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Abstract 
Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low 
signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate a 
denoising approach, Patch2Self, to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord. 
Patch2Self is a self-supervised learning-based denoising method that leverages statistical independence of noise to suppress signal 
components strictly originating from random fluctuations. We conduct three experiments to validate the denoising performance of 
Patch2Self on clinical-quality, single-shell dMRI acquisitions with a small number of gradient directions: 1) inter-session scan-
rescan in healthy volunteers to evaluate enhancements in image contrast and model fitting; 2) repeated intra-session scans in a 
healthy volunteer to compare signal averaging to Patch2Self; and 3) assessment of spinal cord lesion conspicuity in a multiple 
sclerosis group. We find that Patch2Self improves intra-cord contrast, signal modeling, SNR, and lesion conspicuity within the 
spinal cord. This denoising approach holds promise for facilitating reliable diffusion measurements in the spinal cord to investigate 
biological and pathological processes.  
 
Keywords spinal cord, diffusion MRI, diffusion tensor imaging, image denoising, multiple sclerosis

Introduction 
Quantitative diffusion MRI (dMRI) is a promising 

tool to study the tissue microstructure of the spinal cord in 
health and disease. To date, the most commonly utilized 
dMRI technique is diffusion tensor imaging (DTI). DTI 
provides quantitative indices including fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (AD), and 
radial diffusivity (RD), which have been shown to be 
sensitive to tissue properties such as axon density, axonal 
injury, and degree of myelination (Beaulieu, 2002). In 
addition to DTI, a growing number of more advanced 
microstructure models, or multi-compartment models, of 
diffusion have been applied to the spinal cord (Duval et al., 
2015; Grussu et al., 2019; Grussu et al., 2017; Grussu et al., 
2016; Moccia et al., 2019; Saliani et al., 2017; Schilling et 
al., 2019), improving pathological specificity to tissue 
damage. For example, in multiple sclerosis (MS), a 
condition featured by a complex interplay among 
inflammation, demyelination and axonal loss, DTI indices 
have been shown to correlate well with clinical measures of 
disability (Moccia et al., 2019). Further, advanced measures 

of neurite density, compartment diffusivities, and axonal 
disorganization have shown sensitivity in identifying 
abnormal changes in MS spinal cord lesions, as well as in 
normal-appearing white matter (WM) (By et al., 2017, 2018; 
Cohen-Adad, 2018; Grussu et al., 2016; Grussu et al., 2015; 
Schilling et al., 2019), and suggest an expanding use for 
diffusion-derived metrics in MS clinical practice and trials.  
 Yet, spinal cord dMRI on clinical scanners is 
challenging. The spinal cord is a thin, complex structure 
requiring relatively high spatial resolution for adequate 
anatomic depiction. Spinal cord imaging is also complicated 
by artifacts from motion and local susceptibility, resulting in 
lower SNR and precision in quantitative analysis. At the 
same time, in vivo imaging has scan time constraints, which 
limits the number of diffusion weighted images (DWIs) that 
can be acquired, and requires fundamental tradeoffs with 
image resolution and image quality. Thus, improving image 
quality is imperative to facilitate both research investigations 
and clinical application of spinal cord dMRI.  
 Towards this end, several denoising approaches 
have been applied to dMRI data, typically in the brain, in 
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order to improve signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR), as well as reproducibility and precision 
of diffusion-derived features. Most denoising methods for 
dMRI typically utilize one of three approaches (Buades et 
al., 2005; Coupe et al., 2008; Elad and Aharon, 2006; Knoll 
et al., 2011; Manjon et al., 2013; Rudin et al., 1992): (1) they 
may assume that the signal is intrinsically low-rank (local 
PCA, MP-PCA) and can be denoised through dimensionality 
reduction , (2) they may assume that the signal patterns may 
be replicated throughout the tissue (non-local means) and 
can be denoised through averaging of similar signals, or (3) 
assume that the signal is locally smooth (total variation 
norm) and can be denoised through spatial smoothing. 
Recently, the Marchenko-Pastur PCA denoising (MP-PCA) 
has been proven to significantly enhance SNR and improve 
parameter maps in the brain and spinal cord (Grussu et al., 
2020; Veraart et al., 2016a; Veraart et al., 2016b). However, 
this technique exploits data redundancy (i.e. multiple DWIs 
or multi-contrast datasets) which may not exist with time-
limited datasets and low numbers of DWIs. A recently 
proposed image denoiser, Patch2Self, is unique in that it 
makes no assumptions on the structure of the signal, and 
only assumes that noise is random and uncorrelated across 
DWIs. Recent work (Fadnavis et al., 2020) has shown 
promising results in suppressing noise and preserving 
anatomical detail in the brain; however, the effectiveness of 
this method in the spinal cord has not been investigated.  

