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Abstract

Lack of large quantities of annotated data is a major barrier in developing effective text mining models of biomedical
literature. In this study, we explored weak supervision strategies to improve the accuracy of text classification models
developed for assessing methodological transparency of randomized controlled trial (RCT) publications. Specifically,
we used Snorkel, a framework to programmatically build training sets, and UMLS-EDA, a data augmentation method
that leverages a small number of existing examples to generate new training instances, for weak supervision and
assessed their effect on a BioBERT-based text classification model proposed for the task in previous work. Performance
improvements due to weak supervision were limited and were surpassed by gains from hyperparameter tuning. Our
analysis suggests that refinements to the weak supervision strategies to better deal with multi-label case could be
beneficial.

Introduction

Incomplete reporting and lack of transparency are common problems in biomedical publications and may reduce the
credibility of the findings of a study. These problems can have serious consequences, particularly in clinical research
publications, since the evidence from these studies inform patient care and healthcare policy. In clinical research,
randomized controlled trials (RCTs) are the most robust kind of primary research evidence regarding the effectiveness
of therapeutic interventions1 and are a cornerstone of evidence-based medicine2. RCTs are time-consuming and
expensive, and if inadequately designed, conducted, or reported, they lead to poor health outcomes and significant
research waste3.

Reporting guidelines have been proposed to improve transparency and completeness of reporting for various types
of biomedical studies. For example, the CONSORT statement focuses on RCT reporting1, 4, and consists of a 25-
item checklist and a flow diagram. While endorsed by many high-impact medical journals, adherence to CONSORT
remains inadequate1, 5 and difficult to enforce in practice, due to substantial workload it involves for journals. Manual
CONSORT compliance checks before peer review have been shown to improve reporting quality6; however, they are
difficult to scale and require significant domain expertise.

In previous work, we presented a corpus of 50 RCT publications manually annotated at the sentence level with fine-
grained CONSORT checklist items and proposed a text mining approach to automate the task of transparency (report-
ing quality) assessment7. As a first step toward full transparency assessment, we developed sentence classification
models to categorize sentences in the Methods sections of RCT publications into 17 methodology-related check-
list items (e.g., Eligibility Criteria, Outcomes, Sequence Generation, Allocation Concealment). The best-performing
model, based on BioBERT pretrained language model8, yielded reasonable performance on some items, particularly
those that are commonly discussed in RCT Methods sections and thus are well-represented in the dataset. However,
the results overall suffered from the relatively small size of the dataset and largely failed on the checklist items that are
infrequently reported in RCT publications (e.g., Changes to Outcomes).

Annotated data is critical in training modern natural language processing and text mining (NLP) algorithms. In partic-
ular, deep neural network architectures heavily depend on large quantities of training data for learning model param-
eters. While recent pretrained language models, such as BERT9 and its variants, exhibit better sample efficiency and
often work well even with relatively small datasets, the importance of annotated data has not diminished. High per-
formance of BERT-based models in NLP tasks and the resulting standardization of architectures arguably underlines
data scarcity as the primary bottleneck in NLP10. In response, weak supervision techniques have become increasingly
popular, as they offer cheaper or more efficient ways to generate training data10, 11.
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In this study, we investigated whether weak supervision techniques can be used to effectively label additional data
and improve our sentence classification models for transparency assessment of RCT publications. More specifically,
we focused on weak supervision using the Snorkel framework10, 11 and data augmentation based on the UMLS-EDA
algorithm12 and used the labels that they generated as additional data for the BioBERT-based model reported in pre-
vious work7. The results show that weak supervision has limited effectiveness on our dataset, while at the same time
indicating that hyperparameter tuning can have a more significant impact on model performance.

Related Work
Weak supervision

Weak supervision seeks to use domain knowledge and subject matter expertise in opportunistic ways to assign (some-
what noisy) labels to unlabeled data or generate synthetic data. Several general approaches to weak supervision
exist. One well-known technique is distant supervision13, based on using domain knowledge in external knowledge
bases. While often used for relation extraction13, 14, it has also been used for classification tasks applied to RCT pub-
lications15, 16. For example, risk of bias judgements in the Cochrane database of systematic reviews were used to
automatically label sentences in RCT publications and train models for assessing risk of bias in the publications15.

Another increasingly popular weak supervision approach is data augmentation. The goal of data augmentation is
to increase a model’s generalizability by generating realistic data from a limited number of existing examples. First
proposed in computer vision research17, it has more recently been adopted in NLP research as well12, 18. For example,
simple transformations of individual sentences (e.g., synonym replacement, random insertion/deletion) were used to
generate additional data and improve modeling accuracy with small datasets12. Similar approaches have been adapted
to biomedical domain, for tasks ranging from medical abbreviation recognition19 to semantic textual similarity20 and
named entity recognition21.

