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ABSTRACT  

Introduction: In the United States, COVID-19 is a nationally notifiable disease, cases and hospitalizations 
are reported to the CDC by states. Identifying and reporting every case from every facility in the United 
States may not be feasible in the long term. Creating sustainable methods for estimating burden of 
COVID-19 from established sentinel surveillance systems is becoming more important. We aimed to 
provide a method leveraging surveillance data to create a long-term solution to estimate monthly rates of 
hospitalizations for COVID-19.  

Methods: We estimated monthly hospitalization rates for COVID-19 from May 2020 through April 2021 
for the 50 states using surveillance data from COVID-19-Associated Hospitalization Surveillance 
Network (COVID-NET) and a Bayesian hierarchical model for extrapolation. We created a model for six 
age groups (0-17, 18-49, 50-64, 65-74, 75-84, and ≥85 years), separately.  We identified covariates from 
multiple data sources that varied by age, state, and/or month, and performed covariate selection for each 
age group based on two methods, Least Absolute Shrinkage and Selection Operator (LASSO) and Spike 
and Slab selection methods. We validated our method by checking sensitivity of model estimates to 
covariate selection and model extrapolation as well as comparing our results to external data. 

Results: We estimated 3,569,500 (90% Credible Interval:3,238,000 – 3,934,700) hospitalizations for a 
cumulative incidence of 1,089.8 (988.6 – 1,201.3) hospitalizations per 100,000 population with COVID-
19 in the United States from May 2020 through April 2021. Cumulative incidence varied from 352 – 
1,821per 100,000 between states. The age group with the highest cumulative incidence was aged ≥85 
years (5,583.1; 5,061.0 – 6,157.5).  The monthly hospitalization rate was highest in December (183.8; 
154.5 – 218.0).  Our monthly estimates by state showed variations in magnitudes of peak rates, number of 
peaks and timing of peaks between states.  

Conclusions: Our novel approach to estimate COVID-19 hospitalizations has potential to provide 
sustainable estimates for monitoring COVID-19 burden, as well as a flexible framework leveraging 
surveillance data. 
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INTRODUCTION 

Monitoring disease burden and severity is a critical component of public health research, communication, 
and response.  The current pandemic of Coronavirus Disease 2019 (COVID-19), which is caused by 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has been ongoing since early 2020 
and presents novel challenges and barriers to monitoring due to the unique transmission, nature of the 
virus, and variety of symptom presentations. In the United States, COVID-19 cases, hospitalizations, and 
deaths are captured through the National Notifiable Disease Surveillance System (NNDSS) and death 
certificates reported to the National Vital Statistics System (NVSS).1–3 However, hospitalization status of 
cases reported by states through NNDSS is often incomplete and thus might inaccurately represent the 
burden of COVID-19 hospitalization in the United States.  In addition, since July 15, 2020, 
hospitalizations known or suspected to be related to COVID-19 have been reported daily through HHS 
Protect, known as the Unified Hospital Timeseries Data.4 This data collection is a burden on facilities that 
is likely unsustainable in the long term.  

Current research and methods for estimating hospitalizations of COVID-19 are limited. In mid 2020, the 
Centers for Disease Control and Prevention (CDC) developed a multiplier method for estimating 
infections and hospitalizations of COVID-19 based on state and territory reported line-level case data.5 
Other papers have leveraged seroprevalence surveys to estimate infections and hospitalizations of 
COVID-19.6,7 These methods rely on data systems such as case reporting or wide scale, special 
seroprevalence surveys that were initiated during the pandemic but might not exist in the future, as the 
pandemic winds down. Case-count data and consistent, representative seroprevalence data may eventually 
be discontinued due to the pandemic slowing down and resources and attention going elsewhere; leaving 
a need for longer term systems that can be sustained.   

Since March 2020, the Coronavirus Disease 2019- Associated Hospitalization Surveillance Network 
(COVID-NET) has collected data on laboratory confirmed SARS-CoV-2-positive patients from a network 
of hospitals in 14 U.S. states.8 Although this sentinel surveillance system does not cover the entire United 
States, it is expected to continue monitoring rates of COVID-19 hospitalization even after the pandemic 
ends.  The COVID-NET system was built off of the similar long-standing Influenza Hospitalization 
Surveillance Network (FluSurv-NET), which has been monitoring population-based rates of influenza 
hospitalization for almost 20 years.9 

We created a method to utilize COVID-NET data to provide national and state-specific estimates of 
hospitalization to provide a long-term, sustainable framework to generate estimates of COVID-19 disease 
burden in the United States.  The aim of this study was to estimate monthly COVID-19 hospitalization 
rates for all 50 states from May 2020 through April 2021.  We adapted a Bayesian hierarchical model to 
estimate and extrapolate hospitalization rates, accounting for uncertainty and variability between states 
and across time.  