Thus, the aim of this study is to evaluate the efficacy 
of Patch2Self denoising on clinical-quality dMRI data in the 
cervical spinal cord in healthy volunteers and in patients 
with MS. We first utilize a scan-rescan dataset to evaluate 
the effects of Patch2Self denoising on intra-cord contrast, 

fitting of diffusion models, and diffusion reproducibility. 
Next, we compare Patch2Self against a long-time many-
average experiment. Finally, we apply the algorithm to data 
from an MS cohort, and assess lesion conspicuity before and 
after denoising. We hypothesize that Patch2Self denoising 
would lead to improved CNR, model-fitting, reproducibility, 
SNR, and lesion conspicuity in spinal cord diffusion images.  

Materials and Methods 

Datasets 
This study contained 3 data cohorts, designated A, B, and C, 
that were used to evaluate different effects of the denoising 
process (Figure 1).  
Cohort A was a scan-rescan dataset, consisting of N=10 
healthy controls (HCs), aged between 22 and 40 years, 5 
females (F) and 5 males (M), with two sessions acquired 3-5 
months apart. This dataset was used to visualize effects of 
denoising, quantify CNR, and investigate inter-session 
repeatability of DTI-derived metrics. Imaging was performed 
using a 3T Philips Elition MR scanner with 2-channel transmit 
and a dStream neurovascular coil (Philips) for reception.  
Cohort B included one female HC in their 30s with 5 repeated 
acquisitions within one session on the same 3T Philips Elition 
MR scanner as Cohort A. This experiment allowed us to 
compare a denoised dataset to one with improved anatomy 
visualization and increased SNR due to signal averaging. This 
acquisition was repeated on a different 3T Philips dStream 
Ingenia MR scanner at the same site in order to show 
robustness to potential scanner effects.  
Cohort C consisted of N=16 people with relapsing-remitting 
MS (pwRRMS) (20-42 years old, 9F/7M, Expanded Disability 
Status Scale scores 0-1.5) with one session per patient. This 
cohort was used to assess the effects of denoising on image 
quality, contrast, and lesion conspicuity. Imaging was 
performed using the same 3T Philips Elition MR scanner as in 
Cohort A.  

Figure 1. Three cohorts used to evaluate Patch2Self denoising in the spinal cord. (A) The scan-rescan cohort was composed 
of 10 healthy volunteers scanned twice, and was used to visualize denoising results, quantify CNR, and investigate inter-session 
reproducibility. (B) The averaging experiment cohort consisted of 1 healthy volunteer on two scanners, where the acquisition was 
repeated 5 times, which allowed comparison of denoising to averaging many datasets. (C) The patient cohort consistent of 16 
pwRRMS, with one scan per patient, that allowed visualization and assessment of image quality and lesion conspicuity after 
denoising.  
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Acquisition 
All cohorts utilized the same imaging acquisition protocol. For 
each session, a high-resolution (0.65x0.65x5 mm3) multi-
slice, multi-echo gradient echo (mFFE) anatomical image 
(Held et al., 2003) was acquired (TR/TE/ΔTE = 700/8.0/9.2 
ms, α = 28 degrees, number of slices = 14, 6:12 minutes) for 
co-registration and to serve as a structural reference image. 
The diffusion sequence consisted of a cardiac-triggered 
(using a peripheral pulse oximeter with a delay set to 127 ms) 
spin echo sequence with single-shot echo planar imaging 
(EPI) readout with the following parameters: TR/TE = 5 beats 
(~5000 ms)/77 ms, resolution = 1.1x1.1mm2, slice thickness = 
5 mm, FOV = 80 x 57.5 x 70 mm, SENSE (RL) = 1.8, partial 
Fourier = 0.693, and NEX = 3, with 14 axial slices (time ~6-8 
minutes depending on heart rate). All images were centered 
between the C3 and C4 levels. Reduced field-of-view was 
applied using an outer volume suppression technique (Wilm 
et al., 2007) and fat suppression was achieved using SPIR. A 
single-shell acquisition was used with 15 diffusion-weighted 
directions at b = 750s/mm.  

