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ABSTRACT 

Background  

Predicting outcomes of COVID-19 patients at an early stage is critical for optimized clinical care 

and resource management, especially during a pandemic. Although multiple machine learning 

models have been proposed to address this issue, based on the need for extensive data pre-

processing and feature engineering, these models have not been validated or implemented outside 

of the original study site. 

Methods 

In this study, we propose CovRNN, recurrent neural network (RNN)-based models to predict 

COVID-19 patients’ outcomes, using their available electronic health record (EHR) data on 

admission, without the need for specific feature selection or missing data imputation. CovRNN is 

designed to predict three outcomes: in-hospital mortality, need for mechanical ventilation, and 

long length of stay (LOS >7 days). Predictions are made for time-to-event risk scores (survival 

prediction) and all-time risk scores (binary prediction). Our models were trained and validated 

using heterogeneous and de-identified data of 247,960 COVID-19 patients from 87 healthcare 

systems, derived from the Cerner® Real-World Dataset (CRWD). External validation was 

performed using three test sets (approximately 53,000 patients). Further, the transferability of 

CovRNN was validated using 36,140 de-identified patients’ data derived from the Optum® de-

identified COVID-19 Electronic Health Record v. 1015 dataset (2007–2020). 

Findings 

CovRNN shows higher performance than do traditional models. It achieved an area under the 

receiving operating characteristic (AUROC) of 93% for mortality and mechanical ventilation 

predictions on the CRWD test set (vs. 91·5% and 90% for light gradient boost machine (LGBM) 

and logistic regression (LR), respectively) and 86.5% for prediction of LOS > 7 days (vs. 81·7%  

and 80% for LGBM and LR, respectively). For survival prediction, CovRNN achieved a C-index 

of 86% for mortality and 92·6% for mechanical ventilation. External validation confirmed 

AUROCs in similar ranges.   

Interpretation 

Trained on a large heterogeneous real-world dataset, our CovRNN model showed high prediction 

accuracy, good calibration, and transferability through consistently good performance on multiple 

external datasets. Our results demonstrate the feasibility of a COVID-19 predictive model that 

delivers high accuracy without the need for complex feature engineering. 

 

Keywords: COVID-19, predictive modeling, electronic health records, structured data, deep 

learning, health outcomes, mortality, ventilation, length of stay  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.21264121doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.09.27.21264121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

INTRODUCTION 

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in December 2019.1 By the 

end of August 2021, there were more than 215 million confirmed COVID-19 infections worldwide 

and more than 630,000 deaths in the United States alone.2 Further, there have been around three 

million hospital admissions recorded since August 2020.2 During the peaks of the pandemic waves, 

many states have reported near-capacity hospital and intensive care unit (ICU) utilization. 

Accurate prediction of the future clinical trajectories of COVID-19 patients at the time of 

admission is crucial for clinical decision making and enables efficient allocation of resources. 

Indeed, a number of models for the prediction of COVID-19 outcomes have been developed. 

Wynants et al.3 reviewed 107 prognostic models as of July 1, 2020. The most common issue 

highlighted in this study is the high risk of bias associated with the reviewed models, due to either 

the small, locally sourced training dataset and the high risk of model overfitting or the lack of 

model calibration or external validation.4,5 To provide an updated survey of the literature, we 

conducted a Scopus and PubMed search for COVID-19 outcomes prediction articles published 

between July 2020 and the end of April 2021, using the keywords “COVID electronic health record 

(‘mortality’ or ‘ventilator’ or ‘length of stay’ or ‘real-time’) prediction.” The literature search 

retrieved a total of 264 unique articles, and upon review, we found 31 studies that describe the 

development and validation of machine learning predictive models for COVID-19 patients’ 

prognosis after admission. Out of the 31 studies, only two studies6,7 involved training the proposed 

models on more than 20,000 patients. Both models are based on a small set of specific features 

and need a laborious data preprocessing and feature engineering process that limits the 

transferability, reliability, and sustainability of the models. 

