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Abstract

The time dependent SIR model is extended to simulate infection across spatial boundaries. We
used New Jersey data as an example to test the extended SIR model. Infection from neighboring
counties are modelled by connectivity matrix where each pair of neighboring counties has an
element in the connectivity matrix. The magnitude of this matrix element represents the degree
to which the infected from one county can affect the susceptible in one of its neighboring counties.
Simulated result from the extended spatial SIR model is compared with observed new COVID-19
cases measured in the 21 counties in New Jersey. The extended model has to solve 84 simulated
functions simultaneously and the large number of parameters involved in the spatial SIR model
are auto tuned using genetic algorithm.
Keywords: SIR model, COVID-19, spatial, genetic algorithm

1 Introduction

SIR model [1] [2] has been used extensively in
modelling COVID-19 [3] [4] [5] [6] [7], [8],
[9]. Most of the work focus on comparing the
measured and simulated new cases and evaluat-5

ing the effect of vaccination and quarantine ef-
fect. The primitive SIR model has three groups
of population that are coupled with each other:
susceptible, infected and recovered. Work done
by [5] has expanded the SIR model to include10

mortality effect due to the more dangerous na-
ture of COVID-19.

An aspect of COVID-19 modelling that has
not been extensively studied is how it can spa-
tially spread from countries to countries, states15

to states, and cities to cities. This is due to the
formulation of the primitive and extended SIR
model being differential equations with time de-

pendence only [1] [10]. Studies investigating
spatial transmission focus on observations [11], 20

[12], [13]. Few work [14] focuses on modelling
spatial transmissions of COVID-19.

To model the spatial spread of COVID-19
across area boundaries, we extend the ordinary
differential equations to partial differential equa- 25

tions to include a spatial diffusion term due
to uneven proportion of infection across spatial
boundaries. The SIR populations of neighbor-
ing spatial regions are coupled through the dif-
fusion term. In such an approach, the SIR pop- 30

ulations are functions of both time and space.
These functions are solved from the set of par-
tial differential equations.

In this study, we present how a spatially con-
nected SIR model is used to model the COVID- 35

19 cases observed in the 21 counties in New Jer-
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2 SIR MODEL WITH SPATIAL CONNECTION

sey, US. We also discuss how genetic algorithm
is used to guide the auto tuning process for the
large number of parameters involved in the equa-
tions to find the solution of the spatially con-40

nected SIR model equations.

2 SIR Model with spatial con-
nection

We start with the extended SIR model [5] for a
single spatial location.45

ds

dt
= −βsi− λ(t)s (1)

di

dt
= βsi− γi− αi (2)

dr

dt
= γi+ λ(t)s (3)

dm

dt
= αi (4)

where s, i, r,m represents total population
scaled susceptible, infected, recovered, and mor-
tality proportions; β is the coupling coefficient
between local susceptible and infected popula-
tions dependent on the infection rate of COVID-50

19; λ(t) is a time dependent control measure
function that transfers susceptible to recovered
population; γ represents the rate at which in-
fected population can recover; finally α repre-
sents the mortality rate of the infection.55

With the introduction of spatial dependence,
the SIRM populations become both time and
spatial dependent, therefore the equations be-

come partial differential equations.

∂s

∂t
= −cs∇2i− βsi− λs (5)

∂i

∂t
= βsi− γi− αi+ ωs∇2i (6)

∂r

∂t
= γi+ λs (7)

∂m

∂t
= αi (8)

where c represents diffusion rate in between
connected spatial regions and s∇2i is the cou-
pled term representing rate of change in infec-
tion due to difference in infection proportion in
population between the spatial location and its 60

neighboring locations.

Because of the discrete nature of spatial loca-
tions that have been artificially designated, e.g.
countries, states, and counties. The spatial con-
nection term cs∇2i can be represented using ma- 65

trix approach. Each matrix element describes
connectivity between spatial regions that can af-
fect each other.

To make things more concrete, we applied the
extended model in New Jersey that has 21 coun- 70

ties. The connectivity matrix therefore has 21 by
21 elements. But not all elements has non-zero
values. In this work, only counties neighboring
each other has a non-zero element in the matrix
representation. Ignoring exchange of infected 75

population from outside of New Jersey, we use
84 functions to represent the s, i, r,m variables
for 21 counties in New Jersey. We discretize the
equations into the following form,
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3 AUTO TUNING SIR PARAMETERS

ds(j, t)

dt
= −βsjcjk · i(k, t)− λ(t)sj (9)

di(j, t)

dt
= βsjcjk · i(k, t)− γij − αij (10)

dr(j, t)

dt
= γij + λ(t)sj (11)

dm(j, t)

dt
= αij (12)

j is the index of the county that runs from 1 to80

21. cjk is the spatial connection matrix that rep-
resents the propagation coefficient across county
boundaries between the current (j-th) county
and k-th county.

