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Abstract  

Wildfire management in the US relies on a complex nationwide network of shared resources that are 

allocated based on regional need. While this network bolsters firefighting capacity, it may also provide 

pathways for COVID-19 transmission between fire sites. We develop an agent-based model of COVID-

19 built on historical wildland fire assignments using detailed dispatch data from 2016-2018, which form 

a network of firefighters dispersed spatially and temporally across the US. We use this model to simulate 

SARS-CoV-2 transmission under several intervention scenarios including vaccination and social 

distancing. We find vaccination and social distancing are effective at reducing transmission at fire 

incidents. Under a scenario assuming High Compliance with recommended mitigations (including 

vaccination), infection rates, number of outbreaks, and worker days missed are effectively negligible. 

Under a contrasting Low Compliance scenario, it is possible for cascading outbreaks to emerge leading to 

relatively high numbers of worker days missed. The current set of interventions in place successfully 

mitigate the risk of cascading infections between fires, and off-assignment infection may be the dominant 

infection concern in the 2021 season. COVID-19 control measures in place in wildfire management are 

highly beneficial at decreasing both the health and resource impacts of the ongoing pandemic. 
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Introduction 

The wildland firefighting system in the United States (US) saw unprecedented challenges in 2020 as the 

COVID-19 pandemic added additional complexity to a severe fire season1. Concerns about COVID-19 

outbreaks at individual fires2,3 spurred the development of COVID-19 prevention and mitigation 

procedures including how fire camps were operated and how firefighters interacted with each other4. The 

implications of a COVID-19 outbreak on a single fire have been modeled3, but potential system-wide 

impacts have not yet been explored5. Here we explore potential health and workforce capacity impacts by 

modeling the movement of wildfire suppression resources across the country over an entire fire season 

and the corresponding potential for disease spread and cascading outbreaks across wildfire incidents. 

While COVID-19 vaccination will mitigate transmission of COVID-19 in the 2021 fire season, there is 

uncertainty surrounding the level of personnel that might be vaccinated6 and, particularly early in the 

season, COVID-19 impacts to the wildland firefighting workforce are still of concern7. There is a 

compelling reason to explore these potential impacts; degradation of workforce capacity and operational 

readiness were acutely felt at times during the 2020 fire year. For example, the Cameron Peak fire saw 76 

SARS-CoV-2 (the virus that causes COVID-19) infections and more than 250 personnel isolated over the 

course of the incident, which saw days with over 1000 personnel assigned to the fire8. 

Wildland firefighters, particularly those working on large fires, are a highly transient workforce. Regions 

with low or moderate fire activity allow some of their firefighters to be reassigned to other regions that 

need additional firefighting capacity9. For example, firefighters from the Southwestern region are often 

used to support fires in the Northern Rockies because the peak fire seasons differ across the regions. 

Figure 1 depicts the incoming assignments originating all over the country and outbound reassignments to 

a particular fire in Montana. These cross-boundary assignments provide flexibility in wildfire response 

capacity as single incidents can require thousands of personnel, however they also pose a potential threat 

in the context of infectious disease spread. Reassignments from one fire to another often happen within a 

few days, thus, an outbreak of disease at one fire has the potential to spread to other fires. These 

cascading effects can accelerate SARS-CoV-2 spread across the national wildland firefighting workforce 

as the fire season progresses. In addition to the health risks associated with SARS-CoV-2 outbreaks, 

multiple fires with outbreaks could lead to resource deficits, with a sizable portion of firefighters out sick 

or quarantined8. Because the firefighting workforce is finite and, at the height of the fire season, some 

requests for firefighters go unfilled10, losing a portion of the workforce to sickness and quarantine is a 

significant concern. Therefore, there is a need for model-based assessment of COVID-19 risk at the 

national, seasonal scale. 
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Figure 1: Historical assignment/reassignment data for a single fire in Montana. The map of incoming assignments 

shows the range of origins for personnel assigned to a fire that started on July 15, 2017. The outbound reassignments 

shown include all incidents to which personnel went, given nine or fewer days between demobilization at the first 

fire and mobilization at the second fire.  

Agent-based models (ABMs) have been adapted to model the spread of SARS-CoV-2 for a variety of 

settings. ABMs have been used to describe SARS-CoV-2 spread within cities11,12 and at the national 

level13,14 primarily to describe disease dynamics and examine the potential impact of various intervention 

strategies15. They have also been used to identify locations at high risk of driving infection outbreaks, and 

to simulate SARS-CoV-2 spread between locations16. An ABM is the ideal tool to examine infection 

spread within the wildland fire response community as it allows for explicit modeling of interactions 

between individuals and can track the movement of individuals between fire locations.  

We develop an epidemiological ABM to simulate the transmission of SARS-CoV-2 across the wildfire 

response system based on actual historical assignment data to study the potential impacts of the pandemic 

on wildfire response capacity throughout the season. We use the model to simulate several mitigation 

measures including the so-called “module-as-one” (i.e., pods) policy, social distancing, and vaccination. 

Figure 2 describes the mechanics of the model and the interaction between firefighters assigned to an 

incident. Crew modules consist of crew personnel who have high levels of contact within their module 

but are largely isolated from other modules. To simulate this, in our model each crew has a set of 

personnel who are designated leaders that interact with management personnel and other module leaders. 

If any individual in a module is diagnosed with COVID-19, then the entire module quarantines5, as all 

module members are assumed to be in high levels of contact with each other. Management personnel are 

unable to act as a self-contained module because they need to interact with many management and crew 

personnel to coordinate wildfire operations5. Management personnel isolate when diagnosed with 

COVID-19, but there is no quarantine of others associated with the diagnosis in our model. SARS-CoV-2 

can spread within a fire as described in Figure 2 and between fires as those firefighters are reassigned to 

other fires across the country throughout the season (Figure 1). Firefighters may also contract the disease 

while off-duty based on the rate of community transmission. We provide more details on the model in the 

Methods section and the supplementary materials. The granularity of the model allows us to investigate 

the burden of COVID-19 as well as its impact on workforce capacity on multiple scales from individual 

fires to the system as a whole. 
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Figure 2. (a) The possible viral states which individuals may travel through in simulations. The arrows indicate 

possible paths that individuals may take through the viral states. An individual may move directly from susceptible 

to recovered only if vaccinated. (b) Interactions between personnel on a single fire. Crew module members 

(individuals of the same color) interact only with other members of the same module, with the exception of module 

leaders, who interact both with their module members and with other module leaders. Management personnel cannot 

effectively form modules and thus interact with all other management personnel as well as a proportion who interact 

with the crew module leaders. 

Results 

We develop scenarios to address two key uncertainties in the interplay between the fire season and the 

COVID-19 pandemic: vaccination and social distancing behaviors of wildland fire personnel and the 

spatio-temporal variation of fire occurrence. We address the uncertainty in vaccination rate and 

compliance to social distancing behaviors among wildland fire personnel by creating three distinct 

behavioral scenarios: a low behavior compliance scenario, a baseline scenario, and a high behavior 

compliance scenario. The “Low Compliance” scenario assumes less compliance with infection control 

measures (i.e., low effort to maintain social distancing and lower percentages of individuals correctly 

diagnosing their symptoms) and fewer vaccinated individuals. The “High Compliance” scenario assumes 

more compliance with social distancing, more frequent diagnosis of symptoms, and more vaccinated 

individuals. The “Baseline” scenario assumes a moderate level of social distancing compliance, symptom 

identification, and vaccination. The specific parameters used for each scenario can be found in the 

supplementary materials. We address the variation in fire occurrence patterns by using fire assignments 

from three distinct fire seasons: 2016, 2017, and 2018. These years cover a range of spatial and temporal 

demand for wildland fire suppression resources.  

