledge the first study to examine gene-lifestyle interactions on DNA 

methylation. Interaction studies using PGS are likely to be more powerful than those based 

on individual variants or genes due to better quantifying the overall genetic predisposition. 

We expected that genetic predisposition to unhealthy lifestyle-related phenotypes would 

moderate their harmful effects; however, our results suggest that, for CpGs associated with 

smoking, alcohol consumption and BMI, genetic predisposition to unhealthy lifestyle-related 

factors does not strongly modify their effect on blood DNA methylation, i.e. there was no 

substantial evidence of interaction effects between observed lifestyle-related phenotypes and 

their respective PGS on DNA methylation at these loci. After Bonferroni correction, an 

interaction was detected at a BMI-associated CpG (cg11376147); however, the direction of 

the observed interaction (same as main effect) was inconsistent with our hypothesis. Our 

results also suggest that the association of smoking with GrimAge was slightly attenuated in 

participants genetically predisposed to smoke and the association of alcohol consumption 

with PhenoAge was slightly attenuated in those genetically predisposed to drink alcohol; the 

evidence of interaction was nevertheless quite weak and not consistently observed across all 

lifestyle-related factors and epigenetic aging measures. 

        In this study, we focused primarily on a best-fit PGS which explains the highest 

proportion of phenotypic variation, and also considered a PGS including only genome-wide 

significant variants. Although the latter accounts for less variance, it consists of a number of 

loci with stronger genetic effects on the lifestyle-related phenotypes, thus this PGS may be 

more specific to biological mechanisms explaining unhealthy lifestyle and could rule out 

some confounding effects due to pleiotropy with other traits. For instance, many of the 79 

SNPs used for building genome-wide significant PGS of alcohol intake are in ADH and 

ALDH genes which are primary enzymes to metabolise alcohol in liver [51], whereas the 
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majority of the 151,167 SNPs included in the optimal PGS may relate to many other traits 

such as mental health / disorders or educational attainment that are less likely to modify the 

effects of alcohol consumption on DNA methylation. It is noted that the variance explained 

(R2) in alcohol consumption in the validation sample reduced only a little, from 0.006 to 

0.005, when using the optimal and genome-wide significant PGS. This implies that a large 

number of SNPs in the optimal PGS may not be relevant to this phenotypic trait. Consistent 

with this, we detected a significant interaction at an alcohol consumption-associated CpG 

(cg02470690) with the genome-wide significant PGS, with a direction consistent with our 

hypothesis (opposite to main effect). We also found nominally significant interactions (P < 

0.05) that were in the opposite direction to main effect at 41 out of the 459 alcohol-related 

CpGs, which was substantially more than expected by chance (N=11) and consistent with our 

previous finding using a PGS of 13 genetic variants associated with alcohol consumption [5].  

        For alcohol consumption, previous interaction studies were performed predominantly for 

the ADH and/or ALDH genes on Asian-ancestry samples [12-17]. In the present study, we 

used an Australian cohort of European-ancestry, in which the allele frequencies of variants in 

these alcohol-metabolism genes were very low, most of them were < 1%. For instance, the 

ALDH2 rs671 polymorphism, which has been widely studied in Asian groups [52-54], was 

not included in our analyses due to very low MAF (< 0.1%). Therefore, the candidate gene 

approach focusing on single variants may not be appropriate in European-ancestry 

populations for this phenotypic trait, unless resources with a very large sample size are used.   

        There are several limitations in this study. First, the genotyping was conducted using the 

Infinium OncoArray-500K BeadChip. Although we performed high-quality imputation to 

obtain a comprehensive genome-wide range of genotypes, the phenotypic variance explained 

by PGS we observed was somewhat smaller than using more general microarrays, e.g. R2 

reached ~10% for BMI using the same PGS calculation method but with an Illumina 610-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.18.21265181doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.18.21265181
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Quadc1 array in another study [55]. Secondly, in this study we applied the PRSice method (p-

value thresholding and clumping) to calculate PGS but other methods such as Bayesian 

approaches or regularised regression might have led to somewhat different PGS [56], which 

may have had some influence on our results. Thirdly, although we included >4,300 

participants with paired genetic-methylation data, this sample size might not be sufficient to 

detect associations at individual or aggregated CpG sites, because interaction effects are 

usually much smaller than main effects.  

        In conclusion, genetic susceptibility to unhealthy lifestyles (smoking, drinking alcohol, 

and being overweight or obese) does not appear to strongly modify their effects on blood 

DNA methylation based on our data. Potential interactions were observed for the composite 

measures of epigenetic aging, which suggests that such genetic predisposition might 

moderate their harmful effects on biological aging, but these findings should be replicated in 

additional studies. 
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Table 1. Characteristics of the MCCS participants used in the study. 
 