The term cjk · i(k, t) should be understood as85

a vector multiplication,

cjk · i(k, t) =

K∑
k=1

cjk · i(k, t) (13)

where K is the total number of counties, in this
case, 21 for New Jersey. Note that the diagonal
elements of the connection matrix cjj ≡ 1 when
k = j. Because each diagonal element of the con-90

nection matrix represents the coupling between
the s and i function of the county itself. The
summation represents the effective number of in-
fected cases that can infect susceptible popula-
tion in the j-th county.95

Note that the control measure term λ(t) is a
time dependent function [5] formulated after the
sigmoid function,

λ(t) = λ · e(t−shift)

e(t−shift) + 1
(14)

The step wise shape of the sigmoid function al-
lows the model to turn on control measures such100

as quarantine, vaccination etc at time specified
by the ’shift’ parameter.

Parameter Default Value

α 1e-6

β 1.5

γ 0.1/14

λ 0.05

cj,k 0.05

shift 90 (days)

Table 1: Default parameter for the spatial SIRM
solver

3 Auto tuning SIR parameters

Due to the large number of parameters involved
in the 84 differential equations including the ele- 105

ments of the connection matrix, it is not feasible
to manually adjust all the parameters involved.
We adopt the same approach in [6] to use genetic
algorithm to auto tune the following parameters,
α, β, γ, λ, shift, cj,k for each county in New Jer- 110

sey.

First we define the residual function as

R =
N∑
k=1

U∑
u=1

(newcase(k, u)− newcase(k, u)′)2

where k represents the county, u represent the
number of days from pandemic outbreak, new-
case(k,u) is from observation, and newcase(k,u)’
is from model simulation. 115

Our goal is to minimize the function such that
simulation can match the observation as close
as possible. To minimize the residual, we will
fine tune all the parameters used in SIR model
through genetic algorithm. 120

The models is set up to start with an initial
set of parameters for all the counties shown in
Table 1.

During each iteration, the parameters are mu-
tated (updated) randomly (Equation 15) to 125
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4 RESULT
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Figure 1: The residual of the SIR Model getting
lower as the genetic algorithm optimizes the vari-
ables to better fit the collected data.

form a new genetic code. The mutated genetic
code is used to configure the 84 differential equa-
tions for New Jersey, simulating new cases in
each county by solving the 84 equations simul-
taneously.130

x′ = x(1± δ0e−
n
N ) (15)

where x′ is the new genetic code which could be
any of the parameters used in the simulation;
x is the current genetic code; δ0 is the seed of
mutation; e−

n
N is the decay term that reduces

the magnitude of mutation over time135

After each iteration of simulation for 180 days
after the onset of COVID-19 in New Jersey, the
simulated new cases is used in the residual func-
tion. If the residual decreases (Figure 1), the
mutated genetic code replaces the previous ge-140

netic code. Otherwise, the mutated genetic code
is discarded and the previous code is used to
start a new iteration of simulation.

This process allows the algorithm to har-
ness the computing power of the computers and145
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Figure 2: The SIR Model created curve (red)
overlaid on top of recorded new cases (blue) for
Hudson County, NJ

slowly but surely the residual decreases over gen-
erations of genetic mutation as shown in Figure
1. The decrease in residual means better agree-
ment between simulated model result compared
with observations. 150

4 Result

Using the SIR model, it is possible to use differ-
ential equations and a genetic algorithm to sim-
ulate the propagation of a virus. The generated
curves, after going through many rounds of op- 155

timizations by the genetic algorithm, are able to
closely match the data provided by Johns Hop-
kins for the number of cases in each county every
day.

The observed new cases tend to fluctuate sig- 160

nificantly (Figure 4) which creates difficulty for
the residual calculation. Because the residual
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5 DISCUSSION

Parameter Value

α 8.2932e-07

β 1.3910

γ 0.0068

λ 0.0417

Bergen Affecting Hudson 0.0443

Passaic Affecting Hudson 0.0541

Essex Affecting Hudson 0.0719

shift 71 (days)

Table 2: Values of genetic variables for Hudson
County after solving

calculation uses the difference between observed
daily new cases and predicted daily new cases,
the fluctuation in the observed new cases can165

deviate from the smooth predicted curve sig-
nificantly and artificially increase the residual.
Therefore a rolling average smoothing is applied
to the observed new cases data points to reduce
such artificial cause of residual difference. An-170

other benefit of smoothing the observed daily
new cases helps to remove outliers, such as a day
with 0 recorded cases among days with hundreds
of them. Removing such outliers also reduces
calculated residual.175

The genetic algorithm is able to create a simu-
lated virus propagation curve for new cases each
day and optimize it to match the number of new
cases for each county as closely as possible. The
degree to which they match is measured by the180

residual. The smaller the residual the better the
agreement between the observation and the pre-
diction. Residual between observation and pre-
diction for the first 200 trials in Figure 1.