We simulate the model 100 times in each scenario (Baseline, High Compliance, Low Compliance) for 

each fire season to illustrate the uncertainty due to stochastic transmission and yearly variation in 

firefighter assignments. We focus on four outcomes relevant to the wildfire management community: 1) 

the number of cumulative infections over the season, 2) outbreaks of COVID-19 on individual fires, 3) 

reassignments of infectious personnel between fires, and 4) workforce absenteeism due to quarantine. We 

report median values of the 100 simulations along with the interquartile range (IQR; indicates the central 

50% of the distribution).  
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Figure 3 illustrates the number of cumulative infections contracted both on and off of active duty across 

the three scenarios over the duration of the season using 2017 fire assignment data. There were 43,360 

personnel assigned to at least one large fire in 2017. Figure 3 shows that the number of infections 

acquired off-fire is substantially more than those acquired on-fire. Using only the Baseline results across 

all three years, our results suggest that approximately 95% of infections are acquired while firefighters are 

off duty in these scenarios. Many of these infections acquired off duty may be asymptomatic and pose a 

risk to other firefighters once the infected individual is deployed to an incident. The Low Compliance 

median percentage of personnel acquiring SARS-CoV-2 off-fire is about 9.4%. Figure 3 also shows that 

transmission on fires closely follows wildfire activity over the course of the season. In the Low 

Compliance scenario, cumulative infections on fire rise rapidly during the summer (days 150-250) and 

plateau once fire activity decreases. In Figure 3 we can observe that the High Compliance scenario 

effectively reduces transmission relative to the Baseline and, similarly, the Baseline scenario reduces 

transmission relative to the Low Compliance scenario. Specifically, the median number of cumulative 

infections for the Baseline scenario for 2017 is 1915 [IQR: 1892-1944] while the median of the High and 

Low Compliance scenarios are 634.5 [IQR: 618.8-654.2] and 4512 [IQR: 4461-4566], respectively.

 

Figure 3: Daily cumulative infections by compliance scenario on and off fire (a) and annual cumulative infections by 

personnel type (b). In (a), each line is associated with a single scenario run while the bolded lines show the run with 
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the median number of cumulative infections incurred. The total cumulative infections across the 2017 season by 

scenario and personnel role are shown in (b), with cases attributed to assignment status at time of exposure. 

The number of contacts and the intensity of those contacts is not homogeneous across personnel. This is 

reflected in our model structure and parameters (see the Materials section and supplementary materials for 

details). We therefore examined the number of on-fire infections that occurred specifically within 

management personnel and crew personnel modules (Figure 3b).We find that in the Low Compliance 

scenario, there is a relatively high ratio of management to crew infections for cases incurred on a fire as 

compared to those incurred off fire (a median of 279.5 (IQR: 251.8-308.8) and 169.5 (IQR: 155.8-182.2) 

infections incurred on fire and a median of 121 (IQR: 112-128) and 4205 (IQR: 4161-4234) infections 

incurred off fire by management and crew, respectively). As compliance with mitigation measures 

increases, the ratio of management to crew on-fire cases goes down. This likely reflects the contact 

structure for management personnel (they are exposed to more people each day) and the isolation 

procedures (only the symptomatic person isolates if they are management as opposed to the entire module 

for crew personnel). The implications of the higher caseloads incurred on fire by management personnel 

has significant implications. First, management personnel tend to be older than crew personnel, which 

means they are also at higher risk of severe symptoms. Second, key management positions require high 

levels of qualifications, so higher caseloads in management personnel may burden the wildland 

firefighting system more than caseloads in crew personnel. 

The spatio-temporal variation in fire activity between seasons did not substantially affect simulated cases 

of SARS-CoV-2 incurred on fire across the Baseline scenario. The median number of cumulative 

infections for runs using the assignments from the years 2016, 2017, and 2018 under the Baseline 

scenario assumptions was 79.5 [IQR: 72-88], 94 [IQR: 81-102], and 94 [IQR: 82.75-108.25] respectively. 

We do observe a slightly higher level of cumulative simulated infections overall using 2017 and 2018 

assignments than those from 2016; this is because the total number of personnel assigned to a large fire 

was higher in the 2017 and 2018 scenarios, leading to a larger pool of personnel that can be infected off 

fire. The median number of cumulative infections using 2016 assignments was 1498 [IQR: 1471-1521], 

using 2017 assignments was 1915 [IQR: 1892-1944], and using 2018 assignments was 1808 [IQR: 1782-

1849]. Further exploration of the differences between scenarios can be found in the supplementary 

materials. Because there was little variation in disease spread patterns by assignment-year in on-fire 

infections, we focus the rest of our results on scenarios based upon the 2017 fire assignments. 

While the number of individual cases are an important systemic outcome, outbreaks of COVID-19 on a 

wildfire incident can add substantial burden on the management team. Therefore, for each run we counted 

the number of cases of SARS-CoV-2 on each fire. If a fire incurred at least two cases from different crew 

modules, two management personnel with cases, or a combination of crew and management personnel 

with cases, we counted that fire as having an outbreak for that run. Figure 4a shows the percentage of runs 

for which each incident had an outbreak by the maximum number of personnel assigned to the fire on a 

single day. We find that the incidents most likely to see outbreaks are the incidents with the highest 

number of maximum personnel assigned. Compliance with interventions has a greater impact the larger 

the number of personnel on the fire. While the maximum number of personnel on the fire has a strong 

relationship with the percentage of runs in which each fire experiences outbreaks, duration of the fire also 

plays an important role. We single out two fires in Figure 4a: the points associated with one fire are 

circled in blue (the “many-outbreaks fire”) and the points associated with the second fire have pink 

squares around them (the “fewer-outbreaks fire”). When we examine the number of personnel on the fire 

over time (Figure 4b), we see that the many-outbreaks fire lasted much longer than the fewer-outbreaks 

fire. 
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Figure 4: a) Percentage of runs for which each fire had an outbreak by scenario and maximum number of personnel 

assigned to the fire on a single day. Two fires are singled out: the points associated with a “many outbreaks” fire are 

circled in blue and the points associated with a “fewer outbreaks” fire have a pink square around them. b) The 

number of personnel over time for the “many outbreaks fire” and the “fewer outbreaks fire” that are indicated in (a). 

To explore the risk of personnel transmitting disease from one fire to another, we examined the number of 

infectious assignments and reassignments. These metrics provide a way to quantify the difference in risk 

from personnel contracting the virus off fire and bringing it to their assignment versus the risk from 

personnel bringing the virus from one fire to another. We find that the number of infectious assignments 

from personnel who contracted SARS-CoV-2 off fire is higher than the number of infectious 

reassignments from personnel who went from one fire to another while in an exposed or infectious state 

(Figure 5a). Management personnel have a relatively high risk of being reassigned while infectious 

relative to the number of infectious assignments they have, particularly in the Low Compliance scenario 

(121 [IQR: 112-128] and 161 [IQR: 154.8-173] infectious assignments and 28 [IQR: 17-47] and 33 [IQR: 

26.75-41.25] infectious reassignments for management and crew, respectively, in the Low Compliance 

scenario).
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Figure 5. a) The number of infectious assignments and reassignments by scenario and personnel type for the 2017 

fire assignment data. b) A map of the infectious reassignments that occurred during the Low Compliance run using 

2017 data that had the highest number of infectious reassignments (i.e., the worst case scenario observed). c) A map 

of the infectious reassignments that occurred during the High Compliance run using 2017 data that had the highest 

number of infectious reassignments. All large fires included in the analysis are mapped as points, with the point size 

corresponding to the maximum number of personnel assigned to the fire on a single day. Lines connecting fires 

indicate infectious reassignments. 

