1 Original Research Article

2 RNA-extraction-free diagnostic method to detect SARS-CoV-2: an assessment

3 from two States, India

Madhumathi Jayaprakasam¹, Sumit Aggarwal¹, Arati Mane², Vandana Saxena², Amrita Rao²,

4 Bhaswati Bandopadhyay³, Banya Chakraborty³, Subhasish Kamal Guha³, Mekhala Taraphdar³,

Alisha Acharya³, Bishal Gupta³, Sonia Deb³, Aparna Chowdhury³, Kh Jitenkumar Singh⁴,

Prashant Tapase⁴, Ravindra M Pandey⁵, Balram Bhargava¹, Samiran Panda¹*

7

⁸ ¹ Division of Epidemiology and Communicable Diseases, Indian Council of Medical research

- ⁹ (ICMR), Ansari Nagar, New Delhi, India
- ¹⁰ ² Department of Microbiology, ICMR- National AIDS Research Institute (NARI), Pune, India
- ¹¹ ³ Department of Microbiology, School of Tropical Medicine, Kolkata, India
- ¹² ⁴ ICMR-National Institute of Medical Statistics (NIMS), Ansari Nagar, India
- ¹³ ⁵ Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
 ¹⁴
- 15

*Corresponding author

- 19 Dr Samiran Panda
 - Head, Division of Epidemiology and Communicable Diseases
- ¹⁸ Indian Council of Medical research (ICMR)
- 19 Ansari Nagar, New Delhi-110029
- ²⁰ Director, ICMR-National AIDS Research Institute
- E mail: pandasamiran@gmail.com
- ²² Phone: (+91) 9830908475
- ²³ Fax no: 011-26588896
- 24
- 25

Word Count (excluding summary, declarations, references, figures, tables, figure legends):

26

3194

It is made available under a CC-BY-ND 4.0 International license .

28 **RNA-extraction-free diagnostic method to detect SARS-CoV-2: an assessment**

²⁹ from two States, India

Summary

30

With increasing demand for large numbers of testing during COVID-19 pandemic, came 31 alternative protocols with shortened turn-around time. We evaluated the performance of such an 32 approach wherein 1138 consecutive clinic attendees were enrolled; 584 and 554 respectively 33 from two independent study sites in the cities of Pune and Kolkata. Paired nasopharyngeal and 34 oropharyngeal swabs were tested by using both reference and index methods in blinded fashion. 35 Prior to conducting RT-PCR, swabs collected in viral transport medium (VTM) were processed 36 for RNA extraction (reference method) and swabs collected in dry tube without VTM were 37 incubated in Tris-EDTA-Proteinase K buffer for 30 minutes and heat inactivated at 98°C for 6 38 minutes (index method). Overall sensitivity and specificity of the index method were 78.9% 39 (95% CI 71% to 86%) and 99 % (95% CI 98% to 99.6%) respectively. Agreement between the 40 index and reference method was 96.8 % (k = 0.83, SE=0.030). The reference method exhibited 41 enhanced detection of viral genes (E, N and RdRP) with lower Ct values compared to the index 42 method. The index method can be used for detecting SARS-CoV-2 infection with appropriately 43 chosen primer-probe set and heat treatment approach in pressing time; low sensitivity constrains 44 its potential wider use. 45

Key words

46

47

SARS CoV-2, RNA-extraction free method, Diagnostic test, Heat-inactivation, Dry swab, Performance-evaluation

It is made available under a CC-BY-ND 4.0 International license .

Introduction

49

50	
51	The COVID-19 pandemic swept through the world with unprecedented speed and impact on
52	lives and livelihoods [1]. Within four months of its onset, more than 118,000 cases and
53	4,291 deaths were reported from 114 countries. All of these happened following an outbreak of
54	'unusual cases of pneumonia' notified for the first time from the Wuhan city of Hubei province,
55	China in December 2019 [2]. Such a rapid spread of the causative virus SARS-CoV-2 reminded
56	humankind of the influenza pandemic causing havoc about 100 year ago [3,4]. Developing
57	simple and reliable diagnostic tests appeared paramount in this context as care service related
58	needs escalated and demand for tools to conduct quick screening and survey also increased [5].
59	
60	As with many other infectious diseases, SARS-CoV-2 infection is detected reliably by the real-
61	time polymerase chain reaction (RT-PCR) as it is a highly sensitive and specific tool [6]. While
62	the Center for Disease Control (CDC), USA recommended the gene targets for two nucleocapsid
6 <u>2</u>	proteins (N1 and N2) of SARS-CoV-2 for diagnostic assays [7], the World Health Organization
64	(WHO) proposed using envelope (E) gene target for first line screening and RNA dependent
65	RNA Polymerase (RdRP) for confirmation [8,9]. Notably, assays using E and N2 gene primers
66	were found to be more sensitive [10]. The combination of two gene targets is recommended to
67	enhance accuracy of diagnosis in the context of possible viral genetic variability; one from the
68	conserved region of the virus and another from SARS CoV-2 specific region of the genome [8].
60	
70	Several alternative protocols described ways to simplify RT-PCR test by excluding the RNA
70	extraction step [11-14]. These modifications attempted to reduce the turn-around time for