In this study, we aim to develop an accurate and transferrable model for COVID-19 

patients’ outcomes on admission that include in-hospital mortality (iMort), need for mechanical 

ventilation during the stay (mVent), and hospital stay longer than one week (pLOS). Our model, 

CovRNN, utilizes a gated RNN architecture, proven to be effective in modeling patients’ electronic 

health records (EHR) data.8–12 To maximize transferability, CovRNN uses readily available 

structured EHR without any need for specific feature selection, feature engineering, or missing 

value imputation. For iMort and mVent prediction tasks, CovRNN predicts a time-to-event risk 

score that can be interpreted as a binary prediction with a time horizon (survival prediction) and 

an all-time risk score (binary prediction). 

CovRNN was trained on a cloud-based, large heterogeneous dataset of 243,785 de-

identified patients’ data derived from 85 health systems available through the Cerner® Real-World 

COVID-19 Q3 Dataset (CRWD), hosted on the Cerner HealtheDataLabTM. We evaluated our 

models on four test sets extracted from the CRWD and the Optum® de-identified COVID-19 

Electronic Health Record v.1015 dataset (2007–2020). Each test set is different in size and 

represents a different use case so that we can evaluate the cross-hospital generalizability and model 

transferability between different EHR data sources. We also reported the results of subgroup 

analysis and ablation studies for a better understanding of the model’s performance. In addition, 

we utilized the integrated gradient technique13 to expose the factors of the CovRNN predictions 

that can enhance the interpretability.  

To the best of our knowledge, CovRNN is the first COVID-19 outcome prediction model 

that can simultaneously achieve the following: (i) accurately predict different COVID-19 patients’ 

outcomes on admission, and (ii) use readily available structured EHR in its raw categorical format 

without the need for specific feature selection or missing value imputation. In addition, the 

prospective compliance of CovRNN is evaluated against quality standards, including the 

transparent reporting of individual prognosis or diagnosis (TRIPOD) and the prediction model risk 
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of bias assessment tool (PROBAST). We also showed the value added of the fine-tuning utility of 

CovRNN and how it can be used to improve the model’s prediction accuracy. Such utility can be 

further used for the continuous improvement of the model as per good machine learning practice 

(GMLP) recommendations to secure the model’s reliability and sustainability. The source code of 

our model is publicly available to enable its applications and further evaluation by other 

researchers.  

 

METHODS 

Datasets and Cohort Description 

We extracted our main training cohort from the CRWD hosted on the Cerner 

HealtheDataLabTM, a cloud-based de-identified patients’ dataset that included up to five years of 

historic clinical data for COVID-19 patients from 87 health systems, as of the end of September 

2020. The CRWD included only patients who had a minimum of one emergency or inpatient 

encounter with a diagnosis code that could be associated with COVID-19 exposure or infection, 

or a positive result for a COVID-19 laboratory test. Further description of the CRWD is available 

in Supplementary Material A. In our study, we predefined our prediction point as the first COVID-

19 hospitalization admission day to an emergency, observation, or in-patient unit, and we refer to 

this point as the index date (Figure 1). We thereby excluded all patients who had no recorded 

clinical information on or before the index date as well as patients who stayed for less than one 

day, as described in Supplementary Material B We also excluded patients who had inconsistent 

dates, such as discharge dates before the hospitalization start date, as well as patients who were 

readmitted later and presented different outcomes. Our cohort included 247,960 patients, from 

which we held out two hospitals’ data for external validation. The remaining 243,785 patients’ 

data were split into training, validation, and test sets, with the ratio of 7:1:2. All of our reported 

CRWD results were on the held-out test set of 48,781 patients from the 85 health systems. For 

external validation, we evaluated the model on two randomly selected held-out hospitals from the 

CRWD, Hospital 1 from the south region, with 3,469 patients, and Hospital 2 from the west region, 

with 706 patients.  

 
 

Figure 1.  CovRNN prediction tasks. 

 

For further external validation outside of the CRWD, we extracted a cohort of 36,140 de-

identified patients’ data derived from the Optum® de-identified COVID-19 Electronic Health 

Record dataset v.1015 dataset (2007-2020), which we refer to as “OPTUM” cohort. Further 

description of the Optum® dataset, along with differences and commonalities between the CRWD 

and OPTUM cohorts, are available in Supplementary Material A.  
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Data Preparation 

We kept our data curation to the minimum level, as we describe below, to facilitate the 

transferability of our trained models among different datasets. We extracted all patient information 

on or before the date of their first hospital admission with COVID-19, including demographics, 

diagnosis, medication, procedures, laboratory results, and observations. To facilitate 

interoperability, we utilized standard terminologies in common use, such as ICD-9, ICD-10, and 

SNOMED-CT for diagnosis; LOINC and SNOMED-CT for laboratory results and observations; 

Multum drug identifiers and categories for medications; and CPT-4, HCPCS, ICD-9 PCs, and 

ICD-10 PCs for procedures. Such standard terminologies are readily available in the majority of 

EHR systems. In cases for which a coding system, such as Multum codes for medication, is not 

used, pre-existing mapping tools are available14 that can be used to convert NDC medication codes 

to corresponding Multum information.   