 

METHODS 

COVID-NET Surveillance Hospitalization Data and Adjustments 

We used COVID-19 hospitalization data from COVID-NET. The network identifies patients who tested 
positive for SARS-CoV-2 through a test ordered by a health care professional and who are hospitalized 
within 14 days of their positive test. Hospitalization rates are calculated by the number of residents in a 
catchment area, defined as the area/population around the reporting hospital that the hospital potentially 
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services, of the COVID-NET sites who are hospitalized with confirmed, positive SARS-CoV-2 test 
divided by the total population within that defined catchment area. The network is made up of over 250 
acute-care hospitals representing 99 counties in 14 states: California, Colorado, Connecticut, Georgia, 
Iowa, Maryland, Michigan, Minnesota, New Mexico, New York, Ohio, Oregon, Tennessee, and Utah. 
Overall, the network covers about 10% of the United States population. For this analysis, case data were 
aggregated by month of hospitalization, state reporting, and the following 6 age groups, 0-17 years, 18-49 
years, 50-64 years, 65-74 years, 75-84 years, and 85 years and older.  

Recognizing that all hospital patients are unlikely to be tested for SARS-CoV-2 and, therefore, some true 
cases are not classified as COVID-19 patients, COVID-19 hospitalization rates are adjusted by weighting 
them for SARS-CoV-2 testing practices, i.e., the probability of being tested for SARS-CoV-2 during their 
hospitalization. In addition, testing practices changed over the course of the pandemic. The probability of 
being tested was calculated from IBM Watson Health Explorys electronic health record database (IBM 
Corporation, Armonk, NY), which includes more than 39 health system partners across the country.  All 
states participating in COVID-NET, except Connecticut, used the same testing probabilities calculated 
from IBM Watson data, which were aggregated testing practices of all partners stratified by month and 
age group. The testing probabilities for these 13 states ranged from 0.28 to 0.67. Connecticut provided 
site-specific testing practice data through COVID-NET, which ranged from 0.32 to 1.00.  Rates were also 
adjusted to account for the SARS-CoV-2 assay sensitivity because, depending on the sensitivity of the 
assay, some patients could have false negative test results (i.e., would not be identified as a COVID-19 
hospitalization). The assay sensitivity was assumed to be 0.885, which is the midpoint for the range found 
in a systemic review.10 The adjusted hospitalization counts were used to calculate rates, using COVID-
NET catchment populations for each site, i.e., as the model input rates. Due to range in hospitalizations by 
age groups overtime, six models were run, one for each age group. 

For each age group, 
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where s=1,..,S for each COVID-NET state,  m=1,..,M for each month, and c= Connecticut or not 
Connecticut. 

Covariate Data and Selection 

To extrapolate COVID-19 hospitalization rates from COVID-NET sites to states not included in the 
COVID-NET network, we incorporated model covariates based on state, month, and age-specific 
demographic and epidemiological data.  We used different data measures to account for differences 
between states with COVID-NET sites and those states without COVID-NET sites from multiple sources 
(Table 1). Including covariates in the model helps to quantify differences between age groups, months, 
and states and allows for the model to account for these differences when estimating how many COVID-
19 hospitalizations have occurred. We considered both time-varying and time-invariant state-level 
covariates that captured other COVID-19 disease trends, population demographics, and population health 
indicators. For the time varying covariates, we considered the percent of SARS-CoV-2 positive tests from 
commercial and public health laboratories, percent of all-cause deaths that were coded as COVID-19 
deaths from National Center for Health Statistics (NCHS) and NVSS, and the following hospital capacity 
variables: percent COVID-19 patients out of all inpatients and percent intensive care unit (ICU) beds 
occupied out of all ICU beds.11-15 We incorporated a one week lag to the percent positive COVID-19 tests 
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to account for time between symptom onset and hospitalization and a one week lead to the percent of 
COVID-19 deaths out of all deaths to account for time between hospitalization and death. For the time-
invariant covariates, we considered the percent Native American and percent Black American, and the 
population prevalence of the following conditions/diseases from the Behavioral Risk Factor Surveillance 
System (BRFSS): any chronic condition, obesity, heart disease, chronic obstructive pulmonary disease 
(COPD), diabetes, chronic kidney disease (CKD), and asthma.16,17 Underlying medical and chronic 
conditions were found to be highly prevalent in hospitalized COVID-19 patients and were therefore 
included as possible covariates.18 Table 1 summarizes all of the variables that were considered as 
covariates. We used covariate selection methods to determine which of the possible covariates to include 
in the model.  For the <18 year old age group, only asthma was included as a possible covariate from the 
chronic conditions/diseases because of lack of evidence that the prevalence of other chronic 
conditions/diseases affected COVID-19 hospitalization in that age group.  