A comparison of two specific runs illustrates the effectiveness of mitigation measures in reducing 

infectious reassignments. A map of the worst case scenario for reassignments (i.e., the highest number of 

infectious reassignments observed) in the Low Compliance scenario is shown in Figure 5b, while a map 

of the worst case scenario for infectious reassignments in the High Compliance scenario is shown in 

Figure 5c. In the Low Compliance worst case scenario, we can observe disease being transferred between 

fires across space and time, while in the High Compliance worst case scenario we see many fewer 

infectious reassignments.  

In addition to the health of firefighting personnel, agency administrators are concerned with workforce 

capacity and the ability to accomplish firefighting objectives. When a firefighter self-identifies as 

infected, that individual’s module is quarantined to reduce transmission. However, vaccinated individuals 

are not required to quarantine after exposure under current guidance5. Figure 6 compares the number of 
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firefighter days missed by scenario, showing the number of days that individuals that would be required 

to quarantine given no vaccination (that is, all individuals quarantine regardless of vaccination state) and 

the number of days that individuals that are actually required to quarantine (i.e., vaccinated individuals 

are excluded). In the Baseline scenario, SARS-CoV-2 exposure and quarantine leads to 1007 [IQR 842-

1198] firefighter days missed, which represents less than 1% of total assigned days (1918 [IQR 1718-

2354] if vaccinated individuals are required to quarantine). As a point of comparison, the Cameron Peak 

Fire alone could have accounted for more than 2,000 worker days missed8. The median number of worker 

days missed for the Baseline scenario is slightly lower than the median of the Low Compliance scenario 

(1346 [IQR: 1081-1572]). The High Compliance scenario yields the fewest worker days missed (240.5 

[IQR: 187.8-310.8]), but the distribution shows that higher impacts on workforce capacity are possible, 

highlighting the uncertainty faced by fire managers throughout the pandemic. We summarize worker days 

missed in each of the mitigation scenarios across years 2016 - 2018 and find no qualitative difference in 

the result between years (see the supplementary materials).  

Figure 6. The distribution of worker days missed by scenario. The red denotes all workdays missed by vaccinated 

and unvaccinated firefighters while the blue denotes workdays missed by only unvaccinated firefighters. The Only 

Unvaccinated indication captures current guidance. Brackets indicate the interquartile range and plus signs indicate 

the median value for each distribution.  

Discussion 

Our results suggest that vaccination and disease spread mitigations reduce the total number of SARS-

CoV-2 infections in the wildland fire community, as well as reducing the number of infectious 

assignments and infectious reassignments to wildland fires. In addition, vaccination and disease spread 

mitigations lower the probability of outbreaks on individual fires and reduce workforce absenteeism. In 

our results we observe many more infections incurred off-fire than while firefighters are on assignment 

and similarly, more infectious assignments than reassignments. We do observe differential risk levels for 

crew personnel and management personnel.  Below we discuss the implications of these results on the 

wildland firefighting system, as well as discussing some of the mechanisms that may be driving these 

results.   

The national wildland firefighting system relies on scalable mobilization of individuals and groups of 

individuals from around the nation, and these individuals may serve in different roles and capacities 

depending on their qualifications and the needs of the incident. The population structure at a fire incident 

and its evolution over time as resources are mobilized/demobilized creates complex networks of 

interaction such that every incident carries different degrees of transmission risk. Fire personnel can be 
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mobilized from all around the country, including reassignments from other incidents, such that there are 

systemic interdependencies in risk of transmission and potential for cascading outbreaks. In summary, the 

structure and function of the wildland firefighting system pose a unique set of risks from COVID-19, 

requiring a tailored approach to characterizing those risks. 

Our primary focus here was analyzing potential COVID-19 impacts to workforce health and capacity, a 

topic of growing importance as increasing fire activity is expected to further strain the response 

capabilities of the system17. There are three primary workforce-related factors to consider. First, not 

captured in our analysis but worth mentioning, management of COVID-19 creates additional workload 

burden including screening/testing, isolating/quarantining, and interfacing with entities such as local 

public health agencies and hospitals – and this burden increases with the number of infections and 

outbreaks. Second, worker absenteeism due to isolation/quarantine requires greater coordination and 

prioritization of scarce resources both within and across incidents, and in some cases results in unfilled 

resource requests and understaffed incidents10. Depending on the degree of scarcity and substitutability of 

the affected resources18, this could result in inability to implement preferred strategies and tactics (e.g., 

lack of crews) or incident management organizations operating outside of their typical span of control 

(e.g., lack of key management personnel). Third, and perhaps most important to the workforce, missed 

days can translate into loss of assignments and loss of pay. For some of the firefighting workforce, the 

bulk of their annual salary comes from their time on assignment when their pay rate is increased due to 

overtime hours and hazard pay. In some cases, due to minimum personnel requirements for certain 

assignments, entire crews could be deemed unqualified if only some members of their team are in 

isolation or quarantine. Vaccination in such cases would insure against crew members having to 

quarantine due to exposure and would make more crews generally more available for assignments. 

This point naturally leads to the primary finding of this analysis, that high vaccination rates in 

combination with the policy that vaccinated individuals do not need to quarantine after exposure results in 

significantly fewer worker days missed compared to other scenarios. The best case (High Compliance 

scenario with current quarantine policy) results in on average more than five times fewer missed worker 

days than the worst case (Low Compliance scenario without quarantine policy). Hence the importance of 

capturing uncertainty around vaccination uptake in the risk assessment and more broadly the importance 

of vaccination in maintaining system capacity. 

Further, model results suggest that vaccination and disease spread mitigations reduce both infections and 

workforce absenteeism in the wildland fire community. There are two primary mechanisms at play: 1) 

vaccination and spread mitigation efforts keep infections low, leading to fewer isolations and 2) 

vaccinations allow exposed personnel to avoid quarantine. The contact structure of our ABM accounted 

for organizational structure and social distancing mitigations, and the ABM also captured heterogeneity in 

quarantine requirements according to individual agent and module status. The contact structure also led to 

the finding that infection risks may be higher for personnel that cannot “module as one.” 

ABM results also show that most infections incurred by wildland firefighting personnel are likely to be 

from off fire sources rather than being incurred while on assignment. This implies that vaccination and 

mitigation techniques may prevent large outbreaks that cascade across the fire system, even in most Low 

Compliance scenarios. In other words, although the normal functioning of the system creates a systemic 

risk through reliance on a highly transient workforce with complex and dynamic exposure patterns, 

vaccination and social distancing on-fire can disrupt cascading outbreaks and effectively mitigate those 

systemic risks. 
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In addition to the ABM being useful for examining the spread of SARS-CoV-2 within and across fire 

incidents, it can also be used to simulate the spread of other respiratory diseases. It is documented that 

spread of “camp crud” (a generic term for any respiratory disease that spreads between personnel on 

wildland fire assignments) occurs on an annual basis. The results from this research have implications for 

the spread of a variety of infectious diseases, and the impact of the COVID-19 mitigation measures used 

herein may decrease disease and absenteeism from a variety of respiratory pathogens including influenza 

and RSV19–21. There could also be similarities with other dynamic populations such as emergency 

response or disaster relief where the ABM could prove useful. In addition, this ABM might also be 

repurposed for a variety of other applications in fire, ranging from optimal coordination and routing of 

aircraft to individual crew member movement and engagement in containment activities. 

As with any modeling study, results are influenced by simplifications, assumptions, and parameter 

setting. We documented all model choices and the code is available for readers interested in exploring 

alternative parameters or different behavioral scenarios. The pandemic and its response to it will continue 

to be a fluid environment, for instance emerging variants or recent policy changes in the USA regarding 

mask wearing. This analysis does not capture all possible futures nor is it intended to be in any way 

considered as predictive. 