The majority of our features, such as diagnosis, medications, and procedures, were 

categorical. We converted numeric variables, such as laboratory results, to categorical variables as 

follows. For the CRWD, we used the “below normal low, normal, or above normal high” 

interpretation value provided in the CRWD rather than the actual numerical value; for OPTUM, 

we defined the result categories based on the corresponding normal result ranges. By doing, so we 

can further convert our input to either multi-hot or embedding matrices to feed to our models. 

Based on our previous study,15 we decided to use the clinical information in the coding standards 

with which it was recorded, as the normalization of those codes to a more unified terminology 

provides minimal gain.15 Further details of our data curation are available in Supplementary 

Material B. Our data curation pipeline is available at https://github.com/ZhiGroup/CovRNN. 

 

Outcomes of Prediction Tasks 

Our tasks include the prediction of COVID-19 patients’ in-hospital mortality (iMort), need 

for mechanical ventilation (mVent), and prolonged length of stay (pLOS), on admission.  For iMort 

event definition, we relied on the pre-assigned mortality flags on CRWD along with the “expired” 

encounter discharge disposition to confirm in-hospital mortality and identify the date of death. The 

iMort event definition was slightly different on the OPTUM data because there was no clear 

discharge disposition that indicated patient in-hospital death. We instead used the date of death 

and compared it against the hospitalization discharge date to assign the proper label. For mVent, 

we used mainly relevant mechanical ventilation procedure codes to define the outcome. In 

addition, with the CRWD, we used other relevant observations and recorded ventilator settings, 

not only to identify the instance of the event but also to identify the earliest time of the event 

(Supplementary Table 1). For iMort and mVent prediction tasks, we trained survival and binary 

classification-based prediction models. For survival analysis, we defined the time to event as the 

number of days between our index date and the earliest date that indicated the occurrence of the 

event, either a laboratory result or a recorded procedure for mVent or the discharge date of iMort. 

We used the hospitalization discharge date as the censoring time. We defined pLOS as a binary 

indicator for hospitalizations longer than 7 days, as the median length of stay (LOS) in the CRWD 

and OPTUM cohorts were 3 and 5, respectively, and we trained only a binary classification model 

for the pLOS task.  

We used the area under the receiver operating characteristic (AUROC) as the main model 

discriminative performance metrics for the binary prediction models. We also reported other 

clinically relevant metrics, including specificity at 95% sensitivity, the area under the precision-

recall curve (AUPRC), and the sensitivity and specificity at optimum threshold, defined using the 

validation set. For survival analysis, we reported the concordance index16 (c-index) as our main 
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evaluation metric. In addition, we used the predicted score and calculated the AUROC at different 

periods. 

 

Models 

CovRNN models were based on a gated type of RNN, namely a gated recurrent unit (GRU), 

which is known for being an efficient sequential deep learning architecture for clinical event 

predictions.10,17 Our models were designed to consume all demographics, diagnoses, medications, 

procedures, laboratory results, and other clinical event information readily available in the EHR 

before or on the index date to predict patient outcomes, without the need for specific feature 

selection or missing value imputation, for convenience and practicality. CovRNN also consumes 

the time difference between visits for a better temporal representation of patient history, which is 

known to slightly improve the prediction accuracy.18,19 For binary classification tasks, we 

compared CovRNN against traditional machine learning algorithms, such as logistic regression 

(LR)20 and light gradient boost machine (LGBM).21 For survival prediction, we utilized the 

DeepSurv22 architecture, while replacing the multiple layer perceptron (MLP) with GRU for better 

sequential information modeling. We were unable to adequately compare against machine learning 

survival models, such as random survival forest (RSF), for computational resource restrictions on 

the Cerner HealtheDataLabTM, especially with the increased number of covariates and large 

training set size. Any version of the RSF model runnable on Cerner HealtheDataLabTM had a very 

small number of iterations/trees that led to poor and unreliable results; therefore, we decided not 

to report these results. Further implementation details are available in Supplementary Material C. 