Sample characteristic Training sample for 
PGS  

(N = 7,431) 

Validation sample for 
PGS and for main 

analysis (N = 4,307) 
Age at blood draw (median [IQR]) 53.7 [47.1 - 60.8] 59.6 [52.7 - 64.8] 
Sex: 
    male, N (%) 
    female, N (%) 

 
2,655 (36%) 
4,776 (64%) 

 
2,541 (59%) 
1,766 (41%) 

Blood sample type:  
    dried blood spots, N (%)  
    peripheral blood mononuclear cells, N (%)   
    buffy coats, N (%) 

 
 
 
 

 
3,240 (75%) 
993 (23%) 

74 (2%) 
Smoking status:  
    current, N (%)   
    former, N (%)   
    never, N (%) 

 
644 (9%) 

2,235 (30%) 
4,552 (61%) 

 
477 (11%) 

1,638 (38%) 
2,192 (51%) 

Alcohol consumption last week (g/day) *, median [IQR] 2.7 [0 – 14.7] 4.3 [0-17.1] 
Body mass index (kg/m2), median [IQR] 26.1 [23.6 - 28.9] 26.6 [24.3 - 29.4] 

 
*Note: Participants reported their alcohol intake on each day during the previous week, in terms of the 
number, measure, and type of drink (beer, wine, spirits). Grams per day (g/day) were then calculated 
based on average number of drinks a participant reported, as described previously [5, 41].  
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Table 2. PGS calculation for three lifestyle-related phenotypes in training and validation sample 
 

 
Lifestyle-related phenotype 

Training sample (N=7,431) 

Optimal PGS Genome-wide significant PGS 
SNP number R2 P SNP number R2 P 

Smoking initiation 39,813 0.014 1.4x10-24 145 0.004 2.9x10-07 
Alcohol consumption in previous week 151,167 0.006 5.3x10-12 79 0.002 4.8x10-4 
BMI 156,400 0.085 2.4x10-146 1,877 0.041 8.5x10-70 
 
Lifestyle-related phenotype 

Validation sample (N=4,307) 

Optimal PGS Genome-wide significant PGS 
SNP number R2 P SNP number R2 P 

Smoking initiation 39,813 0.014 1.5x10-14 145 0.002 0.009 
Alcohol consumption in previous week 151,167 0.006 2.0x10-7 79 0.005 1.4x10-6 
BMI 156,400 0.087 6.6x10-87 1,877 0.039 3.9x10-39 

 

Note: The SNPs included in optimal PGS were obtained using a P-value threshold (in base data, i.e. 
external GWAS) that maximised the variance explained in the phenotypes in the training sample, 
while the SNPs in ‘genome-wide significant PGS’ were obtained using a P-value threshold of 5x10-8. 
R2 and P are the variance explained and strength of association between the phenotype and its PGS. 
The validation sample used the same SNPs as those retained in the optimal and genome-wide 
significant PGS from the training process.   
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Table 3. CpG numbers of nominally significant interaction effects between three lifestyle-related 
phenotypes and their optimal PGS on DNA methylation at 1,061 smoking-associated CpGs, 459 

alcohol consumption-associated CpGs and 85 BMI-associated CpGs.  
 

Lifestyle-related phenotype Total number of CpGs 
with interaction (P<0.05) 

Same direction 
with main effect 

Opposite direction 
with main effect 

Comprehensive smoking index 61 15 46 
Alcohol consumption in previous week 14 10 4 

Body mass index 7 5 2 
 

Note: Same/opposite direction indicates the comparison between direction of interaction effect and 
direction of main effect of the lifestyle phenotype on DNA methylation.  
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Table 4. Interaction effects of lifestyle-related phenotypes and their optimal PGS on PhenoAge and 
GrimAge.  

 
Lifestyle-related 

phenotype 
Outcome Effect (S.E.) 

of phenotype 
P  Effect (S.E.)  

of PGS 
P  Effect (S.E.) 

of interaction 
P  

Comprehensive smoking 
index 

PhenoAge 0.092 (0.015) 9.2x10-10 -0.012 (0.015) 0.41 -0.017 (0.014) 0.22 

GrimAge 0.506 (0.012) <5x10-308 0.030 (0.012) 0.01 -0.022 (0.012) 0.06 

Alcohol consumption in 
previous week 

PhenoAge 0.025 (0.014) 0.09 -0.016 (0.015) 0.28 -0.030 (0.015) 0.04 

GrimAge 0.072 (0.012) 1.0x10-9 0.001 (0.012) 0.91 0.018 (0.012) 0.14 

Body mass index PhenoAge 0.069 (0.015) 5.7x10-6 0.049 (0.016) 0.002 0.006 (0.014) 0.68 

GrimAge 0.083 (0.012) 1.9x10-11 0.013 (0.013) 0.32 -0.014 (0.011) 0.22 
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