Extreme values were detected for time-varying covariates and subsequently transformed using 
Winsorization, i.e., minimized the influence of outliers by replacing them by the maximum and/or 
minimum values at a threshold of distribution percentiles.19 We used the adjusted COVID-NET 
hospitalization rates as the outcome to select covariates, separately for each age group. Covariate 
selection methods assist with avoiding collinearity and ensuring that the most relevant and impactful 
covariates are included. Our method for covariate selection utilized Least Absolute Shrinkage and 
Selection Operator (LASSO) and Spike and Slab.20,21 Covariates were included in the final model for the 
specific age group if they were selected by LASSO and then the model incorporated spike and slab 
selection. The LASSO chooses a subset of predictors by introducing an upper bound for the sum of 
squares and minimizing the errors present in the model. Spike and slab is a Bayesian approach where we 
assigned priors to the regression coefficients to be zero or non-zero, which is where the name comes 
from. From that, the posterior distributions show a bi-separation effect in the model coefficients – those 
that peak at zero and those significantly different from zero. Assumption for non-zero was high in the 
model due to LASSO selection being done first.  

Bayesian Hierarchical Model and Extrapolation 

We implemented a Bayesian hierarchical model for extrapolation adapted from a model to estimate global 
influenza burden rates.22 Parameter estimation and inference were conducted under a fully Bayesian 
framework to better quantify uncertainties in predicted hospitalization rates, including those that are 
extrapolated to states without COVID-NET data.  

We let ���� denote the estimated COVID-19 hospitalization rate, per 100,000 population from the 
COVID-NET states during months from the pandemic, starting in May 2020, where s=1,…,S, S=14 states 
in COVID-NET,  m=1,…,M, and M=12 for each month included in the model. For each hospitalization 
estimate, the standard error and corresponding variance, �̂��

� , were calculated from the standard error of 
the rate from a Poisson distribution. Those estimated numbers, along with the selected covariates, were 
used as inputs into the following Bayesian hierarchical model:  

Level 1:  ����  ~�#��� , �̂��
� $ 

where  ����  is the estimated hospitalization rate for state and month from COVID-NET data, , �̂��
�  is the 

corresponding estimated variance, and ��� is the unobserved true hospitalization rate. 

Level 2: ���~%���#& ' (�), *�$ 

where ) is the covariate matrix, and covariates are with mean zero and variance 1.  
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Level 3: (�~�#0, 1000000���	�
 � 0.001$ 

��~ -���#0.9$ 

Priors: &~ �#0, 10��$ 

*�~/���#0,1000$ 

where k=1,...,K and K=the number of selected covariates. 

Inference was carried out utilizing Markov chain Monte Carlo (MCMC) simulations with 20,000 
iterations.  The model outputs included samples from the posterior distribution of COVID-19 associated 
hospitalizations for each state and month. Using these samples, we calculated the median and 90% 
credible intervals for hospitalization counts, rounded to the hundreds due to MCMC errors, and used the 
state population by age group to calculate final hospitalization rates. To calculate overall age, age by 
month, age by state, and state by month hospitalizations and rates, we first summed the posterior samples. 
Since the median of sums does not equal the sum of medians, this led to slightly different total 
hospitalizations depending on which grouping was used to sum. For consistency, we calculated total 
hospitalizations from overall age medians, total monthly hospitalizations from age by month, and total 
state hospitalizations by age by state. We chose 20,000 iterations after starting with 2,000 iterations and 
slowly increasing to obtain stable estimates that also minimized simulation error.    