 

Experiments 

For model development, we trained our models on 70% of the CRWD 85 hospitals’ data 

(training set) and used 10% (validation set) to determine the best model trained, while controlling 

for overfitting. We reported the model performance on the remaining 20% held out for external 

validation (multi-hospital test set). 

For further external validation, we used two additional levels of test sets (Figure 2). First, 

two hospitals’ datasets were fully held out and used only to evaluate the cross-hospital 

generalizability: Hospital 1 (n = 3,469), from the south region, and Hospital 2 (n = 706), from the 

west region. Second, to evaluate the transferability of the CovRNN models across different EHR 

data sources, we used the OPTUM data set. Although the models can be directly used and 

evaluated on the OPTUM cohort, it is recommended to fine-tune the transferred model on a sample 

data of the destination, for two reasons: (a) Some clinical code distribution may vary or be newly 

presented at the destination data source; thus, during the model’s fine-tuning, these codes would 

get introduced to the model and become embedded closer to codes of similar meaning; and (b) The 

definition of the outcome variables can be slightly different, given the limitations of each data 

source; for example, the mVent outcome was defined mainly in the OPTUM cohort, using only 

the procedure codes, whereas the CRWD used procedure codes and additional clinical event 

results. Therefore, to evaluate the value added of the models’ fine-tuning, we transferred the best 

models trained on the CRWD and evaluated it on the OPTUM cohort before and after fine-tuning. 

We also compared the performance of the fine-tuned models against new models that were trained 

only on the same OPTUM data used for fine-tuning.  
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Figure 2.  Model development and external validation datasets.  

 

 We designed our additional experiments using the CRWD multi-hospital test set as 

follows. The first experiment was an ablation experiment to evaluate the added value for each 

clinical data category, starting with diagnosis information, followed by medication, medication 

categories, laboratory tests, assessments results, procedures, and, lastly, demographics. The second 

experiment was a subgroup analysis to evaluate the validity of CovRNN for new patients who 

were admitted to the hospital for the first time and had no past medical history available in their 

records. Therefore, we compared the performance of CovRNN models on a modified version of 

the multi-hospital test set that includes only the last (index) visit information against the original 

full-history multi-hospital test set. For a better understanding of the impact of any possible label 

leakage during model training, we conducted our third experiment using the binary classification 

CovRNN for the mVent task. As our cohort definition excluded any patients with a stay of less 

than one day, our cohort did not include any patients who died within one day of admission. 

Nevertheless, nearly half of the intubated patients were intubated on their first day. Therefore, we 

evaluated the effect of excluding such patients, which we refer to as a “restricted” dataset, and 

compared the performance against our original “full” cohort. In addition to the above-mentioned 

three experiments, we conducted subgroup analysis for patients in regard to different age groups, 

races, baseline comorbidities, and geographical regions.  

 

Models Interpretation 

For CovRNN prediction interpretation, we used the integrated gradient technique13 to 

expose the factors that contribute to the personalized model predictions. We used the integrated 

gradients technique due to its good theoretical properties, such as implementation invariance and 

completeness, and its implementation simplicity; as compared with methods such as layer-wise 

relevance propagation (LRP) or DeepLIFT, it does not require modification of the gradient 

backpropagation process and can viewed as a deterministic and computationally efficient 

approximation of the gradient Shapley Additive Explanations (SHAP). This is unlike LR- and 

LGBM-based models, in which the existing interpretation utilities provide fixed feature-level 

importance, by using either the LR coefficients or the LGBM feature importance scores. For RNN-

based models, we can achieve a more personalized explanation that shows the contribution scores 

for each code at each patient visit. For the preliminary evaluation, we extracted 20 random sample 

patients and presented their predicted risk scores as well as the contribution score assigned for 

each medical event and asked infectious disease specialists to evaluate its relevance.  
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RESULTS 

The description of the overall CRWD and OPTUM cohorts, presented in Table 1, shows 

that the prevalence of the outcome variables varies across the different data sources. The OPTUM 

cohort shows about twice the prevalence of in-hospital mortality and evidence of mechanical 

ventilation. In addition, the median length of stay is longer in the OPTUM cohort. Supplementary 

Table 2 includes further details of each subset.  
 