72	quickly obtaining test results and also to address the issue of shortage of RNA extraction kits
73	when the demand runs high. Heating of naso-pharyngeal swab specimens in transport medium
74	and skipping RNA extraction step before proceeding to conduct RT-PCR has been reported to be
75	fast and reliable [12]. Direct heating of viral extracts from swab specimens for 5 minutes at 98
76	°C resulted in 97% sensitivity and 100% specificity when examined against purified RNA as
77	gold standard [15]. Direct RT-PCR assay with heat-inactivated or lysed samples using generic
78	buffers like Tris or Tris-EDTA (TE) served as an effective alternative method [16]. A similar
79	approach to RT-PCR, using heat inactivated TE buffer extract of nasopharyngeal swabs
80	transported in dry tube from sample collection site to the laboratory, has been described from
81	India as well [17]. However, utility of this method and modified version of it as suggested by the
82	Centre for Cellular and Molecular Biology, Hyderabad, India in real world program setting was
83	not examined. This modification was in line with the work of Chu et al [13] for SARS CoV-2
84	and de Paula et al., [18] for Hepatitis A virus where proteinase K was used along with TE buffer.
85	We assessed the performance of modified version of the test approach of Kiran et al., in program
86	setting for diagnosis of COVID-19, using E, RdRP and N primer-probe based assay.
87	
88	Methods
80	The current investigation took place during 10 th November through 11 th December 2020. The
89	proposal for evaluation was developed in early October 2020 and approval was obtained from
90	the Central Ethics Committee for Human Research (CECHR) of Indian Council of Medical
91	Research (ICMR) on 30 th October 2020. Written informed consent was obtained from

92

individuals consenting to participate in this study.

93

95	Study settings and participants
96	The present investigation was conducted at two sites in India namely, the ICMR-National AIDS
97	Research Institute (ICMR-NARI), Pune in the western state of Maharashtra and the School of
98	Tropical Medicine (STM), Kolkata in the eastern state of West Bengal. Necessary approvals
99	were obtained from the Ethics Committees of these two respective institutes as well. Consecutive
100	clinic attendees (\geq 18 year of age) at the designated study sites, who came for SARS-CoV-2
101	testing, were invited to participate in this investigation.
102	
103	Implementation
104	Each consenting clinic attendee was registered on a web-based portal maintained by ICMR with
105	a specimen referral form (SRF) number created at the collection site, which was used for labeling
106	the viral transport medium (VTM) containing tube. In order to ensure blinding, a different set of
107	unique codes were randomly generated from the ICMR-headquarter, New Delhi for each study
108	site using Excel based tool for labelling the corresponding swabs collected and placed in dry
109	tubes. The link page, containing ICMR SRF number and the paired unique code for swabs in dry
110	tubes for each enrolled participant, was available only with the designated staff at the respective
111	study sites. Blinding was ensured through barring of the laboratory staff involved in test
112	procedures and generation of test results to the link page.
113	
114	Sample collection and processing
115	'Specimen Collection, Packaging and Transport Guidelines for 2019 Novel Coronavirus (2019-
116	nCoV)', was adhered to during study implementation [19]. Two naso-pharyngeal swabs and two
117	oro-pharyngeal swabs were collected from each of the enrolled participants in single sitting. The

118	swabs (one naso-pharyngeal and one oro-pharyngeal) saved in labelled VTM tubes and those
119	kept in labelled dry tubes, were transported to the participating laboratories and processed on the
120	same day of sample collection.
120	
121	Reference test and Index test
122	<i>i. RT-PCR test with swab specimens transported in VTM tube (reference method):</i> The
123	reference method used one nasopharyngeal and one oropharyngeal swab (HiMedia TM
125	Laboratories Pvt Ltd, Mumbai, India) collected from each participant and saved in the tube
126	containing 3 ml VTM (HiMedia TM Laboratories Pvt Ltd, Mumbai, India). About 200 µl of
127	the VTM extract was used for RNA extraction followed by RT-PCR assay [9].
128	ii. Dry swab-based RT-PCR (index method): One nasopharyngeal swab and one
129	oropharyngeal swab collected from each participant were transported to the laboratories in
130	10 ml sample collection tubes (HiMedia TM Laboratories Pvt Ltd, Mumbai, India) without
131	adding VTM to them. At the laboratories 400 μ l of Tris-EDTA-Proteinase K (TE-P) buffer
132	[10mM Tris (pH 7.4), 0.1mM EDTA, and 2 mg/ml Proteinase K] (Bio Ultra, for molecular
133	biology, Sigma-Aldrich, Bangalore, India) was added to swab specimens transported in dry
134	tube and incubated for 30 minutes at room temperature. About 50 μ l of the TE-P extract
135	was aliquoted into PCR tube and was heat inactivated at 98°C for 6 minutes using thermal
136	cycler (ICMR-NARI site) or heat block (STM site). The heat inactivated extract was then
137	used as template for RT-PCR reaction (Figure 1).
138	
139	
140	

It is made available under a CC-BY-ND 4.0 International license .