Validation/Comparison  

We conducted sensitivity analyses to assess the effect of covariate selection and input data on the model. 
Multiple combinations of covariates were examined for each age group to assess how robust the 
hospitalization estimates were to covariate selection. To validate and test the sensitivity of the model, 
first, we compared how the model estimated hospitalizations for each COVID-NET state with the 
observed hospitalization rate from COVID-NET. In another sensitivity analysis, we dropped data from 
each COVID-NET state, one by one, and then compared the observed hospitalization rates to the 
extrapolated rates for each dropped state. Finally, we also compared our COVID-19 hospitalization 
estimates against other estimates and databases, including COVID-19 hospitalization rates reported 
through Healthdata.gov, COVID Tracking project, and from our earlier burden model, CDC’s case-based 
multiplier model.5 The Unified Hospital Timeseries data and COVID Tracking project are publicly 
available.  According to Healthdata.gov, the Unified Hospital Timeseries data had reliable counts of new 
hospitalization with COVID-19 starting in the fall of 2020 when over 95% reporting from all hospitals 
reported by the Department of Health and Human Services (HHS). CDC’s case-based multiplier model 
estimates hospitalization in two month increments and by HHS regions, not state. Our model output was 
aggregated appropriately for comparisons.  

Role of the funding source 

Funding for this work was supported by CDC (Atlanta, Georgia). The authors received no financial 
support for the research, authorship, or publication of these data. All authors had full access to the data in 
the study and full responsibility for the decision to submit to publication. 

 

RESULTS 

The covariates selected for each age group varied (Supplementary (S) Table 1).  The SARS-CoV-2 
percent positive, the percentage of COVID-19 inpatients out of all inpatients, and the percentage of 
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hospitalizations that were ICU admissions were selected for each of the age groups.  The 18-49 year old 
age group had the most covariates selected, and the <18 year old age group had the fewest covariates 
selected.  

From May 2020 through April 2021 in the United States, we estimated there were 3,569,500 (90% 
Credible Interval (CrI): 3,238,000 – 3,934,700) hospitalizations representing a rate of 1,089.8 (90% CrI: 
988.6 – 1,201.3) hospitalizations per 100,000 population. The estimated rates varied by age group, state, 
and month. The highest rates of hospitalization were among those aged 85 years and older, with a rate of 
5,583.1 per 100,000 population (90% CrI: 5,061.0 – 6,157.5), and the lowest hospitalization rate was for 
those less than 18 years of age, with a rate of 80.9 per 100,000 population (90% CrI: 73.3 – 88.6). Table 2 
summarizes the final estimated counts and rates of hospitalizations by age group from May 2020 through 
April 2021.  

Hospitalization rates for all age groups peaked in either December 2020 or January 2021. Figure 1 shows 
the epidemiologic curves of hospitalizations over time by age group. During the study period, we 
observed the largest peak in hospitalization rates in December 2020 (183.8/100,000), followed by January 
2021 (180.2/100,000).  The second, smaller peak in COVID-19 hospitalizations was observed for all age 
groups in July 2020 (90.5/100,000).  The lowest rate of hospitalization was observed across age groups in 
September 2020 (46.4/100,000). Following the peak in COVID-19 hospitalization rates during the winter 
months, COVID-19 hospitalizations declined until the month of April 2021 (Figure 1).   

At a state level, cumulative hospitalization rates from May 2020 through April 2020 ranged from 351.8 
(90% CrI: 241.5 – 476.6) hospitalizations per 100,000 people in Vermont to 1,821.0 (90% CrI: 1,137.5 – 
2,592.8) hospitalization per 100,000 people in Nebraska. Figure 2 shows the overall cumulative 
hospitalization rate per 100,000 people from May 2020-April 2021 for all states with a heat map (panel a) 
and by bar graph (panel b) to show in the range of hospitalization burden across the country. COVID-
NET states are well-distributed throughout the highest to lowest rates by state (panel b). 

Considering state-specific hospitalization rates over time, not all states had the same peaks or magnitudes 
of peaks. Figure 3 shows the histogram across the study period for the ten states with the highest 
cumulative hospitalization rates from May 2020 through April 2021.  From these example states, we were 
able to observe differences in the time trends between states regarding the timing and number of peaks. 
States including Texas, Nevada, Alabama, Arizona, and Tennessee have two peaks; however, they 
differed by timing and magnitude of the peaks.  In contrast, Nebraska, Kansas, Virginia, Missouri, and 
Pennsylvania experienced only one major peak, which also differed by timing and magnitude. 
Hospitalization rates per 100,000 population from the final output model overtime are provided below in 
Figure 3. 