Table 1. Descriptive statistics for CRWD and OPTUM extracted cohorts 

Characteristics           CRWD 

             n = 247,960 

        OPTUM 

         n = 36,140  

Age at the index visit 

Median (IQR) 

 

57 (36–72) 

 

60 (44–72) 

Gender 

Female 

Male 

 

130,540 (52·6%) 

116,653 (47·0%) 

 

18,237 (50·5%) 

17,885 (49·5%) 

Race & Ethnicity 

Caucasian 

African American 

Asian 

American Indian / Alaska Native 

Hispanic 

 

168,606 (68·0%) 

 36,762 (14·8%) 

   5,494 (2·2%) 

   4,285 (1·7%) 

 72,068 (29·1%) 

 

19,704 (54·5) 

  7,836 (21·7%) 

     930 (2·6%) 

     NA 

  5,782 (16·0%) 

Comorbidities 

Hypertension (HTN) 

Diabetes (DM) 

Congestive Heart Failure (CHF) 

Chronic Kidney Disease (CKD) 

Cancer 

 

114,387 (47·7%) 

 64,023 (26·7%) 

 36,040 (15·0%) 

 34,789 (14·5%) 

 19,145 (8·0%) 

 

22,035 (61·0%) 

 12,942 (35·8%) 

 6,568 (18·2%) 

 7,517 (20·8%) 

 5,094 (14·1%) 

Outcomes 

Mortality 

Median TTE 

Mechanical ventilation 

Intubated on first day 

Median TTE 

Length of stay 

Median (IQR) 

 

13,607 (5·5%) 

8 (4–16) 

33,505 (13·5%) 

17,811 (7·2%) 

2 (1–5) 

 

3 (1– 6) 

 

4,831 (13·4%) 

5 (3– 10) 

9,582 (26·5%) 

4,466 (12·4%) 

3 (2 –7) 

 

5 (3–10) 

Total number of unique features 123,642 67,128 

Number of Healthcare Systems 87 197 

IQR: interquartile range, TTE: time to event in days 

 

CovRNN binary classification models achieved an AUROC of 93% for iMort and mVent 

tasks on the CRWD test set (vs. 91·5% and 90% for LGBM and LR, respectively) and 86·5% for 

pLOS (vs. 81·7% and 80% for LGBM and LR, respectively) (Table 2). External validation on 

held-out hospitals data showed AUROC ranges of 91·5%–97% for iMort and mVent binary 

predictions. pLOS prediction task showed AUROC 87·2% and 88·3% for Hospital 1 and Hospital 
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2, respectively (Table 2). External validation on the OPTUM cohort showed an AUROC after fine-

tuning of 91·3%, 91·5%, and 81·0% for iMort, mVent, and pLOS, respectively (Table 3). 

Additional metrics, including specificity at 95% sensitivity, AUPRC, and sensitivity and 

specificity at the optimum threshold, are presented in Supplementary Table 2. 

 
Table 2. Model performance on different CRWD test sets. 

 

 

 

n 

In-hospital Mortality 

(iMort) 

Mechanical Ventilation 

(mVent) 

Stay > 7 days 

(pLOS) 

LR LGBM 

Cov- 

RNN 

CovRNN 

–SURV* LR LGBM 

Cov- 

RNN 

CovRNN 

–SURV* LR LGBM 

Cov- 

RNN 

Multi-hospital 

Test Set 

48,781 90·3 91·5 93·0 86·0 89·5 91·2 92·9 92.6 80·0 81·7 86·5 

Hospital 1 3,469 88·8 91·0 91·8 86·0 86·7 88·4 91·5 90.8 77·3 78·5 87·2 

Hospital 2 706 94·6 95·1 97·0 91·6 93·5 95·6 96·0 93.8 80·9 84·3 88·3 

* CovRNN–SURV shown values are the c-index, other models are showing AUROC for binary classifications 

evaluation 

 

 

Table 3. CovRNN models trained on CRWD performance on OPTUM before and after fine-tuning 