To reach good agreement between observation185

and prediction, large number of iterations (gen-
erations of mutation) is needed. Figure 2 shows
how the observed (blue) matches the numerical
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Figure 3: Graph (red) overlaid on collected data
(blue) for Passaic County, NJ (Specify the final
genetic information used for the result.)

prediction (red) after 4000 iterations.

Counties with large observed new cases tend to 190

show good agreement between observation and
prediction such as Hudson (Figure 2) and Pas-
saic (Figure 3). Table 2 and Table 3 show the pa-
rameters generated from genetic algorithm used
to produce the close agreement for those two 195

counties. These numbers can be compared with
Table 1 to examine how the parameters have
evolved by minimization of the residual through
genetic algorithm.

5 Discussion 200

The new case patterns in the 21 counties of New
Jersey since the onset of the COVID-19 pan-
demic are modelled by solving discrete differ-
ential equations coupled through a connectiv-
ity matrix to simulate spatial connection. The 205
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5 DISCUSSION

Parameter Value

α 8.2967e-07

β 1.7601

γ 0.0063

λ 0.0462

Bergen Affecting Passaic 0.0379

Essex Affecting Passaic 0.0410

Morris Affecting Passaic 0.0407

Sussex Affecting Passaic 0.0318

shift 85 (days)

Table 3: Values of genetic variables for Passaic
County after solving

elements of the connectivity matrix represents
the influence of infection from the neighbouring
counties. Due to the large number of parameters
involved, genetic algorithm is used to fine tune
the relevant parameters used in the modelling.210

One noticeable artifact of the genetic algo-
rithm is that it prioritizes optimizations for
counties with higher numbers of cases, since this
optimization will lower the residual more dra-
matically. However, this neglects optimizations215

on counties with fewer cases (See Figure 4). To
alleviate this, we separated each county into one
of three tiers, which each tier corresponding to a
range of cases. By allowing the genetic algorithm
to optimize counties within each tier separately,220

it is able to first focus on counties with high cases
and then work separately on counties with fewer
cases.

Another problem with the genetic algorithm is
its inability to lower the residual past a certain225

point. Once it reaches this point, further gen-
erations will create residuals that hover around
approximately the same value. For our study
with the 21 counties in NJ, this happens around
2 ∗ 107. This suggests a local stationary point230
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Figure 4: The genetic algorithm (red) has not
optimized the residual for Hunterdon County
well because it has very few cases (at max 40
per day). Also note the importance of smooth-
ing the data to remove outliers with 0 cases.

in the space spanned by the parameters used by
the algorithm dominated by the high new cases
numbers from certain counties such as Passaic
(Figure 3).

The genetic algorithm is sometimes unable to 235

change the variables enough to lower the residual
drastically, requiring human intervention. We
may have to manually change certain variables
for certain counties to get their graphs to match
with provided data. However, ideally we would 240

never have to intervene and the algorithm would
process everything automatically, because hu-
man intervention can disrupt the results of other
counties due to the spatial connection aspect we
implemented. This makes the experiment less 245

applicable to the natural situation of the propa-
gation of a virus.
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The spatial connection aspect that was imple-
mented works quite well. Counties that are di-
rectly adjacent to others with large proportions250

of cases tend to also have larger proportions of
cases, simulating infected people who traveled
between the counties. However, it is still not
perfect, as certain counties seemed to be unaf-
fected by neighboring counties, even with dras-255

tic changes in the spatial coefficient that affects
the number of people traveling between them.
This is most pronounced in counties with lower
population, as the genetic algorithm tends to fa-
vor counties with higher population even within260

each population tier in our tiered model.

With more optimizations in code and a better
understanding of initial variables, better results
may be produced. This method allows for great
flexibility, such as changes in government regu-265

lations, because they can be reflected by sim-
ply changing a variable. Now, it is important to
quantify the effect of changes in human behavior
versus the change in the variables. With better
insight into human behavior in the virus, it be-270

comes possible to roughly estimate the impact
of a virus in the future, and plans can be made
accordingly.
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