To assess the sensitivity of the selected covariates, we ran the model using multiple combinations of the 
covariates, including those selected by LASSO method alone and those by spike and slab method alone.  
Hospitalization estimates did not vary greatly overall or by age depending on covariate combinations, and 
were almost 100% consistent between LASSO alone, Spike and Slab alone, and when both were used, 
which are the covariates used in the final model for each age group.  To validate the final model, we 
compared the observed COVID-NET hospitalization rates to the final model’s estimated hospitalization 
rates. The rates are higher from the final model. However, the trends overtime and by age group follow 
the observed, input rates (S Figure 1). The supplementary images are a plot of each state comparing 
observed (input), estimated (final model), and extrapolated monthly hospitalization rate in the leave-one-
state out analysis, showing rates over time and by age group. Model median results for other states were 
mostly consistent whether the specific COVID-NET state was dropped or not.  Almost all of the COVID-
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NET states’ extrapolated estimates, i.e. when dropped, had a 90% Credible Interval that included the 
observed (input) estimate and estimated (final model) rate. The older age groups were more consistent 
and had more overlap between estimates than the younger age groups in the leave-one-state out analysis.  
Finally, we compared our output with other hospitalization estimates and data. First, we compared our 
results to the Unified Hospital Timeseries data and data published on The COVID Tracking Project.23,24 
Figure 4 shows comparison of hospitalization rate from each source over time. Our model has higher 
estimates than the published Unified Hospital Timeseries data but shows the same trends and includes the 
rates in our 90% Credible Intervals for a few months.   Finally, we compared our results to the current 
published numbers from CDC on hospitalizations based on CDC’s case-based multiplier model.25 Our 
model’s output was lower than the estimates from CDC’s case-based multiplier model (S Table 2). From 
June 2020 to March 2021, our model estimated a cumulative incidence of 900.7 per 100,000 population 
whereas CDC’s case-based multiplier estimated 1,345.3 per 100,000 population.  
 

DISCUSSION 

Overall, our method estimated 3,569,500 hospitalizations occurred in the United States from May 2020 
through April 2021, with estimated rates varying by age group, state, and month. These estimates 
demonstrate the large burden of COVID-19 hospitalizations in the United States and provide visibility on 
variations in disease burden by age group, state, and time.  As expected, the most severe burden of 
COVID-19 hospitalizations occurred among older age groups, specifically among people aged ≥65 years 
old. The largest peak in hospitalizations occurred in December 2020 and January 2021, aligning with the 
largest peak in reported case rates.26 

Our approach to estimating the burden of COVID-19 hospitalization using long-term surveillance data 
has several benefits.  First, we designed our model to build on an existing system that was initially started 
to track hospitalization for influenza and has expanded to capture other respiratory viruses including 
COVID-19. COVID-NET was built on a long-standing surveillance infrastructure that has been 
conducting surveillance for respiratory infections, including influenza and respiratory syncytial virus, for 
many years and is expected to continue monitoring COVID-19 hospitalization rates into the future.27 Our 
model calculated estimates of state-level hospitalization rates by month and age group, rather than 
assuming the 14 COVID-NET sentinel sites are representative of the United States. Each U.S. state has 
experienced the pandemic differently, and our models allow us to capture the variations in the number 
and magnitude of peaks, and state-specific trends in hospitalization rates.  Further, using covariates to 
extrapolate data from the COVID-NET sites to the rest of the United States provides useful information to 
understand state-level differences in hospitalization. The covariates add information to the input 
hospitalization rates to then create a better story to the states it extrapolates to. This model helps preserve 
notable differences in the epidemiology of COVID-19 between states.   

For initial estimates of COVID-19 hospitalizations, CDC used a multiplier method using nationally-
notifiable case report data and assumptions for under-detection of confirmed cases.5 When we compared 
our model’s output to CDC’s case-based multiplier model during time periods that overlapped, we found 
that our model generated more conservative estimates of hospitalization. When comparing estimates by 
age group, months, and HHS regions, specific differences are highlighted. Our model had much lower 
estimates of hospitalization rates per 100,000 for the 0-17 year old age group, 210.7 for CDC’s multiplier 
model and 64.8 for ours, and 65 years old and above age group, 4,401.7 for CDC’s multiplier model and 
2,794.3 for ours, while the other age groups were only slightly lower (Supplementary table 2). Also, our 
February through March estimate and HHS regions 2 and 9 were much lower.  However, our model had 
higher estimates for a few HHS regions compared to CDC’s case-based multiplier estimates. Our method 
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has several advantages over CDC’s case-based multiplier method.  First, the case report data used was 
often incomplete for hospitalization status and relied on imputation of hospitalization status. In our 
method, the input hospitalization data were from a surveillance system that actively identified laboratory-
confirmed COVID-19 hospitalizations. This may account for the differences observed in the 
hospitalization estimates between the models. Imputation could lead to more hospitalizations than those 
counted from the surveillance system. A second difference was that CDC’s case-based multiplier method 
adjusted reported cases for factors that influenced case detection, including health care seeking behaviors 
and testing practices, which were not available at the state level. Therefore, they adjusted and estimated at 
the HHS region level rather than the state level.   