Outcome Newly trained model on 

 OPTUM training cohort 

Directly using CRWD 

transferred model 

After Fine-tuning  

In-hospital Mortality 88·6  87·0  91·3 

Mechanical Ventilation 90·4  72·5  91·5 

Stay > 7 days 78·1  68·0 81·0 

In-hospital Mortality  

– Survival* 

86·1 77·1 88·9 

Mechanical Ventilation 

 –  Survival* 

90·2 69·2  93·7  

* values corresponding to survival models are in C-index, other models mainly using binary classifications are 

showing AUROC  

 

CovRNN survival models’ evaluation on the CRWD test set achieved a c-index of 86·0 for 

iMort and 92·6 for mVent (Table 2). Using the survival models to predict patient risk to develop 

the event at a certain time point within the period between Day 1 and Day 60 showed an AUROC 

range from 93·6% to 88·8% for iMort and from 95·5% to 91·4% for mVent. Similarly, the survival 

models showed a c-index range from 86·5 to 93·8 for iMort and mVent tasks on the held-out 

hospitals data (Table 2, Figure 3a) and the OPTUM test set after fine-tuning (Table 3, Figure 3b).  
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Figure 3.  Kaplan-Meier (KM) curves that show the stratified survival analysis. Stratification of patients is 

according to their predicted survival score over time in days since admission. Shaded areas indicate 95% CIs 

calculated on the logarithmic scale from the standard errors of the Kaplan-Meier estimator with the center 

values as corresponding to the Kaplan–Meier estimate 

 

For CovRNN binary classification and survival models, the transferred models consistently 

achieved better performance after fine-tuning compared to training new models on the OPTUM 

data. Our transferred binary classification models after fine-tuning showed AUROCs of 91·3%, 

91·2%, and 81% for iMort, mVent, and pLOS prediction tasks, respectively, compared to 88·7%, 

90·4%, and 78·1% for newly trained models (Table 3). Similarly, transferred survival models 

showed a c-index range from 88·9% to 93·7% after fine-tuning for iMort and mVent versus 86·1% 

to 90·2% for newly trained models (Table 3).  

 Our first ablation experiment showed that each clinical data category contributes to an 

increase in the model prediction accuracy. For example, the addition of medication or laboratory 

results contributed to a 4% increase in the prediction accuracy for iMort or mVent tasks, not only 

for deep learning-based models but also for LR and LGBM (Table 4). Our second experiment 

results showed that the use of the full patient history continuously had a better performance than 

using only the last (index) visit information only (Table 5). Notably, the models’ performance 

remains acceptable without the use of previous medical records, especially for the iMort and 

mVent tasks, which show an AUROC of 92%. (Table 5). For the pLOS task, there is a higher 

decrease in the prediction accuracy, by 3.5%. Interestingly, this decrease in pLOS prediction 

accuracy also aligns with the higher prediction accuracy improvement of 6% for CovRNN models 

compared to LR-based model for the pLOS task versus an improvement of only 3% for the iMort 

and mVent tasks. In our third experiment, we found that training a version of the mVent binary 

prediction model, using the “restricted” training set, reduced the prediction accuracy by 3% on the 

full test set for CovRNN and 5% for LR and LGBM (Table 6). CovRNN performance remains 

constant on the “restricted” test set, regardless of which cohort it was originally trained on.  
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Table 4. Experiment 1- Ablation study investigating the impact of different data categories 

Characteristics 
Number of 

covariates 

Mortality (iMort) Ventilator Use (mVent) 

LR LGBM CovRNN LR LGBM CovRNN 

Diagnosis only  

(ICD-9 / ICD-10 /SNOMED CT) 
49,074 77·6 83·8 85·9 75·5 80·9 83·7 

Diagnosis + Medication 

(Multum dNUM & Multilevel categories) 52,177 81·4 86·6 88·3 80·8 85·2 87·8 

Diagnosis + Medication + Lab results 

(LOINC codes with categorical results/ 

interpretations) 
80,203 85·3 90·1 92·1 84·6 89·2 91·4 

Diagnosis + Medication + Lab and 

other assessments results + Procedures 

(CPT-4, HCPCS, SNOMED CT, 

 ICD-9/10Pcs) 

125,821 85·4 90·7 92·5 86·2 90·1 92·1 

Diagnosis + Medication + Lab and other 

assessments results + Procedures + 

Demographics 

(Race, gender, age, location) 