What is intended is that results can be used to gain insight into how SARS-CoV-2 could spread in the 

wildland firefighting community, and how effective vaccination and social distancing may be at 

protecting workforce health and preventing workforce capacity degradation. Continuing to encourage 

personnel to mitigate the spread of SARS-CoV-2 through upcoming fire seasons is still important, even as 

vaccination rates rise. In addition, any method that raises vaccination rates may be an effective way to 

limit lost worker days both by mitigating disease spread and by preventing exposed individuals from 

having to isolate. 

Methods 

In this section we describe our agent-based model in detail, describe the development of scenarios, and 

define the metrics we use to evaluate the effects of fire seasons and the spread of SARS-CoV-2 on the 

wildland fire workforce.  

Agent-based simulation model 

Assignments to fires and spread of infection between personnel at those fires is simulated using an 

epidemiological ABM, with the viral states and transmission probabilities tailored to reflect SARS-CoV-2 

spread through a wildland fire incident. In this model, each firefighter is modeled as an individual agent. 

Each individual is assigned a viral state each day. There are five viral states to which an individual may 

be assigned: susceptible, exposed, infectious-symptomatic, infectious-asymptomatic, and recovered. 

Susceptible individuals are assumed to have no immunity to the virus gained by previous SARS-CoV-2 

exposure. Exposed individuals are those that have been exposed to the virus at a high enough viral load 

that they will become infectious. Infectious individuals are classified as symptomatic or asymptomatic. 

Symptomatic individuals have (or will eventually) develop COVID-19 symptoms and are able to spread 

the virus to others. Asymptomatic individuals are infectious but never show symptoms; these individuals 

are capable of spreading SARS-CoV-2 to others, but due to a lower viral load have a lower rate of 

transmission than those who are symptomatic22. Recovered individuals are those who have recovered 

from infection and are no longer able to spread SARS-CoV-2 to others.  
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The model simulates transmission of SARS-CoV-2 between firefighters (the agents in the model) through 

contact with other firefighters for each ongoing wildland fire; on-fire exposure occurs when susceptible 

individuals come into contact with an infectious individual. Transmission between fires occurs when 

exposed or infectious individuals leave one fire and are subsequently reassigned to another fire within the 

infectious period. When individuals are not on a fire, their probability of becoming infected is driven by 

prevalence-dependent geographic area specific parameters. While an individual will not spread infection 

to any other firefighters during the period they are off assignment, they can catch SARS-CoV-2 off-fire. 

They may then arrive at their next assignment exposed or infectious, at which point they may become a 

source of infection for that fire. Once an individual is exposed the model simulates the infected 

individual’s progression through the viral states. See left panel in Figure 2 for an illustration of the 

possible paths individuals may take through viral states. 

In addition to tracking the daily viral state of each individual, the model also tracks each individual’s 

vaccination state. Our model has two vaccination states: vaccinated and unvaccinated. At the beginning of 

each simulation run a pre-specified number of firefighters is designated as vaccinated (dependent on the 

scenario). Over the course of the simulation an additional pre-specified number of individuals are 

vaccinated; personnel in isolation cannot become vaccinated, but individuals can get vaccinated while in 

any viral state. To model vaccine efficacy, a pre-specified proportion of susceptible individuals move 

from their current viral state directly to recovered, reflecting that those individuals cannot become 

infected or spread infection to others. The vaccinated individuals who do not move into the recovered 

class are still considered susceptible and are able to acquire and spread SARS-CoV-2.  

Prior to 2020 the assumption of homogenous mixing among wildland fire personnel was appropriate, as 

personnel typically ate and slept in a confined area (typically called “fire camp”) as well as interacting at 

the location of planning and logistical activities (typically called “incident command post”). The fire 

camp and incident command post have provided conditions where other infectious diseases have spread 

with ease3,4. However, in response to the COVID-19 pandemic, several mitigation measures were 

developed to minimize contact between wildland fire personnel at large fire incidents. One of these 

measures was referred to as “module-as-one”5. This is a specific form of social distancing, by which 

crews seek to minimize all contact outside of their own crew. This practice is expected to continue 

through the 2021 fire season. To simulate module-as-one behavior, we grouped personnel associated with 

a specific crew or piece of ground equipment into a single module. Because management personnel are 

not able to be part of a module due to their duties requiring them to interact with a higher number of 

people, though at lower contact intensities, we treated them differently than crew personnel. These 

management personnel are the fire managers, planners and logistics personnel who spend most of their 

time at the incident management post. Thus, all personnel assigned to a management role are considered 

to be a single module in our model, and that module has different spread parameters associated with it. 

This logic for organizing personnel results in many 4-20 person modules on each fire in addition to a 

single management module which reflects the actual module structure on wildland fire incidents in 2020. 

In our simulation, one set of individuals is designated as the module leaders, and those are the only 

individuals that have contacts with others outside of their module (see right panel in Figure 2 for an 

example). Specifically, the leaders of each module contact only the leaders of the other modules. We 

assume four leaders per module for all crew modules. The management module has substantially more 

leaders than other modules because management personnel are regularly interacting with module leaders. 

Leadership status is randomly assigned to the individuals within a module each time a module mobilizes 

to an incident and stays constant for the duration of the assignment. Generally, modules move throughout 

the fire season intact, with few changes to personnel within the module. However, individuals on modules 

can change. Any individuals mobilized to a fire who are not assigned to an engine or crew module are 
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classified as management; this is consistent with actual fire ordering practice. Contact between module 

members is substantially higher than contact between leaders, as module members are assumed to eat, 

sleep, and socialize together. Therefore, we provide a parameter to increase transmission between module 

members; we assume transmission between module members (both crew and management) is four times 

higher than transmission between leaders. 

To facilitate our analyses of workforce impacts, we model and track which individuals are in isolation or 

quarantine each day. When a symptomatic individual recognizes that they have been infected, they isolate 

themselves from all other firefighters. The diagnosis of symptoms is not assumed to be immediate upon 

entry to the infectious state: our model includes a parameter to specify the average amount of time it takes 

for personnel to recognize their symptoms and a parameter to specify the average percentage of 

individuals who ever correctly diagnose their symptoms. For those individuals who do enter isolation, we 

base our isolation procedures on CDC guidelines23: once an individual is identified as infectious they 

isolate for 10 days or until 24 hours after symptoms are gone (i.e., one day after they move to the 

recovered state), whichever is longer. To reflect current practice, if an individual on a module isolates, all 

other individuals in their module must quarantine, regardless of viral state. Our model assumes full 

isolation during quarantine (i.e., isolated individuals do not transmit disease to any other individuals). The 

exception to this is the management modules; for those modules only the diagnosed individual is isolated. 

While in reality asymptomatic individuals could be isolated in response to a positive test, we did not 

include testing of non-symptomatic individuals in our simulations as that is not expected to be routine for 

firefighting personnel on all assignments. The model does isolate vaccinated persons, to allow us to 

account for the effect of vaccination on numbers of isolated personnel. 

Because this quarantine policy is fairly strict, spread of SARS-CoV-2 from one fire to another can only 

occur under a very specific set of circumstances. First, the infected individual must be reassigned during 

their infectious window and must subsequently expose another individual at their new assignment prior to 

any isolation or quarantine. For symptomatic individuals, this is less likely to occur than for 

asymptomatic individuals, as a percentage of symptomatic individuals are assumed to recognize their 

symptoms and move into isolation. This percentage of symptomatic individuals who move into isolation 

is dependent on the level of mitigation compliance. For asymptomatic individuals, this fire to fire spread 

is more likely to occur as the only reason they would move into quarantine is if another module member 

is symptomatic and has recognized their symptoms. For viruses with a short period of time of 

symptomless infectiousness, few asymptomatic cases, and easily diagnosable symptoms, this isolation 

and quarantine policy would make reassignments that spread disease quite unlikely. However, COVID-19 

has been associated with infectiousness prior to symptom onset24, a substantial proportion of 

asymptomatic cases25, and symptoms that may be attributable to the smoky conditions and physical 

exertion that firefighters regularly encounter8, thus, even with a strict isolation and quarantine policy 

SARS-CoV-2 may spread from one fire to another. 