Processing 
The processing pipeline is shown in Figure 2. Diffusion data 
from each session were motion-corrected using the Spinal 
Cord Toolbox (SCT; (De Leener et al., 2017)), and cropped to 
minimize the field-of-view outside of the cord. Next, 
Patch2Self was applied to the cropped volumes. Quantitative 
DTI parameters of FA, AD, RD and MD were calculated using 
FSL’s linear least squares algorithm from both raw and 
denoised data. All model-fitting was performed in native 
space. The mean diffusion-weighted image for each scan was 
segmented to obtain a cord mask, and registered to the 
structural image (mFFE) using SCT, and transforms were 
saved in order to overlay/visualize data in the desired space. 
Finally, the structural image was registered to the PAM50 
spinal cord template (De Leener et al., 2018) using SCT. The 
resulting inverse warp field was used to propagate template 
labels (WM, GM) to subjects’ native space for quantitative 
analysis.  

Patch2Self Theory 
The implementation of Patch2Self using DIPY 1.4.1 was 
employed to perform the denoising of all spinal cord data 
presented in this paper (Fadnavis et al., 2020). Anisotropic 
patches of radii [2, 2, 0] (units of mm) along the [x, y, z] 
directions of the image were used in order to deal with the 
anisotropic nature of the spinal cord image. Patch2Self can 
be deployed at any stage of the pre-processing pipeline since 

it does not rely on any assumptions on the signal, as long as 
the noise in each 3D volume of the data is statistically 
independent of the noise in the other 3D volumes. In order to 
deal with the motion inherent to spinal cord images, motion 
correction was done prior to performing the denoising.  
Patch2Self proposes a novel way of using self-supervised 
learning to perform the denoising. Building on top of the J-
invariance theory proposed in (Batson and Royer, 2019) and 
statistical independence in (Lehtinen et al., 2018), Patch2Self 
starts with extracting 3D patches from each 3D volume of the 
4D diffusion MRI data. Thus, if the data had n volumes with m 
voxels and each patch has the radius p, the extracted patches 
would be: (p × p × p) × m × n. These extracted patches are 
then flattened to become 2D so that the resulting shape is: 
mp3 × n (denoted as Α!"!	×	%	). In the case of spinal cord, p is 
typically set to 1 or 2 depending on the dimensionality of the 
data. In this paper, p = 1 has been used for all the 
experiments. Next as per the theory suggested in Patch2Self, 
a J-invariant self-supervised loss is minimized between the 
held-out volume and the remaining 𝑛	 − 1  volumes. This 
training loss can be written as follows: 

ℒ(Φ&* 	= 𝐸	-Φ&	(Α!"!	×	(%())* −	Α!"!	×	)-+
+ 

Here, Φ& is the self-supervised loss that is minimized in the 
case of spinal cord data using the default linear regression 
model available in DIPY. Once the training is done, the same 
trained model is now used to predict the held out volume J 
using the trained function. The prediction obtained is the 
denoised volume and this procedure is applied iteratively on 
all 3D volumes of the 4D data. (Note: The held-out volume J 
is only used as the target for training and not in the design 
matrix Α!"!	×	(%()). 
This procedure can be seen as a q-space in-painting method 
(Figure 2, cartoon depictions) where each gradient direction 
is represented as a linear combination of the remaining 
gradient directions. Note that Patch2Self does not impose any 
signal properties such as smoothness, low-rank, signal 
repetition, etc. that are usually leveraged in commonly used 
denoising methods such as Total Variation, MP-PCA and 
NLMeans. Although it makes use of the redundancy of the 
data in q-space, Patch2Self does not make any explicit 
assumptions while learning the denoising function.  