125,917 86·4 90·9 92·7 86·2 90·1 92·3 

LR: logistic regression, LGBM: light gradient boost machine  

 

 

Table 5. Experiment 2 - Model performance using only last visit data versus using full patient history 

Outcome   Full History Last Visit only 

In-hospital Mortality 93·0 92·2 

Mechanical Ventilation 92·9 91·6 

Hospital Stay > 7 days 86·5 83·0 

In-hospital Mortality – Survival* 86·0 85·9 

Mechanical Ventilation - Survival* 92·6 91·3 

 

 

 

Table 6. Experiment 3 - Effect of label leakage on the need for mechanical ventilation prediction 
 Full Test Data Restricted Test Data 

Trained  LR LGBM CovRNN LR LGBM CovRNN 

Full Data 89·5 91·2 92·9 81·5 82·8 85·9 

Restricted Data 83·9 86·6 90·0 81·8 83·8 86·0 
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The subgroup analysis showed that prediction accuracy remains mainly consistent among 

different comorbidities, age groups, races, and regions. The most notable trend is that the 

prediction accuracy is better among the younger population (Figure 4). In addition, CovRNN 

binary classification models showed good calibration without sacrificing high prediction accuracy, 

as shown in the calibration plots (Supplementary Figure 4). In Supplementary Figure 5, we present 

a sample visualization that shows the integrated gradient-based explanation of the CovRNN 

model’s true positive prediction for a pLOS case. The information in the figure, however, is based 

on a sample and not the full patient data; the full data for a subset of more than 20 patients for each 

prediction task were presented to an infectious disease specialist, who found it informative. Further 

evaluation of the model explanation is warranted, taking into consideration that the evaluation of 

such personalized explanations, whereby the same clinical code can have different contribution 

scores at each patient and visit level, given the different context, is laborious. To demonstrate our 

efforts to abide by transparent reporting standards, we provide the TRIPOD and PROBAST 

assessments as Supplementary Material D and Supplementary Material E, respectively. 

 

 
Figure 4. Subgroup analysis using the CRWD multi-hospital test set 

 

DISCUSSION 

Our experiments showed that CovRNN models trained on a large heterogeneous dataset of 

approximately 200,000 COVID-19 patients required minimum data curation to achieve high 

prediction accuracy (AUROC: 97–86%) for different patient clinical outcomes, namely iMort, 

mVent, and pLOS. CovRNN not only showed high prediction accuracy but also demonstrated 

good transferability between two large de-identified EHR databases with different structures, good 

external validity, proper model calibration, and utility of fine-tuning for continuous improvement. 

In addition, we used integrated gradients as a utility to expose the factors that contribute to the 

model predicted scores.  

CovRNN models were predominant, with consistently higher performance as compared to 

other baseline methods. Interestingly, we found that the maximum difference between LR, LGBM, 

and CovRNN models’ AUROC for iMort and mVent was around 3%, whereas it exceeds 6% for 

pLOS. Similarly, we observed that the pLOS prediction accuracy was highly affected by the 

inclusion of patient history. Therefore, we can conclude that considering the sequence of events 

that occurred in the past is of higher importance for the pLOS prediction task versus the iMort and 

mVent prediction tasks, for which the most recent events are of higher importance.  

Although several studies reported predictive machine learning models with prediction 

accuracy comparable to our,6,7,23–25 our model was trained and evaluated on larger, multicenter 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.21264121doi: medRxiv preprint 

https://paperpile.com/c/O0Joss/6umi+IXOC+w9r1+UOem+Bu6i
https://doi.org/10.1101/2021.09.27.21264121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

cohorts from two large, well-known de-identified EHR databases in the United States (a total of 

more than 300,000 patients). The N3C study7 had a similar number of COVID-19 patients 

(160,000) included in their training set; however, their reported prediction accuracy (AUROC) 

against iMort and mVent (combined as severity indicator) was only 86%. In addition, the majority 

of published studies with machine learning models predict the outcome in a very short follow-up 

window, such as 1 hour to 1 day from the index time-point.6,25 Further, some studies did not specify 

the time window of prediction or used limited historical data.26 As the window periods become 

shorter, the prediction task is easier, and, thus, the accuracy is higher, but the results are less 

valuable, as physicians can predict those clinical outcomes better without using models. We 

reported CovRNN survival model results to demonstrate the flexibility of our approach. We 

believe, however, that predicting the probability of the adverse events’ occurring within the 

hospital stay should be informative enough for clinicians to make appropriate decisions on 

admission and may not be limited to a specific time range. Therefore, we also focused on the 

evaluation and calibration of the binary classification models. 