Nucleic Acid Amplification Assay

142	RNA extraction from clinical specimens transported in VTM tubes was carried out as per
143	instructions accompanying the commercial RNA extraction kit (QIAmp viral RNA Mini Kit,
143	QIAGEN, New Delhi, India). The RT-PCR reaction was carried out using 'CoviDx mPlex-4R
145	SARS-CoV-2' (NeoDx Biotech Labs Private Limited, DSS Imagetech, New Delhi, India) as per
145	manufacturer's instructions with primer-probe sets (Table 1) for detection of the SARS-CoV-2
140	specific genes E, N and RdRP. Human RNase P was used as internal control in this single tube
147	assay. Briefly, a 25 μ l reaction was set up containing 8 μ l template (purified RNA from VTM
148	sample for reference method and heat inactivated dry swab lysate for index method), 12.5 µl of
149	2X master mix, 1.25 µl 20X primer and probe mix and 3.25 µl nuclease free water. In each assay
150	a positive control and no template control (NTC) were included. The RT-PCR assays were
151	conducted on 'CFX96-IVD Real-time PCR system' (Bio-Rad Laboratories India Pvt. Ltd.,
152	Gurugram, Haryana, India) using the following cycling conditions; 50 °C for 15 minutes for
153	reverse transcription, 95 °C for 2 minutes, and 45 cycles of 95 °C for 15 s and 58 °C for 30 s.
154	
155	Sample size estimation and data analysis
156	An earlier evaluation of the RNA-extraction-free dry swab-based RT-PCR method [17] in clinic
157	setting was conducted by us and estimated to have 56% sensitivity and 95% specificity [20]. The
158	modified index method (described above) was expected to have improved sensitivity and thus we
159	conservatively assumed it to be 75% with minimum acceptance lower confidence limit of 60%
160	based on which the calculated number of cases required was 107 [21]. With the recorded
161	prevalence of 20 % SARS-CoV-2 infection among clinic attendees in Pune and Kolkata during
160	prevalence of 20 70 574Kb-C0 + 2 infection among entite attendees in 1 une and Kolkata during

163	the current study, the number of SARS-CoV-2 negative individuals to be included was calculated
164	as 428 {107 x $(1-0.2/0.2)$ } = 428; the total estimated sample size being 535.
165	
166	A cycle threshold (Ct) value of 40 or less was considered as positive. The binary outcome
167	(yes/no), in the form of presence or absence of SARS-CoV-2 infection generated by the index
168	method was assessed against the results obtained following RT-PCR tests on swab specimens
169	transported in VTM. The sensitivity, specificity, concordance, discordance, positive predictive
170	value, negative predictive value and agreement between the tests and their 95% confidence
171	interval (CI) were computed using Stata version 13.1 (StataCorp LP, College Station, TX, USA).
172	Graphpad Prism (version 5) and R-CRAN (version 4.0.3) with ggplot2 library was used for
173	graphical representations.
174	
	Degulta
175	Kesuits
175 176	Participants
175 176 177	<i>Participants</i> Consecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)
175 176 177 178	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,
 175 176 177 178 179 	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,Kolkata (14.8%) did so. Information obtained from 584 participants by ICMR-NARI (one
 175 176 177 178 179 180 	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,Kolkata (14.8%) did so. Information obtained from 584 participants by ICMR-NARI (onespecimen could not be analyzed due to inadequate volume) and 554 participants by STM,
 175 176 177 178 179 180 181 	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,Kolkata (14.8%) did so. Information obtained from 584 participants by ICMR-NARI (onespecimen could not be analyzed due to inadequate volume) and 554 participants by STM,Kolkata were included in the analyses. Each site thus fulfilled sample size requirement on its
 175 176 177 178 179 180 181 182 	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,Kolkata (14.8%) did so. Information obtained from 584 participants by ICMR-NARI (onespecimen could not be analyzed due to inadequate volume) and 554 participants by STM,Kolkata were included in the analyses. Each site thus fulfilled sample size requirement on itsown and allowed examination of performance of the index test in two different real world
 175 176 177 178 179 180 181 182 183 	ResultsParticipantsConsecutive clinic attendees at the two study sites were enrolled. While 15 of the 600 (2.5%)attendees at ICMR-NARI, Pune site refused to provide consent, 96 of the 650 attendees at STM,Kolkata (14.8%) did so. Information obtained from 584 participants by ICMR-NARI (onespecimen could not be analyzed due to inadequate volume) and 554 participants by STM,Kolkata were included in the analyses. Each site thus fulfilled sample size requirement on itsown and allowed examination of performance of the index test in two different real worldsettings independent of each other and thus fulfilling the criteria of conducting evaluation in

The majority of the participants were male (767/1138; 67%); age ranging from 18 to 85 year (Table 2). Nearly 30% of the participants were symptomatic (342/1138); most common ones being fever (52%), cough (35%), bodyache (12%), sore throat (7%), breathlessness (3.5%) and anosmia (3.5%).