Our simulations use personnel assignment data from three historical fire seasons (2016-2018) to represent 

a range of possible outcomes for the coming fire season. Each individual simulation covers a single year 

and provides a possible disease spread outcome for that fire season. On the first day of the season (the day 

of the first assignment in our data) the probability of each individual being in an initial viral state is driven 

by a set of predetermined parameters (see the supplementary materials for specifics). The model then 

steps through each day in the fire season, checking daily on each individual’s assignment, module, and 

role and simulating and tracking individuals’ daily viral, vaccination, and isolation/quarantine status. 

Individuals’ contacts with others in their module and leaders’ contact with each other is modeled on each 

incident; an average number of infection-spreading contacts is calculated for each module and the group 
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of leaders. This average number of infectious contacts that lead to a new infection is used as the mean of a 

Poisson distribution that is used to randomly assign to each individual on that module the number of 

successful infectious contacts they had that day. Any individual assigned one or more infection-producing 

close contacts with an infectious individual becomes exposed. Individuals who are off fire may contact 

SARS-CoV-2 with a probability dependent upon local transmission. Exposed and infectious individuals’ 

states are re-evaluated daily, and individuals move from exposed to symptomatic or asymptomatic and 

from symptomatic or asymptomatic to recovered based upon the daily probability of changing viral states 

(see supplementary material for specifics). In addition to daily re-evaluation of infectious states, 

individuals are also assessed for isolation. Symptomatic individuals are assigned to be in isolation based 

upon a random draw. Individuals within the same module as an isolated individual are then quarantined. 

Individuals move out of isolation and vaccination occurs based upon the isolation and vaccination 

methods described above. A detailed description of the ABM algorithm, the distributions used for draws 

and the associated parameters can be found in the supplementary materials. We simulate the model 100 

times in each scenario (Baseline, High Compliance, Low Compliance) for each fire season to illustrate the 

uncertainty due to stochastic transmission. The simulation model and supporting functions were 

developed using R26 are available as an R package27. 

Scenario development 

We developed scenarios to address two key uncertainties in the interplay between the fire season and the 

COVID-19 pandemic: the spatio-temporal variation of fire occurrence and uncertainty around vaccination 

and social distancing behaviors of wildland fire personnel. We address the variation in fire occurrence 

patterns by using fire assignments from three distinct fire seasons: 2016, 2017, and 2018. These years 

cover a range of spatial and temporal demand for wildland fire suppression resources. We address the 

uncertainty around vaccination and social distancing using a set of three behavioral scenarios.  

To build our fire assignment dataset, we identified the set of large wildland fires (i.e., fires assigned a 

Type 1, Type 2, Type 3, National, or Area Command incident management team or incident commander) 

that burned in the US in 2016, 2017, and 2018 using data archived in the Resource Ordering and Status 

System (see 3,9,10,28 for previous peer reviewed studies using this data). Using these data we can track 

individuals uniquely across the fire season, identifying their daily assignments to large fires, the role they 

play on those fires, and the geographic area within which they are working. The 2016 fire season was a 

fairly average season, with slightly fewer fires and slightly fewer acres burned than the ten-year average, 

though the number of structures burned was slightly over the yearly average (calculated since 1999; 

NICC 2016). The 2017 fire season was a more severe fire season than 2016, with the number of acres 

burned well above the ten-year average as well as setting the record for most structures burned (1999-

2017; NICC 2017). The 2018 fire season was also an above average fire season, with the number of acres 

burned well above the ten-year average and again setting a record for the number of structures burned 

(1999-2018; NICC 2018). Our assignment data matches these trends; the data include 190, 233, and 234 

large fires in 2016, 2017 and 2018, respectively, with 37,299, 43,360, and 40,593 personnel assigned to at 

least one of these fires in 2016, 2017, and 2018, respectively. Further exploration of the fire assignment 

data can be found in the supplementary materials.  

We address the uncertainty in vaccination of wildland fire personnel and compliance to social distancing 

behaviors by creating the three distinct behavioral scenarios that are described in the Results section 

(Baseline, Low Compliance, and High Compliance). The specific parameters used for each scenario can 

be found in the supplementary materials.  
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The calibration of the parameters representing the reproductive capacity of the virus are presented in 

detail in the supplementary materials. We aimed to have a median reproductive number for SARS-CoV-2 

of 1.8, 1.34 and 0.8 people infected by a single infectious person for the Low Compliance, Baseline and 

High Compliance scenarios, respectively. These reproductive numbers assume an R0 of 2.429, with the 

low compliance, baseline, and high compliance scenarios representing, respectively, a 25%, 44% and 

67% reduction in transmission compared to uncontrolled transmission. 

Workforce impact evaluation metrics 

Cumulative infections were counted daily for each simulation run. Infections are attributed by assignment 

status (i.e., off fire or on fire) and personnel role (crew or management) to allow for in-depth exploration 

of infection patterns. Infections can also be attributed to specific fires; for each run we counted the 

number of cases of SARS-CoV-2 on each fire. If a fire saw at least two cases from different crew 

modules, two management personnel with cases, or a combination of crew and management personnel 

with cases, we counted that fire as having an outbreak for that run. Cases did not have to be incurred on 

the fire, but the infected personnel had to be assigned to the fire, infectious, and not quarantined for at 

least one day. 

The systematic risks of disease transmission to and across fires is assessed by counting the number of 

infectious assignments attributed to personnel who caught the disease off-fire as well as the number of 

infectious reassignments from personnel who leave one fire infectious and are subsequently reassigned to 

another fire while still infectious. Because infections can be attributed to personnel role, we can examine 

differential risks that occur across roles in addition to comparing risks of infection source.  

When a symptomatic member of a firefighter module is diagnosed with COVID-19, all unvaccinated 

personnel within that module must quarantine, which implies few cases of COVID-19 may result in a 

substantial loss of workforce capacity. Therefore, a key metric we report is the number of cumulative 

days that firefighters were assigned to fires but were in isolation and thus limited in their ability to work; 

we refer to this as “worker days missed.” Only those who are unvaccinated would be asked to isolate, but 

we also track the number of individuals who would have been asked to isolate if they were not vaccinated 

to show the effect vaccination may have on workforce capacity. Therefore, we report two sets of worker 

days missed: 1) all isolated individuals (including those who are vaccinated) and 2) only isolated 

individuals who are not vaccinated. Because we track individuals in our model, a single day of isolation 

for a crew of 20 people results in 20 worker days missed.  

Conclusions 

The COVID-19 pandemic poses a unique set of risks to the nationally interconnected wildland 

firefighting system. Infections on one fire have the potential to spread to other fires. Uncertainty around 

the upcoming fire season and behavioral choices regarding vaccination and mitigation of infection spread 

compounded the problem of understanding how COVID-19 might affect the wildland firefighting system 

in 2021 and beyond. Our model shows that current mitigation efforts limit the risk of transmission within 

a fire and across fires over the season. High behavioral compliance (i.e., high uptake of vaccines and 

adherence to spread mitigations) result in substantially fewer infections and lost worker days. These 

results reinforce the importance of continuing spread mitigations into future fire seasons and emphasize 

the value of vaccination within the workforce.  