Evaluation 
Qualitative evaluation  
All visualizations of DWIs and derived maps were shown in 
native diffusion space. The only exception to this was the 
Cohort C data, in which all data were transformed to subject 

Figure 2. Image processing pipeline. Diffusion data were motion corrected using the Spinal Cord Toolbox, then Patch2Self 
(implemented in DIPY) was applied to cropped, motion-corrected volumes.  
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anatomical space (mFFE) to facilitate lesion identification and 
comparison. 
CNR calculation  
To assess image contrast before and after denoising, we 
calculated the CNR between WM and gray matter (GM) in the 
raw DWIs. Contrast was calculated as the absolute value of 
the average signal intensity of the WM at C3 subtracted from 
the average signal intensity of the GM at C3. The noise 
standard deviation was calculated as the standard deviation 
of the signal of the CSF in the DWIs (this is because of the 
high diffusivity of CSF, which should result in noise in diffusion 
weighted images at this diffusion weighting). CNR was then 
calculated as contrast divided by noise standard deviation, 
quantified for all DWIs, and averaged. CNR was calculated for 
the first scan for all subjects in Cohort A and compared before 
and after denoising using a paired t-test.  
Model fitting evaluation 
In order to evaluate the goodness-of-fit of the DTI model to 
the data, we performed a per-voxel k-fold cross-validation.  To 
do so, in each fold we held out a set of data points and 
predicted them after fitting the DTI model.  This was done k 
times and a goodness-of-fit was computed relative to the S0 
signal.  For this paper, k=3 was used to perform the validation. 
The implementation used to compute the R2 is available in 
DIPY as per (Rokem et al., 2015) and (Hastie et al., 2009). 
Once an R2-score was obtained for each voxel, we 
summarized the improvement in the goodness-of-fit for the 
DTI model for all voxels in the data using box-plots. 
Reproducibility 
We assessed scan-rescan reproducibility of DTI-derived 
metrics, before and after denoising. To do this, for each 
subject, we calculated the mean value of four metrics (FA, 
MD, AD, and RD) in four regions-of-interest (WM of C3, WM 
of C4, GM of C3, and GM of C4). We then calculated the mean 
absolute error (MAE) as the absolute difference between scan 
and rescan. We visualize the average MAE for all regions and 
compare those before and after denoising using a paired t-
test.  
Comparison against multiple averages 
Using Cohort B, we compared denoising using Patch2Self on 
a single dataset (acquisition time ~7 minutes) to a dataset 
equivalent to multiple averages (up to ~7x5 = 35 minutes). To 
do this, we calculated the voxel-wise SNR as the average DWI 
signal in a voxel divided by the noise standard deviation, 
calculated as the square root of the sum of squared residuals 
to a tensor fit. SNR was calculated for all voxels within the 
cord mask.  

Lesion conspicuity evaluation 
To quantitatively evaluate image quality, a trained 
neuroradiologist (C.M.) was presented with montages from 
Cohort C, of 3 randomly selected DWIs in 3 consecutive axial 
slices, along with the corresponding structural image. We note 
that this random selection of slices and DWIs does not 
guarantee a lesion in every image. In total, 160 images were 
presented in a random order (80 matching denoised and non-
denoised), and the neuroradiologist was asked to provide a 
single grade for each montage “on a scale of 1-5 based on 
observed contrast, lesion conspicuity (if present), signal to 
noise, and presence/absence of artifacts”. This allowed a 
quantitative assessment of the effects of denoising on 
perceived image quality. 

Results 

Scan-Rescan Experiments 
Cohort A was used to illustrate image quality after 

denoising on healthy controls, quantify CNR before and 
after denoising, assess improvements in signal modelling, 
and investigate scan-rescan reproducibility of quantitative 
DTI-derived measures.  