- 188
- 189

Comparison of Ct values - reference vs index method 190

Heat-maps of Ct values for E, RdRP and N genes detected by reference and index methods were 191 plotted. Samples, which were detected having at least one of these genes by VTM-based method, 192 were used for comparisons and were examined to explore how did the index method perform 193 against them. The N gene primer-probe set showed superior performance compared to the other 194 two genes by both reference and index methods. Figure 2 presents comparative data visualization 195 with juxtaposition pertaining to the three aforementioned genes along with the internal control 196 (human Rnase P). The reference method could detect either one of the three genes (E, RdRP or N 197 gene) in 54 samples at ICMR-NARI and 71 samples at STM. However, the index method could 198 detect either one of the three genes in 45 out of the aforementioned 54 samples at ICMR-NARI 199 and 55 of the 71 samples at STM (Figure 2a & 2b). The index method could not detect any of the 200 three target genes in 17 % (9/54) of the clinical specimens at ICMR-NARI and the proportion of 201 such missed events had risen to 23 % (16/71) at STM. Parity between the reference and 202 extraction free methods in terms of detecting positive specimens was better at ICMR-NARI 203 (45/54; 83.3 %) (Fig 2a) compared to the results obtained at STM (55/71; 77.5 %) (Fig 2b). This 204 difference could be explained by the difference in heat treatment methods used by the respective 205 centres. While the STM site used heat block for maintaining 98°C at 6 minutes, the ICMR-NARI 206 site had used thermal cycler. 207

It is made available under a CC-BY-ND 4.0 International license .

_Distribution of Ct values

230

209	We compared matched Ct values generated by both reference as well as index method. Samples
210	which were tested positive by reference method for each gene were used for the analysis of Ct
211	values. Reference method-based RT-PCR results had 1-10 Ct values lesser than those generated
212	by index method for E, RdRP and N genes in more than two-third of the samples (Figure 3). The
213	mean Ct values (\pm SD) for target genes detected by reference method were as follows; E= 23.69
214	\pm 4.03, RdRP = 25.59 \pm 4.06 and N = 25.76 \pm 5.33. These values were significantly lower
215	(p<0.0001, Wilcoxon signed rank test), compared to the values generated by the dry swab
216	method (E = 24.42 ± 4.01, RdRP = 26.80 ± 3.32 and N = 26.61 ± 4.87).
217	
218	Performance of index method
219	While 11% (128/1138) of the total clinic attendees tested positive for SARS-CoV-2 infection by
220	the reference method, the index method involving transportation of swabs in dry tube
221	environment detected 78% ($101/128$) of them thus reducing the overall detection to 8.8%
222	(101/1138). Of the 584 samples tested at ICMR-NARI site, overall 9.6% samples (56/584) tested
223	positive by reference method and 9.4% (55/584) were positive by index method. Of the 554
224	samples tested at STM, Kolkata, 72 (13%) were detected as positive by reference method and 55
225	(10%) by index method (Figure 4). The overall sensitivity of the index method was 78.9% (95%
226	CI 71% to 86%) and specificity was 99 % (95% CI 98% to 99.6%). The observed overall
227	agreement between the index and reference method was 96.8 $\%$ and the discordance was 3.16 $\%;$
228	kappa value (k) was 0.83 (95% CI 0.77 to 0.89, SE=0.030). Site disaggregated data are presented
229	in Table 3.

10 | P a g e

It is made available under a CC-BY-ND 4.0 International license .

Discussion

232	Conducting research during outbreak situation faces many challenges. Lengthy start-up period
233	before one could carry out observational research in pandemic situation has been cited as one of
233	these challenges [22], and the other challenges are reactive approaches, socio-political pressures
235	to approve repurposed or promising drugs [23] or diagnostic kits and urgency of the researchers
235	to inform public health decisions. Besides prompt implementation against such background, the
230	strength of the current investigation rests with its methodology. Firstly, a study population akin
237	to the individuals, on which the index method could be applied in future, was assembled.
230	Secondly, both the reference as well as index method pertaining to SARS-CoV-2 diagnosis were
239	applied to all the study participants and laboratory investigators remained blinded to such
240	assignments at both the study sites, which independently conducted their investigations.
241	
242	With increasing demand for testing in pandemic situation, several researchers have explored the
243	possibility of utilizing alternative specimen collection procedures, processing steps and testing
244	methods. Direct heating of nasopharyngeal swab specimens in universal viral transport (UVT)
245	medium at 65 °C for 10 minutes without RNA extraction reportedly yielded sensitivity
246	comparable to the standard method [14]. On the contrary, an earlier evaluation of a direct
247	extraction method using buffer eluates of the swabs transported in dry tube (without transport
248	medium) and heat treatment at 98°C for 6 minutes against the reference method on 978 clinical
249	samples yielded an overall sensitivity of 56 % (95% CI 49.8 % to 61.6 %) and specificity of 95
250	% (95% CI 93.4 % to 96.8 %) [20]. Pretreatment of such buffer eluates with Proteinase K
251	followed by heat inactivation was found to improve sensitivity in a pilot laboratory assay of
252	SARS-CoV-2 [24] consistent with the previous reports from other researchers [13]
253	states cot 2 [21], consistent that the providus reports from other resourchers [15].