Data Availability 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.15.21263647doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263647


16 
 

The datasets of annual wildland firefighting assignments that were generated for this study are available 

from the corresponding author upon reasonable request; we chose not to make these publicly available 

due to the potential for the identification of individuals based upon their assignment history. The 

simulation model and supporting functions are available as an R package27. 
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represent any official USDA or U.S. Government determination or policy. USDA authors do not convey 
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This manuscript is currently undergoing peer review and has not yet been fully vetted by referees external 
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Figure legends 

Figure 1: Historical assignment/reassignment data for a single fire in Montana. The map of incoming 

assignments shows the range of origins for personnel assigned to a fire that started on July 15, 2017. The 

outbound reassignments shown include all incidents to which personnel went, given nine or fewer days 

between demobilization at the first fire and mobilization at the second fire. 

Figure 2. a) The possible viral states which individuals may travel through in simulations. The arrows 

indicate possible paths that individuals may take through the viral states. An individual may move 

directly from susceptible to recovered only if vaccinated. b) Interactions between personnel on a single 

fire. Crew module members (individuals of the same color) interact only with other members of the same 

module, with the exception of module leaders, who interact both with their module members and with 

other module leaders. Management personnel cannot effectively form modules and thus interact with all 

other management personnel as well as a proportion who interact with the crew module leaders. 
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Figure 3: Daily cumulative infections by compliance scenario on and off fire (a) and annual cumulative 

infections by personnel type (b). In (a), each line is associated with a single scenario run while the bolded 

lines show the run with the median number of cumulative infections incurred. The total cumulative 

infections across the 2017 season by scenario and personnel role are shown in (b), with cases attributed to 

assignment status at time of exposure. 

Figure 4: a) Percentage of runs for which each fire had an outbreak by scenario and maximum number of 

personnel assigned to the fire on a single day. Two fires are singled out: the points associated with a 

“many outbreaks” fire are circled in blue and the points associated with a “fewer outbreaks” fire have a 

pink square around them. b) The number of personnel over time for the “many outbreaks fire” and the 

“fewer outbreaks fire” that are indicated in (a). 

Figure 5. a) The number of infectious assignments and reassignments by scenario and personnel type for 

the 2017 fire assignment data. b) A map of the infectious reassignments that occurred during the Low 

Compliance run using 2017 data that had the highest number of infectious reassignments (i.e., the worst 

case scenario observed). c) A map of the infectious reassignments that occurred during the High 

Compliance run using 2017 data that had the highest number of infectious reassignments. All large fires 

included in the analysis are mapped as points, with the point size corresponding to the maximum number 

of personnel assigned to the fire on a single day. Lines connecting fires indicate infectious reassignments. 

Figure 6. The distribution of worker days missed by scenario. The red denotes all workdays missed by 

vaccinated and unvaccinated firefighters while the blue denotes workdays missed by only unvaccinated 

firefighters. The Only Unvaccinated indication captures current guidance. Brackets indicate the 

interquartile range and plus signs indicate the median value for each distribution. 

Technical Appendix 

Here in the technical appendix we include a detailed outline of the agent-based algorithm, a list of the 

specific parameters we used within the algorithm with sources for the parameters cited (where 

applicable), a description of how we processed the assignment data and a summary of the 2016-2018 fire 

seasons including comparisons between model runs, sample size comparisons, and a description of our 

calibration of the reproductive parameters we used for SARS-CoV-2. 

Agent-based model algorithm 

1. Assign agents to their current incident and module.  

a. Agents not on an assignment are assigned to off-fire status. 

b. Leadership status is assigned for agents in modules on new assignments.  

2. Simulate contacts between agents in each module, including the management modules. For each 

module: 

a. Identify all agents who are not isolated and are infectious (symptomatic or 

asymptomatic). 

b. Identify all agents who are not isolated and are susceptible or exposed. 

c. Given at least one infectious, not isolated agent in the module and at least one susceptible 

agent, calculate average number of infectious contacts (am,d)  that occur for an individual 

in module m on day d using the following equation, where 𝛽𝑠𝑦𝑚 is the daily transmission 
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number for symptomatic agents, 𝛽𝑎𝑠𝑦𝑚 is the daily transmission number for 

asymptomatic agents, c is the contact intensity multiplier for modules, and 𝑛𝑠,𝑚,𝑑 is the 

number of agents in the module m in state s on day d. 

𝑎𝑚,𝑑 =
𝑐 ∗ ((𝛽𝑠𝑦𝑚 ∗ 𝑛𝑠𝑦𝑚,𝑚,𝑑) +  (𝛽𝑎𝑠𝑦𝑚 ∗ 𝑛𝑎𝑠𝑦𝑚,𝑚,𝑑))

𝑛𝑛𝑜𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑚,𝑑
  

d. For each susceptible agent, simulate the number of infectious contacts from other module 

members today using a draw from a Poisson distribution with the mean of the distribution 

(lambda) equal to 𝑎𝑚,𝑑. The viral state is changed from susceptible to exposed for each 

agent whose random draw is greater than zero. 

3. Model contacts between module leaders 

a. Identify all module leaders who are not isolated and are infectious (symptomatic or 

asymptomatic) 

b. Identify all module leaders who are not isolated and are susceptible or exposed 

c. Given at least one infectious, not isolated leader and at least one susceptible leader, 

calculate  calculate average number of infectious contacts (al,d)  that occur for an 

individual designated as a leader (l) on day d using the following equation where 𝛽𝑠𝑦𝑚 is 

the daily transmission number for symptomatic agents, 𝛽𝑎𝑠𝑦𝑚 is the daily transmission 

number for asymptomatic agents, and 𝑛𝑠,𝑙,𝑑 is the number of agents designated as leaders 

in state s on day d. 

𝑎𝑙,𝑑 =
((𝛽𝑠𝑦𝑚 ∗ 𝑛𝑠𝑦𝑚,𝑙,𝑑) +  (𝛽𝑎𝑠𝑦𝑚 ∗ 𝑛𝑎𝑠𝑦𝑚,𝑙,𝑑))

𝑛𝑛𝑜𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑙,𝑑
 

d. For each susceptible leader, simulate the number of infectious contacts from other leaders 

today using a draw from a Poisson distribution with the mean of the distribution (lambda) 

equal to 𝑎𝑙,𝑑. The viral state is changed from susceptible to exposed for each leader 

whose random draw is greater than zero. 

4. Model infectious contacts for off-fire agents.  

a. Identify all off-fire agents. 

b. For each agent, draw a random number from a Uniform(0,1) distribution.  

c. Compare the random draws to the off-fire infection parameter (eir). If the random draw is 

less than the off-fire infection parameter and the agent is susceptible, then the agent’s 

viral state changes to exposed. 

5. Some exposed agents become infectious. 

a. Identify all agents in the exposed viral state.  

b. For each agent, draw two random numbers from a Uniform(0,1) distribution. The first 

draw will be used to determine if the agent is leaving the exposed state. The second draw 
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will be used to determine which infectious state (symptomatic or asymptomatic) the agent 

enters, if they do leave the exposed state. 

c. Compare the random draw values to the daily probability of leaving the exposed state 

(pe=1/De), where De is the average incubation period, and the probability of being 

symptomatic (pi). There are three possible outcomes for the agent: 

i.  If the first random draw is less than the daily probability of leaving the exposed 

state and the second random draw is less than the probability of being 

symptomatic, then the agent’s viral state changes to symptomatic.  

ii. If the first random draw is less than the daily probability of leaving the exposed 

state and the second random draw is greater than or equal to the probability of 

being symptomatic, then the agent’s viral state changes to asymptomatic.  

iii. If the first random draw is greater than or equal to the daily probability of leaving 

the exposed state, then the agent’s viral state does not change. 