CDC’s case-based multiplier model relies on COVID-19 being a nationally notifiable disease and 
continued case reporting by states and jurisdictions which may not continue long-term.  In contrast, our 
method relies on routine sentinel surveillance data and allows for extrapolation to places without data. 
Both the case report data and seroprevalence data used by Angulo et al.6 as the basis for their national 
COVID-19 disease burden estimates were data sources created to inform the pandemic response, but it is 
unclear how long these data will continue to be collected.   

Although we utilized this method for estimating state-level hospitalization rates for COVID-19 in the 
United States from May 2020 through April 2021, our method can be adapted for different outcomes or 
measures of interest both domestically and in international settings.  The main components needed are 
reliable surveillance data in enough areas to have diversity of disease occurrence and covariates that help 
explain the variation between all areas of extrapolation. There are surveillance systems set up that do not 
have complete coverage.  For example, this approach was adapted from an analysis using a Bayesian 
Hierarchical model to extrapolate influenza yearly rates by country.22 This method provides an 
opportunity to leverage surveillance data and inform more accurate estimates of disease burden.  Efforts 
to further expand the method to other levels of disease severity including infection, illness, or death are 
ongoing. 

Our method also has some limitations.  First, since our goal was to use routine surveillance data, our time 
frame for estimates began in May 2020 in states where we believe the surveillance systems were 
established and providing stable data after being set up in the early months of the pandemic. Therefore, 
we cannot estimate cumulative hospitalizations since the start of the pandemic.  Second, we assume that 
COVID-NET captures all patients that were tested for COVID-19 and had a positive result. Although we 
adjust for testing practices, i.e., those not tested, we could be underestimating hospitalizations if the above 
assumption is not true and confirmed positives are not being reported. Third, we assumed that testing 
practices did not differ by states, except in Connecticut where testing practice data for COVID-NET sites 
was available. This assumption could result in either an over- or under-estimation of hospitalizations. 
Also, we assumed testing sensitivity for COVID-19 in COVID-NET was 0.885, which can lead to an over 
or under estimation of hospitalizations depending on true sensitivity. Fourth, our method assumes that the 
COVID-NET sites are representative of the entire state. In some states, such as Maryland, COVID-NET 
includes all counties; in other states, such as Iowa, it includes only one county. Although the model 
accounted for uncertainty and variability between states, we are still limited by representativeness within 
a state between the COVID-NET site and the truth of the entire state. As a result, our model may be 
under- or over-estimating hospitalizations at the state level for COVID-NET states depending on how 
well the particular catchment area reflects COVID-19 activity in the state. Fifth, our method assumes that 
COVID-NET states capture enough diversity across the nation to extrapolate data to all states, which may 
not be true. Although the 14 states from COVID-NET vary in many ways, we cannot be sure that they 
cover the variation in COVID-19 hospitalizations, including variations of thing that may impact 
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hospitalizations like mitigation strategies and vaccination rates. For example, we could not extrapolate to 
Washington D.C. or New York City appropriately due to the extreme variation between a state and a 
purely metropolitan city.  Sixth, although the covariates are meant to inform the extrapolation, the 
covariates are limited by the quality, completeness, and availability of the data.  There could be vital 
information around COVID-19 hospitalization rates that are missing, such as other chronic conditions, 
underlying risk factors in the population, mitigation measures, and vaccination rates. Although our model 
has time-varying covariates that describe the COVID-19 impact in each state, including percent positive, 
percent COVID-19 deaths, and hospital capacity covariates, vaccination rates were not included so we 
may be under- or over-estimating age groups and states based on potential unaccounted variation from the 
correlation to vaccination rates.   Another limitation is the wide credible intervals.  Median estimates from 
the model’s output distributions of hospitalizations seems to be reasonable through our sensitivity, 
validation, and comparison analysis, but the 90% credible intervals are wide for some of the states where 
extrapolation was carried out. This limits precision of true hospitalizations and inference of medians 
presented. Finally, since we run a different model for each age group, we are limited in interpretation of 
hospitalization estimates by month and state since combining models’ output may underestimate 
variability and does not capture correlations between age groups. Although we calculated hospitalizations 
by month and state, combined variance is unknown so credible intervals may be wider than reported. 