254	We conducted the current assessment to evaluate a similar approach of direct extraction from
255	dry-swabs using TE buffer and proteinase K followed by heat inactivation from naso-pharyngeal
256	specimens collected from consecutive clinical attendees. This modification over an earlier
257	version of the test approach [17] increased the overall sensitivity from 56% to 79%.
258	
259	Contrastingly, Srivastan et al [25] reported much higher sensitivity (100%) and specificity
260	(99.4%) with direct extraction from dry-swabs using low-TE buffer elution, proteinase K pre-
261	treatment and heat inactivation. Noticeably, the study by Srivastan et al., used archived samples
262	as well as anterior nasal dry-swabs collected as convenience specimens. Such designs are prone
263	to introduction of biases that we could avoid by enrolling consecutive clinic attendees from two
264	different clinic settings.
265	
266	Heat map-based visualization, in the present investigation, demonstrated that the standard RNA
267	extraction method exhibited enhanced detection of gene targets with lower Ct values (corollary
268	of higher RNA concentration or viral load in a given condition) compared to the dry swab elution
269	where RNA-fragmentation during heat inactivation remains a possibility, which could lead to
270	reduced sensitivity. The difference could further be explained by purification that takes place
271	during RNA extraction. Moreover, concentration of RNA that is achieved and removal of PCR
272	inhibitory substances during RNA extraction also could contribute to better yield due to intact
273	high-quality RNA available for RT-PCR. Noticeably, Chen et al (2020) reported that there was a
273	50%-66 % drop in RNA copy number after heating at 80°C for 20 minutes [26] while different
275	inactivation methods were compared. In the present study, the index method failed to detect 17
275	% and 23% of positive specimens at ICMR-NARI site and STM, Kolkata site respectively.

277	Noticeably, eight positive specimens with low Ct values detected by the reference method were
278	missed out by the extraction free method at STM, Kolkata. This could be due to the
270	compromised quality of RNA during extraction process which failed to amplify all three viral
280	genes. The low detection at STM was not related to site-specific performance issue as the
280	internal control was detected at low Ct values in these specimens. Rather, different heating
281	methods used at two study sites could explain the difference in recorded sensitivity due to
282	resulting difference in time of exposure of samples to 98°C. Hasan et al, (2020) compared
283	standard method with direct extraction method and showed enhanced detection of human RNase
204	P compared to viral genes with a difference of 1- 6 Ct values [14]. Burton and colleagues (2021)
285	therefore recommend local validation of heat-inactivation and examination of its effects on
280	molecular testing due to considerable variations observed in different studies [27]. These
287	findings underline the importance of paying attention to the heat treatment method used while
280	extraction free methods for viral diagnostics would be considered.
209	
290	Importantly, Smyrlaki et al (2020) carried out extensive standardizations of different heat
291	inactivation protocols. The authors reported that all high temperature (\geq 95 °C) conditions
292	resulted in similar Ct values and recommended inactivation at 95°C to 98°C [16]. On the other
295	hand, Mallmann et al (2021) tested different conditions and reported that pretreatment with
294	Proteinase K and heat treatment at 98°C yielded best results with Ct values similar to that in
295	standard method.
290	
297	It was observed in the current investigation that the detection of SARS-CoV-2 N gene target was
298	

superior compared to E and RdRP genes. This is in agreement with the previous reports [28], 299