6. Some infectious agents recover 

a. Identify all agents in the symptomatic or asymptomatic viral state.  

b. For each agent, draw a random number from a Uniform(0,1) distribution.  

c. Compare the random draw to the daily probability of recovering (pr). If the random draw 

is less than the daily probability of recovery, then the agent’s viral state changes to 

recovered. 

7. Some infectious agents isolate. 

a. Identify all symptomatic and asymptomatic agents who are not currently isolated. 

b. For each agent, draw a random number from a Uniform(0,1) distribution.  

c. Compare the random draw value to the daily probability that an agent correctly identifies 

their symptoms and/or receives a positive test (pIQ for symptomatic agents and pAQ for 

asymptomatic agents). If the random draw is less than the daily probability that an agent 

correctly identifies their symptoms and/or receives a positive test then the agent’s 

isolation state changes to isolated. 

8. Isolate other agents, increment isolation day counts, and release agents from isolation. 

a. Identify all isolated agents.  

b. If the agent is on an assignment and part of a crew module, then isolate all other non-

isolated module members. 

c. For all isolated agents, increment the number of days they have been isolated by one. 

d. If an agent has been isolated for greater than the number of required isolation days (Dq) 

and their viral state is not symptomatic then their isolation state changes to not isolated 

and their isolation day count is set to 0. If the agent is still symptomatic after the required 

number of isolation days, then they continue to be isolated until they move to the 

recovered state (driven by pr, the daily probability of recovery). 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.15.21263647doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263647


22 
 

9. Vaccinate agents. 

a. Identify all agents that are not isolated and not vaccinated. 

b. Randomly sample these agents to determine who is vaccinated on that day, vaccinating 

exactly the number of agents specified for that geographic area on that day (vog,d for 

management and vnog,d for crew).  

c. Sample the newly vaccinated agents whose viral state is susceptible to determine if their 

viral state changes from susceptible to recovered, changing the states for exactly the 

number specified by the vaccination efficacy parameter (ve * vog,d and ve * vnog,d).  

10. If this is not the last day of the season, increment forward one day and go back to step 1. If this is 

the final day of the season, save the following information for each resource on each day of the 

season: viral state, vaccination state, isolation state, and leader status. 

Parameters used in the agent-based model 

The parameters used in the simulations are listed in Tables 1 and 2. Where appropriate, we also list 

references for parameter values. 

 

Parameter and 

description 

Baseline  Low 

Compliance 

High 

Compliance 

Parameter use 

eir: The probability a 

firefighter who is off-

assignment will be 

infected by COVID-19 

0.00042 0.00084 

 

0.00021 

 

Compared to a Uniform(0,1) 

random draw: if the draw is 

<= eir the agent is assigned 

an infectious viral state 

𝛽𝑠𝑦𝑚  0.13 0.177 0.077 Used to calculate the average 

number of infectious 

contacts that lead to infection 

among a non-infectious 

agent incurs for a single day  

Vmanagement,init: Initial 

number of vaccinated 

individuals in the 

management 

population 

50% 50% 70% Used to calculate the number 

of management agents who 

are assigned vaccinated 

status on the first day of the 

season. Agents are sampled 

randomly. 

Vmanagement,final: final 

number of vaccinated 

individuals in the 

management 

firefighting population 

75% 50% 90% Used to create a linear 

function that calculates the 

number of management 

agents who are vaccinated 

daily for each GACC (vog,d) 

between the start of the 

season and the final 
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vaccination date. Agents are 

sampled randomly. 

Vcrew,init: Initial number 

of vaccinated 

individuals in the crew 

firefighting population 

50% 50% 50% Used to calculate the number 

of crew agents who are 

assigned vaccinated status on 

the first day of the season. 

Agents are sampled 

randomly. 

Vcrew,final: final number 

of vaccinated 

individuals in the crew 

firefighting population 

50% 50% 75% Used to create a linear 

function that calculates the 

number of crew agents who 

are vaccinated daily (vnog,d) 

between the start of the 

season and the final 

vaccination date. Agents are 

sampled randomly. 

Final vaccination date July 1 First day of 

the season 

July 1 Used to create the linear 

function determining how 

many agents are vaccinated 

daily to reach the final 

vaccination population as 

specified by V_ crew,final 

and V_ management,final 

pIQ: Probability that a 

symptomatic agent 

who is not quarantined 

recognizes symptoms 

and moves to 

quarantine 

0.5 0.3 0.7 Compared to a Uniform(0,1) 

random draw: if the draw is 

<= pIQ then the agent’s 

isolation state is changed to 

isolated  

Table 1: Parameter values that vary across scenarios  

 

 

Parameter Value Description Parameter use 

pi 0.4286 Probability that an 

infectious agent is 

symptomatic 

(weighted by 

population age)1 

Compared to a Uniform(0,1) random draw: if the draw 

is <= pi then the agent’s viral state is changed to 

symptomatic, else the viral state is changed to 

asymptomatic 
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pAQ 0 Proportion 

asymptomatic that 

quarantines due to a 

positive test 

Compared to a Uniform(0,1) random draw: if the draw 

is < pAQ then the agent’s isolation state is changed to 

isolated 

Rinit 25% Initial percent of 

recovered 

individuals in the 

firefighting 

population 

Used to calculate the number of agents who start the 

season in the recovered viral state. Agents are sampled 

randomly. 

Num 

leaders 

4 Number of leaders 

per module (crew) 

Calculates the number of agents who are assigned 

leadership status for crew modules. 

Iinit 0.598% Initial percent of 

infectious 

individuals in the 

firefighting 

population 

Used to calculate the number of agents who start the 

season in the symptomatic viral state. Agents are 

sampled randomly. 

De 5 Average incubation 

period2,3 

Used to calculate pe, the probability of leaving the 

exposed state, which is compared to a Uniform(0,1) 

random draw: if the draw is <= pe then the agent’s viral 

state will change to either symptomatic or 

asymptomatic 

Dr 8 Average days from 

onset of 

infectiousness to 

recovery4,5 

Used to calculate pr, the probability of leaving an 

infectious state, which is compared to a Uniform(0,1) 

random draw: if the draw is <= pr then the agent’s viral 

state will change to recovered 

l 0.5 Proportion 

management 

designated leaders 

Calculates the number of agents who are assigned 

leadership status for management modules. 

c 4 Reproduction 

multiplier for 

modules 

Used to calculate the average number of infectious 

contacts that a non-infectious agent incurs for a single 

day (𝑎𝑚,𝑑) 

Dq 10 Required days of 

isolation6 

Compared to days an agent has been in isolation: given 

days in isolation is >= Dq and agent is recovered, agent 

leaves isolation state. 

ve 0.95 Vaccine efficacy7,8 Used to calculate the number of agents who move from 

symptomatic to recovered upon receiving their 

vaccine. 

Table 2: Parameter values that stay constant across scenarios  

Assignment data and fire season summaries 
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To build our fire assignment dataset, we identified the set of wildland fires that were managed by a Type 

1, Type 2, Type 3, National, or Area Command incident management team or incident commander which 

burned in the US in 2016, 2017, and 2018 using data archived in the Resource Ordering and Status 

System (see Thompson et al 2020, Belval et al 2020, 2016, Lyon et al 2018 for previous peer reviewed 

studies using this data). For each of these fires we obtained the assignments for each of the individuals 

that provided wildland firefighting capacity or wildland fire management capacity on the fire. Individuals 

are assigned unique identifiers that are constant across the season, allowing us to identify which days each 

individual was assigned to each of the large fires and to observe movement of individuals between large 

fires across the fire season. The home geographic area for each individual is typically provided; if the 

home geographic area is unknown then personnel are assigned to the geographic area in which they are 

first assigned to an incident. Individuals are also classified by their role on the fire, that is, they are 

assigned to a specific hand crew, a crew managing a piece of equipment (for example, engine or dozer), 

or management (personnel handling the logistics and planning for the fire). We use these roles to create 

the modules on each fire. We did not include personnel assigned to aerial resources as aircraft 

assignments in ROSS are not always reliable (Belval et al 2020) and those personnel have a lower level of 

contact with other firefighting personnel.  