In conclusion, we estimated that about 4 million hospitalizations due to COVID-19 occurred in the United 
States from May 2020 through April 2021. As COVID-19 continues to circulate and cause illness, it will 
be important to develop a sustainable method to continue to estimate disease burden of COVID-19 that 
can account for regional variation in timing and incidence of disease activity, changes in detection and 
reporting of COVID-19, and that utilizes ongoing surveillance data. With an unknown future of COVID-
19, burden estimates will continue to be needed.  Having a burden estimation method that uses a sentinel 
surveillance system ensures we will have the ability to create burden estimates despite changes in case 
data reporting. Knowing disease burden helps us understand vaccine averted burden, post COVID-19 
conditions, and more important public health research. Our method leverages routine surveillance data 
that are expected to continue after the pandemic and a Bayesian Hierarchical modelling approach as a 
novel way to continue estimating COVID-19 hospitalization.  The model offers an approach that will be 
useful not only to COVID-19 hospitalization estimations but to other levels of the disease burden 
pyramid, including infections and deaths. 
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BRFSS: Behavioral Risk Factor Surveillance System 
CDC: Centers for Disease Control and Prevention 
CKD: chronic kidney disease  
COPD: chronic obstructive pulmonary disease 
COVID-19: Coronavirus Disease 2019  
COVID-NET: Coronavirus Disease 2019- Associated Hospitalization Surveillance Network  
CrI: Credible Interval 
FluSurv-NET: Influenza Hospitalization Surveillance Network 
HHS: Department of Health and Human Services  
ICU: intensive care unit  
LASSO: Least Absolute Shrinkage and Selection Operator 
MCMC: Markov chain Monte Carlo  
NCHS: National Center for Health Statistics 
NNDSS: National Notifiable Disease Surveillance System 
NVSS: National Vital Statistics System 
SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2 
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Table 1: Variables considered to be covariates with stratification and source. 

VARIABLES STRATIFIED BY SOURCE 

Laboratory surveillance: 
SARS-CoV-2 percent positive 
using rt-PCR tests 

Month, State, Age 
 

Commercial lab and public health 
lab data 

Vital records death: 
Percent of all-cause deaths that 
were coded as COVID-19 deaths 

Month, State, Age 
National Center for Health 
Statistics National Vital 
Surveillance System 

Hospital capacity: 
% COVID patients out of all 
inpatients, % ICU occupied out of 
all ICU beds 

Month, State 
HHS Protect /National Center for 
Health Statistics 

Race/Ethnicity: 
% American Indian, % Black, % 
Racial Minority 

State, Age 
National Center for Health 
Statistics / National Vital Statistics 
System 

Chronic conditions/diseases: 
% any chronic, % obesity, % heart 
disease, % COPD, % Diabetes, % 
CKD, % asthma 

State 
CDC MMWR Stacks / The 
Behavioral Risk Factor 
Surveillance System 

Note: Racial minority defined as non-white and non-Hispanic. 

Table 2: Cumulative hospitalization count (median) and rate per 100,000 population and accompanying 
90% credible intervals for each age group, and overall, from May 2020 through April 2021. 
Age Group Hospitalization 

Count 
90% CrI Hospitalization 

Rate per 
100,000 

90% CrI 

<18 years 59,000 53,500 – 64,600 80.9 73.3 – 88.6 
18-49 years 887,600 802,600 – 987,700 643.9 582.3 – 716.6 
50-64 years 924,700 844,100 – 1,013,200 1,472.0 1,343.7 – 1,612.9 
65-74 years 706,900 641,800 – 774,200 2,248.8 2,041.8 – 2,463.1 
75-84 years 623,300 562,500 – 689,000 3,909.2 3,527.5 – 4,320.9 
≥85 years  368,100 333,700 – 405,900 5,583.1 5,061.0 – 6,157.5 
TOTAL 3,569,509 3,238,000 – 3,934,700 1,089.8 988.6 – 1,201.3 
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Figure 1: Hospitalization rates per 100,000 population and 90% credible intervals by age group over time 
from May 2020 through April 2021 from final model. 
Footnote: Y-axis limits adjust to the unique range for each age group., i.e. they are not set to the same 
scale. 
 
Figure 2: Cumulative hospitalization rate per 100,000 population by state from May 2020 through April 
2021. Panel a: Heat map of the United States of cumulative hospitalization rate per 100,000 population 
from May 2020 through April 2021.   Panel b: Bar chart of cumulative hospitalization rate per 100,000 
population from May 2020 through April 2021 with 90% credible intervals with states from COVID-NET 
in blue. 
Footnote: The color range in panel a is from 352 (lightest) to 1,821 (darkest) hospitalizations per 100,000. 
 