300	where N-gene based RT-PCR was shown to be more sensitive due to relative abundance of N
301	gene subgenomic mRNA [29]. The primer-probe set for N1 gene showed better performance due
302	to shorter amplicon size in another heat inactivation protocol as well [16]. Hence, we maintain
302	that the primer and probe sets should be carefully chosen if heat inactivation methods are to be
304	deployed. Our study has further highlighted the importance of deploying appropriate heat
305	treatment method if RNA-extraction-free detection technique is to be deployed.
306	
307	In conclusion, the evaluated index-method has the potential to serve as an alternative protocol for
308	identifying SARS-CoV-2 infection in resource limited settings. However, the following
309	observations appear demanding if using this method in program setting is to be considered; a)
310	requirement of carefully selected primer and probe sets for better outcome and b) the necessity of
311	selecting appropriate heat treatment method. The lower sensitivity of this RNA-extraction-free
312	RT-PCR method in real world setting appears to be one of its limitations.
313	
314	Acknowledgments
315	We thank Dr. Shailaja Bhavasar, Senior Medical officer, Bhosari Hospital, Dr. Vikalp Bhoi:
316	Medical Officer, Bhosari Hospital, Ms Asawari Todewale: Laboratory Technician, Project, Mr.
317	Mahibub Attar: Laboratory Assistant I, ICMR-NARI, Mr. Michael Pereira: Technical Officer-C,
318	ICMR-NARI, Mr. Atul Sirsat: Technician-2, ICMR-NARI, Mrs. Dipali Kale: Senior Laboratory
319	Technician-1, ICMR-NARI, Ms. Jyotsna Gokavi: Junior Research Fellowship, ICMR-NARI
320	and COVID-19 diagnostic team at ICMR-NARI for helping in participant enrollment, sample
321	collection and sample processing at ICMR-NARI site. We thank Dr Rinku Chakrabarti, Medical

It is made available under a CC-BY-ND 4.0 International license .

322	Officer and Dr Subhra Chattopadhyay, Senior Resident at STM, Kolkata for helping in
323	laboratory assays at STM, Kolkata site.
324	
325	Financial Support
326	This work was supported by the Indian Council of Medical Research, Department of Health
327	Research, Ministry of Health and Family Welfare, Government of India. (RFC
328	No.ECD/NTF/47/2020-21, RFC No.ECD/NTF/60/2020-21/Covid)
329	
330	Conflict of interest
331	None
332	
333	Financial Disclosure
334	The authors do not have any current or former relationships with any organization or entity
335	having a direct financial or personal interest in the subject matter or materials discussed in the
336	article.
337	
338	Data Availability Statement
339	The data presented in this study are available on request from the corresponding author. The data
340	are not publicly available due to ethical reasons.
341	
342	Ethical Statement
343	The authors assert that all procedures contributing to this work comply with the ethical standards
344	of the national and institutional committees on human experimentation and with the Helsinki

345	Declaration of 1975, as revised in 2008. The study was approved by the ICMR Central Ethics
346	Committee on Human Research (CECHR) (CECHR 018/2020 dated 11 th August 2020 and 24 th
347	October 2020). The study was also approved by the local Institutional Ethics Committees of two
348	study sites –Ethics Committee, ICMR National AIDS Research Institute (NARI), Pune (Ref
349	NARI/EC/Approval/20-21/385 dated 14 th August 2020) and Clinical Research Ethics Committee
350	(CREC-STM), School of Tropical Medicine, Kolkata (Rf No. CREC-STM/613 dated 10 th
351	August 2020).
352	
353	Author Contributions
354	SP conceived and designed the study, took part in analysis and was the technical advisor and
355	national coordinator; MJ and SA were the study investigators; MJ and KJS contributed to data
356	analysis, interpretation of data along with graphical representation; SG, AM, BC, BB, AR MT,
357	AA, VS, BBa, BG, SD and AC were site investigators and were responsible for clinical,
358	epidemiologic and laboratory investigations at the respective assessment study sites; RMP
359	contributed to technical review of the study; BBh participated in discussion around development
360	of the study protocol and provided critical inputs during implementation of the evaluation work
361	and in drafting of the reports; MJ, SA, VS, BB and JS wrote the first draft of the manuscript.
362	Further, SP revised and critically reviewed the manuscript. All authors read and approved the
363	final version.

It is made available under a CC-BY-ND 4.0 International license .

365 **References**

- 366 1. Andrew Joseph. (2020). WHO declares coronavirus outbreak a global health emergency;
- 367 30 Jan 2020. https://www.statnews.com/2020/01/30/who-declares-coronavirus-outbreak-
- 368 a-global-health-emergency/. Accessed on 10 July 2021.
- 369 2. WHO (2020), WHO Director-General's opening remarks at the media briefing on
- 370 COVID-19; 11 March 2020.
- 371 (https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-
- 372 <u>remarks-at-the-media-briefing-on-covid-19---11-march-2020</u>). Accessed on 10 July 2021.
- 373 3. Vaughan WT. (1921). *Influenza: An epidemiologic study*. The American Journal of
- 374 Hygeine, Monograph series No.1. New Era printing company, Lancaster. Available from:

375 (http://hdl.handle.net/2027/nnc2.ark:/13960/t6qz30017). Accessed on 10 July 2021.

- 4. **Panda S, et al.** (2021). Face mask An essential armour in the fight of India against
- 377 COVID-19. Indian J Med Res; **153**: 233-237.
- 378 5. Mina MJ, Andersen KG. (2021) COVID-19 testing: One size does not fit all. *Science*;
 379 371: 126-127.
- 380 6. Caruana G, et al. (2020) Diagnostic strategies for SARS-CoV-2 infection and

381 interpretation of microbiological results. *Clin Microbiol Infect*; **26**: 1178-1182.