Figure 3 shows qualitative results on two example 
subjects, comparing raw diffusion images and Patch2Self 
denoised images of the same slice. The first notable 
observation is that the noise variance is reduced, both within 
the structure and in background. Second, intra-cord contrast 
has qualitatively increased, with the GM “butterfly” shape 
more apparent, particularly in already low signal DWIs. 
Third, no notable artifacts nor spurious signals are visibly 
introduced.  

Figure 4 quantifies the CNR between WM and 
GM regions of the cord, before (Raw) and after (Patch2Self) 
denoising, across all 10 subjects. In agreement with 
qualitative observations, the WM/GM CNR is significantly 
higher after denoising (p=1.1E-4; median CNR from 2.9 to 
4.0) with an average 35% increase in CNR. Additionally, we 
found that the CNR of derived metrics (FA, MD, AD, RD) 
did not significantly increase after denoising (not shown), 
which highlights the absence of effect on the magnitude of 
derived indices in WM and GM.  

Figure 3: Denoising the diffusion-weighted images qualitatively improves tissue contrast, as shown for two healthy volunteers 
in Cohort A. Here, raw diffusion data is shown on top, and denoised on bottom.  
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Figure 5 shows the improvement in the goodness-
of-fit using the R2-scores computed per voxel using a cross-
validation approach described above. In nearly all cases, R2 

increases significantly, indicating a better fit to the data with 
the DTI model after denoising.  

Finally, we assess scan-rescan reproducibility of 
DTI-derived metrics. Figure 6 shows the MAE of FA, MD, 
AD, and RD before and after denoising, where a lower MAE 
indicates more reproducible measures across sessions. The 
MAE of FA (p=0.005) and AD (p=0.021) decreased (i.e., 

reproducibility increased) after denoising, whereas MD and 
RD showed no significant changes in reproducibility. 

 

Averaging Experiments 
Cohort B was used to compare Patch2Self on a 

typical clinically feasible acquisition (~7 minutes) against 
averaging several acquisitions over an extended period of 
time (~7x5 = 35 minutes). Figure 7 shows example data 
from 3 DWIs for 1 to 5 averages (NEX = 1 to 5) along with 

Figure 4: Patch2Self denoising increases the white matter 
to gray matter contrast to noise ratio (CNR) for 10 healthy 
volunteers in Cohort A. Increase in CNR is statistically 
significant (p<.001). 
         

Figure 5: Goodness of fit of the DTI signal model (R2) 
increases significantly with denoising. Shown are mean R2 
of the cord for 10 healthy volunteers in Cohort A. Increase in R2 

is statistically significant (p<.001).    
           

Figure 6: Patch2Self denoising reduces the mean absolute error (MAE) significantly for FA and AD in the scan-rescan 
dataset (*p<0.05), indicating improved reproducibility. Denoising does not significantly affect the inter-session variation of MD and 
RD. 
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a single denoised dataset. Qualitatively, and in agreement 
with theory, averaging improves SNR, with most visually 
apparent improvement happening after the first averaging 
operation. Patch2Self denoising shows results qualitatively 
similar to NEX=4 and NEX=5, with visible noise reduction 
and no introduction of artificial signal. 
 SNR is quantified in Figure 8. Here, the SNR is 
shown using raw diffusion data averaged across 1-5 repeats 
(solid line), where an increase in SNR is confirmed for both 
scanners. However, a single denoised dataset (dashed line) 
results in an SNR that is overall higher across a majority of 
voxels in the cord, for both scanners.  

Patient Experiments 
Cohort C consisted of pwRRMS and was used to evaluate 
lesion conspicuity before and after denoising. Figure 9 
visualizes lesioned spinal cord from two example patients, 
along with the diffusion signal (from a randomly selected 

diffusion direction) and DTI-derived measures for both raw 
and denoised data. While lesions are visible in the raw 
DWIs, they are more noticeable in the denoised data due to 
reduced noise variance within WM regions. While not the 
primary focus of the study, lesions display heterogenous 
microstructural properties and therefore DTI features. 
Again, the derived measures show little-to-no changes after 
denoising, where the greatest benefit is introduced in 
visualization of the DWIs.  
 Image quality of pwRRMS data was rated by a 
trained neuroradiologist, and results quantified in Figure 10. 
Results are shown as a 2D histogram showing ratings before 
(Raw) and after (Patch2Self) denoising where the same 
rating would show up on the unity line. Also displayed are 
the differences in ratings (Patch2Self minus Raw) where a 
positive value designates improved rating. Patch2Self 
consistently improved image quality and lesion conspicuity, 
with most ratings improving by a single rank (or staying the 