The 2016 fire season was a fairly average season, with slightly fewer fires and slightly fewer acres burned 

than the ten-year average, though the number of structures burned was slightly over the yearly average 

(calculated since 1999). There was a pulse of fire activity early in the season (pre-July) driven by the SW 

and Southern California, followed by a pause (early July), followed by a medium level of fire activity 

throughout the rest of the season. The 2016 fire season was unique in having a pulse of destructive fire 

activity in the Southern Area in December, which accounted for over 2000 of the 4312 structures burned 

in 2016 (NICC 2016). The 2017 fire season was a more severe fire season than 2016, with the number of 

acres burned well above the ten-year average as well as setting the record for most structures burned 

(1999-2017). The Northern Rockies, Great Basin, and Northwest all saw substantial fire activity mid-

season (August-September). Southern California experienced a very destructive pulse of fire in December 

(NICC 2017). The 2018 fire season was also an above average fire season, with the number of acres 

burned well above the ten-year average and again setting a record for the number of structures burned 

(1999-2018). The Northwest, Great Basin, and California experienced substantial fire activity mid-season 

(July-August) and California again experienced a late season pulse of fire in November (NICC2018). The 

number of personnel on assignment daily from each Geographic Area is shown in Figure S.1. The 

assignment data include 190, 233, and 234 large fires in 2016, 2017 and 2018, respectively, with 37,299, 

43,360, and 40,593 personnel assigned to at least one of these fires in 2016, 2017, and 2018, respectively. 

 

Figure S.1: Number of potential disease spreading reassignments across the 2016, 2017, and 2018 fire 

season. The color indicates the geographic area from which the firefighter originates. Abbreviations for 

geographic areas (GACCs) are: AICC (Alaska), EACC (Eastern Area), GBCC (Great Basin), NRCC 

(Northern Rockies), NWCC (Northwest), ONCC (Northern California), OSCC (Southern California), 

RMCC (Rocky Mountain Area), SACC (Southern Area), SWCC (Southwest).  
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Simulations using the Baseline scenario parameters show similar distributions of both infection 

prevalence over time, cumulative infections (Figure S.1a), and worker days missed (Figure S.1b). The 

median number of cumulative infections for runs using the 2016, 2017, and 2018 assignments under the 

Baseline scenario assumptions was 79.5 [IQR: 72-88], 94 [IQR: 81-102], and 94 [IQR: 82.75-108.25] 

respectively. We do observe a higher level of cumulative infections overall in 2017 and 2018 than 2016; 

this is because the total number of personnel assigned to a large fire is highest in 2017, leading to a larger 

pool of personnel that can be infected off fire. The median number of cumulative infections in 2016 was 

1498 [IQR: 1471-1521], in 2017 was 1915 [IQR: 1892-1944], and in 2018 was 1808 [IQR: 1782-1849]. 

Similar to the number of on-fire infections, the number of worker days missed (both when quarantining 

all personnel and when quarantining only vaccinated individuals) does not vary substantially between 

years; worker days missed (for quarantining only unvaccinated individuals) was 995.1 [IQR: 801-1244.5], 

1007 [IQR: 842-1198] and 1003.5 [IQR: 810.5-1193.5] for 2016, 2017 and 2018, respectively.  

 

 

Figure S.2: Prevalence paths for cases of SARS-CoV-2 incurred during a fire assignment (a) and the 

distribution of worker days missed for (b) using the Baseline scenario parameters occurring for runs using 

2016, 2017 and 2018 assignment data.  

Calibration of reproductive parameters for SARS-CoV-2 

A key calculation in the model is the average number of infectious individuals that a single individual 

contacts at a close enough level to transmit the virus. This can be calculated using the equation from step 

1c (reproduced below for ease of reading), where 𝑎𝑚,𝑑 is the average number of infectious contacts that 

occur for an individual in module m on day d, 𝑛𝑠𝑦𝑚,𝑚,𝑑 and 𝑛𝑎𝑠𝑦𝑚,𝑚,𝑑 are the number of symptomatic 

personnel and number of asymptomatic personnel, respectively, in module m on day d who are not 

isolated and 𝑛𝑛𝑜𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑚,𝑑 is the total number of not isolated personnel in module m on day d. This 

includes a “reproduction multiplier” (c) that allows the intensity of contact to vary depending upon 
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whether the contact is between module members or leaders: contact is substantially higher within 

modules.  

𝑎𝑚,𝑑 =
𝑐 ((𝛽𝑠𝑦𝑚∗𝑛𝑠𝑦𝑚,𝑚,𝑑)+ (𝛽𝑎𝑠𝑦𝑚∗𝑛𝑎𝑠𝑦𝑚,𝑚,𝑑))

𝑛𝑛𝑜𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑚,𝑑
  

Based on estimates of disease spread from those who are asymptomatic relative to those who are 

symptomatic, we assumed 𝛽𝑎𝑠𝑦𝑚 =
2

3
𝛽𝑠𝑦𝑚. To calibrate 𝛽𝑠𝑦𝑚 and 𝛽𝑎𝑠𝑦𝑚we ran the model on the five 

days with the maximum number of personnel from three fires from 2017 that have previously been used 

to examine COVID-19 spread through wildland fire personnel: the Lolo Peak fire, the Highline fire, and 

the Tank Hollow fire. For the Low Compliance scenario, we aimed to provide a reproductive capacity 

such that each single infectious individuals would infect 1.8 other individuals on average. For the High 

Compliance scenario, we aimed to provide a reproductive capacity such that each single infectious 

individual would infect 0.8 other individuals on average. For the Baseline scenario, we aimed to provide a 

reproductive capacity such that each single infectious individual would infect 1.34 other individuals on 

average. The final values of 𝛽𝑠𝑦𝑚 that we used are listed in Table 2.  

Sample size for Monte Carlo simulations 

We wanted to run enough simulations to adequately represent the stochasticity within this system, but to 

also use computing resources efficiently. We ran sample sets of simulations using both 100 runs and 500 

runs. We found the distributions of infections did not vary substantially between 100 and 500 runs (see 

Table S.3 for comparisons). 

Scenario Cumulative infections 500 runs Cumulative infections 100 runs 

Low Compliance 4506 [IQR: 4454-4556] 4512 [IQR: 4461-4566] 

Baseline 1916 [IQR: 1885-1950] 1915 [IQR: 1892-1944] 

High Compliance 635 [IQR: 619-653] 634.5 [IQR: 618.8-654.2] 

Table S.3: A comparison of the distribution of cumulative infections from a set of 500 simulation runs 

and a set of 100 simulation runs using the 2017 assignment data for all three behavioral scenarios. 

References 

1. Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 

epidemics. Nat Med 26, 1205–1211 (2020). 

2. Lauer, S. A. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From 

Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine 172, 577–

582 (2020). 

3. Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close 

contacts in Shenzhen, China: a retrospective cohort study. The Lancet Infectious Diseases 20, 911–919 

(2020). 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.15.21263647doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263647


28 
 

4. He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 

26, 672–675 (2020). 

5. Cheng, H.-Y. et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in 

Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern Med 180, 

1156 (2020). 

6. Centers for Disease Control and Prevention. When You Can be Around Others After You Had or 

Likely Had COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/end-home-

isolation.html (2021). 

7. Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 

384, 403–416 (2021). 

8. Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J 

Med 383, 2603–2615 (2020). 

 

 

 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.15.21263647doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263647