- 382 7. Lu X, et al. (2020) US CDC Real-Time Reverse Transcription PCR Panel for Detection
- 383 of Severe Acute Respiratory Syndrome Coronavirus 2. *Emerg Infect Dis*; **26**: 1654-1665.
- 8. **Tang YW, et al.** (2020). Laboratory Diagnosis of COVID-19: Current Issues and
- 385 Challenges. J Clin Microbiol; **58**: e00512-20.
- 386 9. Corman VM, et al. (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-
- 387 time RT-PCR. *Euro Surveill*; **25**: 2000045.

It is made available under a	a CC-F	BY-ND	4.0	International	l license
------------------------------	--------	--------------	-----	---------------	-----------

.

388	10. Nalla AK, et al. (2020) Comparative Performance of SARS-CoV-2 Detection Assays
389	Using Seven Different Primer-Probe Sets and One Assay Kit. J Clin Microbiol; 58:
390	e00557-20.
391	11. Calvez R, et al. (2020) Molecular detection of SARS-CoV-2 using a reagent-free
392	approach. PLoS One; 15: e0243266.
393	12. Alcoba-Florez J, et al. (2020) Fast SARS-CoV-2 detection by RT-qPCR in preheated
394	nasopharyngeal swab samples. Int J Infect Dis; 97: 66-68.
395	13. Chu AW, et al. (2020) Evaluation of simple nucleic acid extraction methods for the
396	detection of SARS-CoV-2 in nasopharyngeal and saliva specimens during global shortage
397	of extraction kits. J Clin Virol; 129: 104519.
398	14. Hasan MR, et al. (2020) Detection of SARS-CoV-2 RNA by direct RT-qPCR on
399	nasopharyngeal specimens without extraction of viral RNA. PLoS One; 15: e0236564.
400	15. Fomsgaard AS, Rosenstierne MW. (2020) An alternative workflow for molecular
401	detection of SARS-CoV-2 - escape from the NA extraction kit-shortage, Copenhagen,
402	Denmark, March 2020. Euro Surveill; 25: 2000398.
403	16. Smyrlaki I, et al. (2020) Massive and rapid COVID-19 testing is feasible by extraction-
404	free SARS-CoV-2 RT-PCR. Nat Commun ; 11: 4812.
405	17. Kiran U, et al. (2020) Easing diagnosis and pushing the detection limits of SARS-CoV-
406	2. Biol Methods Protoc; 5: bpaa017.
407	18. de Paula VS, Villar LM, Coimbra Gaspar AM. (2003) Comparison of four extraction
408	methods to detect hepatitis A virus RNA in serum and stool samples. Braz J Infect Dis; 7:
409	135-141.

- 410 19. Specimen collection, transport and packaging guidelines for 2019 novel Coronavirus
- 411 (2019-nCoV).
- 412 <u>https://www.mohfw.gov.in/pdf/5Sample%20collection_packaging%20%202019-</u>
- 413 <u>nCoV.pdf</u>
- 414 20. Indian Council of Medical Research (ICMR). Validation of a dry swab based sample
- 415 collection and RNA-extraction-free diagnostic method for SARS-CoV-2: A multicentric
- 416 study. ICMR Report, September 2020.
- 417 21. Flahault A, Cadilhac M, Thomas G. (2005) Sample size calculation should be
- 418 performed for design accuracy in diagnostic test studies. *J Clin Epidemiol* ; **58**: 859-862.
- 419 22. Rishu AH, et al. (2017) Time required to initiate outbreak and pandemic observational
 420 research. *J Crit Care* ; 40: 7-10.
- 421 23. Ueda M, et al. (2021) Japan's Drug Regulation During the COVID-19 Pandemic:
- 422 Lessons From a Case Study of Favipiravir. *Clin Pharmacol Ther*, doi: 10.1002/cpt.2251.
- 423 24. Mallmann L, et al. (2021) Proteinase K treatment in absence of RNA isolation classical
- 424 procedures is a quick and cheaper alternative for SARS-CoV-2 molecular detection. J
- 425 *Virol Methods* : **293**:114131.
- 426 25. Srivatsan S, et al. (2020) SwabExpress: An end-to-end protocol for extraction-free
- 427 COVID-19 testing. *bioRxiv*: the preprint server for biology, 2020.04.22.056283.
- 428 <u>https://doi.org/10.1101/2020.04.22.056283</u>.
- 429 26. Chen H, et al. (2020) Influence of Different Inactivation Methods on Severe Acute
- 430 Respiratory Syndrome Coronavirus 2 RNA Copy Number. *J Clin Microbiol* ; **58**:
- 431 e00958-20.