Figure 7: Patch2Self applied to a single dataset (NEX=1, time=7 min) from Cohort B (intra-session repeated acquisitions) 
qualitatively matches data averaged and acquired in a longer acquisition (up to NEX=5). 
            

Figure 8: The improvement in SNR with Patch2Self denoising applied to 1 acquisition (dashed lines) is greater than the SNR 
improvement gained by averaging up to 5 acquisitions (solid lines). 
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same), and the most common result being an increase in the 
rating from a 2 to a 3. A two-sided signed rank test confirmed 
a statistically significant increase (p=9.6E-7) in image rating 
after denoising.  

Discussion 
 This work demonstrates the advantages of 
Patch2Self denoising for clinically-feasible in vivo diffusion 
imaging of the spinal cord. The key findings of this work are 
that Patch2Self (1) increases intra-cord CNR, (2) improves 
DTI model fitting, (3) increases scan-rescan reproducibility, 
(4) increases image SNR, and (5) increases conspicuity of 
image features and MS lesions in diffusion weighted images. 
In addition, the Patch2Self algorithm shows no effect of 
introducing image artifacts or biasing subsequent 
quantitative diffusion-derived metrics.  
 Advanced MRI of the cervical spinal cord is 
challenging due to its small size and mobility, its proximity 
to tissue interfaces, and its susceptibility to physiological 
noise from respiratory, cardiac, and pulsatile CSF flow 
sources. Optimization of acquisition and processing 
techniques is therefore necessary, as are strategies to 
increase image quality in post-processing (Rutman et al., 
2018). The reliability and sensitivity to pathology of DTI as 
a quantitative MRI technique make it valuable for various 
neuroimaging applications. 

 Spinal cord involvement is a central feature of all 
MS subtypes and is partly responsible for the accumulation 
of clinical disability. As a research tool, DTI provides 
quantitative measures to assess demyelination, edema, fiber 
integrity and axonal loss in normal-appearing and lesional 
tissue. DTI metrics have also shown correlations with 
disability, and with upper and lower limb motor function 
(Moccia et al., 2019). Reproducible scans with higher SNR 
will further facilitate such investigations. While MRI is the 
modality of choice for the management and study of MS, 
DWI currently has a limited role in the diagnostic work-up 
(Wattjes et al., 2021). However, given its biological 
relevance and the breadth of methodological improvements 
currently ongoing, including in the spinal cord, DTI may 
soon be a candidate for adoption as an outcome measure 
instrument in both day-to-day clinical practice as well as 
clinical trials, especially in progressive MS (Ontaneda et al., 
2015). Most importantly, the advantage of this advancement 
in technology will span over a multitude of spinal cord 
diseases that diagnosis of which is quite often difficult to 
reach due to lack of reliable MRI signs. Ischemic spinal cord 
injury is one of those conditions for which a reliable DTI 
assessment would permit prompt intervention and change in 
outcome. The investigation of spinal cord features in health 
and development, as well as research into acute and chronic 
injury, degenerative conditions such as neuromyelitis optica 
spectrum disorder and amyotrophic lateral sclerosis also 
stand to benefit from improvements in image quality. 

Figure 9: Patch2Self improves conspicuity of lesions in patients with multiple sclerosis. Images from two patients are shown, 
with both Raw data and data denoised with Patch2Self, where the mFFE, a DWI, and quantitative DTI metrics are visualized for 
each. Arrows highlight lesions, and qualitative differences in resulting images.  
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Recent harmonization efforts by the research 
community, including the deployment of optimal DTI 
acquisition protocols, publication of open-access datasets 
(Cohen-Adad et al., 2021b), multi-center studies (Cohen-
Adad et al., 2021a; Samson et al., 2016) as well as the 
development of specialized data processing tools (De Leener 
et al., 2017) will all help promote spinal cord DTI as a 
valuable research and clinical imaging modality. The present 
work thus forms part of wider efforts promoting DTI as a 
promising tool for both research and large-scale clinical 
applications.  