In our study, we included data available on or before the index admission to predict clinical 

outcomes throughout the hospital stay. Of note, our cohorts also included patients who stayed in 

observation units without hospitalization. Many physicians often encounter significant dilemmas 

when deciding the patient’s disposition, such as discharge or higher level of care, in the observation 

unit or at the time of hospitalization. Further, patients with COVID-19 often progress rapidly, 

especially after about 7 days from the onset of symptoms, even when they initially present with 

mild symptoms.27 This characteristic clinical course in patients with COVID-19 makes it 

substantially difficult for clinicians to predict future outcomes on the first day of hospital 

encounters. Our model is particularly helpful in those clinical scenarios, as the trajectory of the 

most important clinical outcomes, such as in-hospital mortality, was predicted with specificity of 

71% at 95% sensitivity (Supplementary Table 3). As indicated in Supplementary Table 3, the 

threshold can be easily adjusted to prioritize the sensitivity or specificity to meet the clinicians’ 

needs. For example, in the situation in which our model predicts the patient’s death with high 

specificity, physicians could initiate an early discussion of poor outcomes with the patient and/or 

goals of care in appropriate cases.  

 The minimal need for data curation and reliance on the power of the deep learning model 

architecture for learning proper feature representations from large data are key advantages of our 

CovRNN model. We were able to transfer the model between two completely different datasets 

that have some differences, particularly in clinical codes distributions. With a simple model fine-

tuning step on sample data from the destination dataset, the model consistently achieved high 

prediction accuracy. Although we focused on COVID-19 patient outcomes, this is a good example 

for a proof of concept, and we can apply the same methodology to predict different clinical 

circumstances. 

 Our study has several limitations. First, our data analysis includes only retrospective data. 

Despite our efforts to avoid potential bias by separating training, validation, and test datasets as 

well as external validation on a different data source, potential biases are inevitable. A prospective 

validation study is warranted, ideally, in hospitals that did not participate in data sharing with the 

database that we used to secure the validation of transferability. Second, our model focused only 

on the admission data to predict in-hospital clinical outcomes. It is possible to use multiple time 

points during the hospital stay to update models to achieve “real-time” predictions. Because 

minimal data preprocessing is required, our model can be easily modified to use different data 

points to predict future clinical outcomes.  

Third, we performed only a preliminary evaluation for the model predictions explanations, 

whereby we extracted data from 20 random sample patients and presented their predicted risk 
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scores as well as the contribution score assigned for each medical event and asked infectious 

disease specialists to evaluate its relevance. Although we acknowledge that this is not a rigorous 

evaluation method, it demonstrated that our proposed model provides the tool that allows model 

transparency and helps to engage clinicians and facilitate their judgment on the model predictions. 

Future work is warranted to systematically evaluate the model’s transparency. Fourth, the 

dynamics of COVID-19 management in hospitals and patient surges from pandemics have 

changed over time, which would modify the patient outcomes over time. Thus, the accuracy of our 

model may be affected in future datasets. For example, the patients who received COVID-19 

vaccines likely have different clinical outcomes.28 Because our model is trained on historical data, 

the model can be easily fine-tuned on more current data to improve its prediction accuracy, which 

is one of the major advantages of deep learning models.   

CONCLUSION 

Through benchmarking, we found that our CovRNN can provide accurate and transferable 

predictive models for a wide range of outcomes and that we can continuously improve upon the 

model through periodic fine-tuning. Further, our data preparation pipeline is kept to a minimum to 

facilitate the transferability of the models and facilitate further validation on new data sources. 

Our model development framework can be further applied to train and evaluate predictive models 

for different types of clinical events. For clinicians who are fighting COVID-19 on the front lines, 

there are two potential actionable contributions of our work. Clinicians can (i) fine-tune our pre-

trained model on their local data, regardless of the size, establish utility, and then deploy; and (ii) 

use our comprehensive model development framework to train a predictive model, using their own 

data. 
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