- 432 27. Burton J, et al. (2021) The effect of heat-treatment on SARS-CoV-2 viability and
- 433 detection. *J Virol Methods* ; **290**:114087.
- 434 28. **Chu DKW, et al.** (2020) Molecular diagnosis of a novel coronavirus (2019-nCoV)
- 435 causing an outbreak of pneumonia. *Clin Chem*; **66**: 549–555.
- 436 29. Moreno JL, et al. (2008) Identification of a coronavirus transcription enhancer. *J Virol*;
- **82**: 3882–3893.
- 438
- 439
- 440
- 441

It is made available under a CC-BY-ND 4.0 International license .

Table 1 Primer Probe sets of RT-PCR Kit used for assay

S No	Target	Reporter	Primer Sequence	Amplico Size	n ⁴⁴⁷
1.	E gene	FAM	F: ACAGGTACGTTAATAGTTAATAGCGT	113 bp	440
			R: ATATTGCAGCAGTACGCACACA		449
2.	RdRp	CY5	F: GTGAAATGGTCATGTGTGGCGG	100 bp	450
	gene		R: CAAATGTTAAAAACACTATTAGCATA		451
3.	N gene	HEX	F: TTCCCTATGGTGCTAACAAAGACG	129 bp	452
			R: CTTGAGGAAGTTGTAGCACGATTG		453
4.	Human	TEXAS	F: AGATTTGGACCTGCGAGCG	65 bp	
	Rnase P	RED	R: GAGCGGCTGTCTCCACAAGT		

454 **Table 2** Demographic profile of study participants

457		
458	Characteristics	Frequency (%)
459	Total number of participants	1138
460	Male (n=767)	
462	$\frac{Mean}{Mean} age + SD (year)$	38 47 + 13 2
463		30.47 ± 13.2
464 465	Median age (year) [IQR]	37 [27-49]
466	Female (n=371)	
467	Mean age \pm SD (year)	35.97 ± 13.7
469	Median age (year) [IQR]	34 [24-45]
470	Age group (year)	Total n (%)
472	18-30	437 (38)
473	31-40	247 (22)
474 475	41-50	235 (21)
475	51.60	160 (14)
4/0	51-00	
477	>60	59 (5)
478	Total	1138 (100)
479	Symptoms (n=342)	
480	Cough	120 (35.1)
481	Fever	178 (52.0)
482	Bodyache	40 (11.7)
483	Breathlessness	12 (3.5)
484	Sore throat	24 (7.0)
485	Nausea	4 (1.2)
486	Heamoptysis	1 (0.3)
487	Vomiting	1 (0.3)
488	Chest pain	2 (0.6)
489	Anosmia	12 (3.5)
490	Others	79 (23.1)
491		

Table 3 Performance of the RNA Extraction Free Index Method in Current Investigation

492

493

494 495

Study site NARI, Pune STM, Kolkata Overall Sensitivity (%) 82 76.4 78.90 (95 % CI) (70 to 91) (65 to 86) (71 to 86) Specificity (%) 98.3 100 99 (95 % CI) (97 to 99) (99 to 100) (98 to 99.6) Positive predictive 83.6 100 92 (94 to 100) value (%) (71 to 92) (85 to 96) (95 % CI) Negative predictive 98 96.6 97 value (%) (97 to 99) (95 to 98) (96 to 98) (95 % CI)

It is made available under a CC-BY-ND 4.0 International license .

Figure Legends

499	Figure 1 Schematic illustration of modified dry tube-based heat inactivation method followed by
500	RT-PCR for detection of SARS-CoV-2. 1. Addition of TE-Proteinase K buffer to the tube
501	containing swabs 2. Incubation of swabs in buffer to extract viral particles 3. Transfer of viral
502	extract 4. Inactivation of the virus by heating. 5. Setting up RT-PCR reaction and interpretation
503	of assay. NP= Nasopharyngeal swab, OP= Oropharyngeal swab.
504 505	Figure 2 Heat map of cycle threshold (Ct) values for E, RdRP and N genes detected by reference
506	and index methods on clinical samples from ICMR-NARI (n=54) and STM, Kolkata (n=71). The
507	heat map is ranked by N gene Ct. Ct values of human Rnase P used as control in RT PCR is
508	shown in the right. A Ct value ≤ 40 is considered as positive. Samples that are positive for all
509	three viral genes are indicated as strong positives by an arrow on the left.
510 511	Figure 3 Flowchart showing enrolment of participants at two study sites (ICMR-NARI, Pune,
512	Maharashtra and STM, Kolkata, West Bengal).
513 514	Figure 4 Scatter plot of Ct values for matched samples tested by reference and index method for
515	a) E gene b) RdRP gene and c) N gene
516	* Of 103 samples having E gene detection through VTM, 81 were detected through index
517	method
518	[†] Of 106 samples having RdRP gene detection through VTM, 80 were detected through index
519	method
520	‡ Of 124 samples having N gene detection through VTM, 98 were detected through index
521	method
522	

a) ICMR-NARI, Pune

b) STM. Kolkata

Such in VTM (Reference method, n=71)

Swab in Dry tube (Index method, n=71)