Figure 3: Hospitalization rates per 100,000 population over time for the 10 states with the highest 
cumulative hospitalization rates from May 2020 through April 2021. 
 
Figure 4: Comparison of hospitalization rates per 100,000 population over time from May 2020 through 
April 2021 from our final model output with 90% credible intervals, the Unified Hospital Timeseries data, 
and COVID Tracking. 
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Supplement 

Table S1: Covariates selected for each model by age group by selection methods out of all covariates. 

0-17 years 18-49 years 50-64 years 65-74 years 75-84 years 85+ years 
%Positive   
%COVID inpat. 
%ICU in use 
%Minority 
 

%Positive   
%COVID deaths 
%COVID inpat. 
%ICU in use 
%Minority 
%CKD 
%COPD 
%Diabetes 
%Asthma 

%Positive   
%COVID deaths 
%COVID inpat. 
%ICU in us 
%Minority 
%Heart Disease 
%Obesity 
%CKD 
%Diabetes 
 

%Positive   
%COVID deaths 
%COVID inpat. 
%ICU in use 
%Minority 
%Obesity 
%COPD 
%Diabetes 
 

%Positive   
%COVID deaths 
%COVID inpat. 
%ICU in use 
%CKD 
%Heart Disease 
%Obesity 
%COPD 
%Diabetes 

%Positive   
%COVID deaths 
%COVID inpat. 
%ICU in use 
%Obesity 
%COPD 
%Diabetes 

*ICU=intensive care unit, inpat. = inpatients, COPD= chronic obstructive pulmonary disease, CKD=chronic kidney 
disease; For the 0-17 years age group, only asthma was included as a possible covariate from the chronic 
conditions/diseases. 

Table S2: Comparison of hospitalization estimates between Bayesian model and case-based multiplier model by age 
group, months, and HHS regions, including distribution of hospitalization for each group from June 2020 through 
March 2021. 

Group Final Bayesian Model Case-Based Multiplier Model 

 
Hospitalization Count 
(% of Group) 

Hospitalization Rate per 
100,000 

Hospitalization Count 
(% of Group) 

Hospitalization Rate per 
100,000 

Age Groups     

Ages 0-17 51,400 (1.6) 64.8 167,085 (3.6) 210.7 

Ages 18-49 775,700 (24.9) 516.4 1,124,575 (24.1) 748.6 

Ages 50-64 784,200 (25.1) 1248.3 1,185,968 (25.5) 1887.9 

Ages 65+ 1,508,100 (48.3) 2794.3 2,181,343 (46.8) 4041.7 

Months     

June - July 458,800 (14.7) 138.2 572,148 (12.3) 172.4 

August - September 359,400 (11.5) 109.7 404,311 (8.7) 123.4 

October - November 603,600 (19.3) 184.3 1,008,710 (21.7) 308.0 

December - January 1,207,300 (38.7) 368.6 1,585,383 (34.0) 484.0 

February - March 490,400 (15.7) 146.4 1,088,419 (23.4) 325.0 

HHS Regions     

Reg1 169,200 (5.4) 1139.8 148,947 (3.2) 1003.3 

Reg2 261,700 (8.4) 923.5 797,480 (17.1) 2814.4 

Reg3 259,600 (8.3) 691.1 327,607 (7.0) 872.2 

Reg4 683,000 (21.9) 1020.8 625,422 (13.4) 934.7 

Reg5 421,600 (13.5) 802.4 815,382 (17.5) 1551.9 

Reg6 572,600 (18.4) 1340.4 672,674 (14.4) 1574.7 

Reg7 168,400 (5.4) 1190.7 148,695 (3.2) 1051.6 

Reg8 102,900 (3.3) 616.3 104,509 (2.2) 626.1 

Reg9 405,700 (13) 791.1 940,347 (20.2) 1833.5 

Reg10 74,800 (2.4) 521.3 77,908 (1.7) 542.9 

Total 3,119,400 900.7 4,658,971 1345..3 
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Figure S1: Comparison of hospitalization rates per 100,000 population and 90% credible intervals (error bars) from 
model by age group for each state in COVID-NET showing observed rate (COVID-NET Input Rate), estimated rate 
(Final Model), and extrapolated rate (Dropped). Y-axis limits adjust to the unique minimum and maximum rate for 
each age group. 
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