Despite improvements in CNR of the diffusion 
weighted images, the CNR of DTI-derived metrics did not 
significantly increase after denoising. This suggests that, 
with this acquisition protocol, there is already adequate SNR 
with 15 diffusion images to reliably compute the tensor. 
Reassuringly, the denoising procedure did not alter the 
quantified indices, or result in lower CNR, and we expect the 
reproducibility and CNR of these measures will improve 
with lower quality acquisitions with lower SNR baseline 
images.  
 Overall, the findings in this study support the use 
of Patch2Self denoising for spinal cord diffusion imaging. 
While MP-PCA algorithms have become popular in brain 
imaging (Veraart et al., 2016b), and have proven effective in 
the cord, even with the use of multiple contrasts (Grussu et 
al., 2020), data redundancy is required. In this case, the 
datasets are limited to low-direction, single b-value images, 
and application of MP-PCA to these data shows little-to-no 
difference in diffusion images with our 15-direction datasets. 
Future work should investigate different denoising 
techniques on datasets tailored for advanced multi-
compartment modeling, which are expected to have 
redundant data, and their effect on contrast and derived 
measures of tissue microstructure.   

Limitations 
The goal of this study was to provide a 

demonstration of the potential benefits of applying a 
denoising technique to diffusion MRI of the spinal cord. 
Some limitations include the relatively small sample sizes of 
healthy volunteers and pwMS, and the use of a single 
diffusion acquisition protocol and model (DTI). Future 
studies would benefit from exploring the effects of the 
Patch2Self denoising method for a range of acquisition 
parameters and different model approaches (e.g., models for 
multi-shell diffusion data). In addition, our cohort of pwMS 
was formed by relatively young subjects with minimal 
degree of disability. These factors contributed to minimizing 
motion artifacts which may be more commonly seen when 
imaging pwMS with more advanced disease or pain. While 
only one MRI scanner vendor (Philips) was used in this 
study, data sets from two different scanners with differing 
gradient performance specifications were analyzed.  With 
respect to the rating of patient diffusion image quality by a 
neuroradiologist, we used individual DWIs rather than the 
mean DWI or mean apparent diffusion coefficient image, 
which differs somewhat from standard clinical workflow. 
When individual directions are viewed, a lesion is not always 
visible. However, the goal of this experiment was to provide 
an initial evaluation of perceived image quality with a larger 
sample size than could be achieved with a single mean image 
per patient. Additionally, dMRI preprocessing in the spinal 
cord has not been fully optimized (Snoussi et al., 2021), and 
future work should investigate the effects of denoising 
algorithms in combination with motion and distortion 
correction methods.  

Conclusions 
Here, we have shown that the application of Patch2Self 
denoising in clinical-quality spinal cord diffusion data 

Figure 10: Patch2Self consistently improved image quality and lesion conspicuity in MS patient scans as rated by a trained 
neuroradiologist. Results are shown as a 2D histogram in (A), showing ratings before (Raw) and after (Patch2Self) denoising 
where the same rating would show up on the unity line. The difference in rating in shown in (B) (Patch2Self minus Raw), where a 
positive value designates improved rating. Most ratings improving by a single value or stayed the same, with the most common 
result being an increase from a rating of 2 to 3. A two-sided signed rank test confirms a statistically significant increase (p=9.6E-7) 
in image rating after denoising.  
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improves intra-cord contrast, signal fitting, SNR, and lesion 
conspicuity. This denoising approach is freely available in 
the DIPY software package and can be implemented on any 
in vivo dMRI spinal cord acquisitions. This algorithm and 
approach hold promise for facilitating reliable diffusion 
measures in the spinal cord to investigate biological and 
pathological processes.  
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