Snorkel has been proposed as a general weak supervision framework10, 11. Based on data programming paradigm,
Snorkel relies on user-defined labeling functions (LFs), which are heuristic methods that can noisily label large quanti-
ties of unlabeled data, learns a generative model over the labeling functions to estimate their accuracy and correlations,
and generates probabilistic labels that can be used to train machine learning models. Snorkel has been applied to sev-
eral biomedical text mining tasks, outperforming distant supervision baselines and approaching hand supervision10.
Other weak supervision approaches have also been developed for biomedical NLP tasks, including smoking status
classification from clinical notes22, semantic indexing23, and clinical entity classification24.

Text mining on RCT publications

Text mining on RCT literature has mostly focused on annotating and extracting study characteristics relevant for
systematic reviews and evidence synthesis25, 26. PICO elements received much attention; several corpora have been
developed at the sentence and span level16, 27, 28, and a variety of traditional machine learning methods and deep learn-
ing models have been developed to extract these elements from abstracts or full text16, 28–30. There is less research
on non-PICO elements. Most notably, RobotReviewer15 focuses on risk of bias assessment and classifies RCT pub-
lications as high or low risk on several risk categories, including sequence generation and allocation concealment.
ExaCT31 identifies 21 elements in clinical trial publications including sample size and drug dosage. Recently, we
constructed a corpus of 50 RCT publications (named CONSORT-TM) annotated at the sentence level with 37 fine-
grained CONSORT checklist items to assist with transparency assessment7. We also developed baseline NLP models
to recognize 17 methodology-specific CONSORT items: two rule-based methods (one keyword-based and another
section header-based) as well a linear SVM classifier and a BioBERT-based model. The BioBERT model performed
best overall (micro precision: 0.82, recall: 0.63, and F1: 0.72), although it failed to recognize infrequent items, which
partly motivated this study.

Materials and Methods

We explored weak supervision to improve the classification performance of our best-performing BioBERT model7. In
this section, we first describe the collection and pre-processing of unlabeled RCT data from PubMed Central (PMC)
for weak supervision. Second, we provide a brief description of the baseline BioBERT models. Third, we discuss our
methodology for generating labels using Snorkel framework as well as UMLS-EDA algorithm. Lastly, we provide
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Figure 1: Training and evaluation with weakly supervised data.

details on evaluation. The overall procedure is illustrated in Figure 1.

Data collection and pre-processing

We followed the data collection strategy used in previous work7 to obtain a large set of RCT articles. Cochrane
precision-maximizing search queryb was used on 1/15/2021 to search PMC Open Access subset (PMC-OA) for RCT
articles published between 1/1/2011 and 12/31/2020c. The results were further limited to articles that have full-text
XML in PMC-OA. To get a more reliable RCT subset (since publication types in PubMed can be inaccurate), we
filtered the results through RCT Tagger32, a machine learning model that determines whether a publication is a RCT
or not. Its accuracy was found to be 99.7% in predicting RCT studies included in Cochrane systematic reviews33.
Lastly, we eliminated publications with the word protocol in their title (generally study protocol publications).

We used NCBI e-utilities APId to retrieve publications in XML format, and split them into sentences using our in-
house sentence splitter34. Only sentences that belong to Methods section of the publications were taken into account.
Stanford CoreNLP package was used for tokenization and part-of-speech tagging35. We eliminated the sentences
meeting the following criteria from further consideration, since they are unlikely to indicate CONSORT methodology
items: a) contains fewer than five tokens; b) contains numbers only; and c) is a section header or a table/figure caption.

Baseline models

Our best-performing classifier in previous work7 was a BioBERT-based sentence classification model. This classifier
uses the BioBERT pretrained language model8 as a sentence encoder, considering the model’s output for the [CLS]
token as the sentence representation, and trains a sigmoid layer for multi-label classification of 17 CONSORT method-
ology items. The input to the model is the raw sentence text prepended with its subsection header. The classifier was
implemented using simpletransformers packagee. We refer to this model as BASELINE below.

In this study, we used the huggingfacef BERT implementation. While mostly using the same hyperparameters as
BASELINE (batch size: 4, number of epochs: 30, optimizer: Adam, dropout: 0.1), we modified two hyperparameters.
First, we used adaptive learning rate instead of a fixed learning rate to optimize the algorithm with different rates based
the model performance during training. Second, we set the gradient accumulation steps to 1 (16 for BASELINE), which
increases the frequency of model parameter updates. We refer to this optimized model as BASELINE OPT below.

bhttps://work.cochrane.org/pubmed
cThe start date is chosen based on the most recent publication of CONSORT guidelines (2010)1.
dhttps://https://www.ncbi.nlm.nih.gov/books/NBK25501/
ehttps://github.com/ThilinaRajapakse/simpletransformers
fhttps://huggingface.co/
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Generating weak labels using Snorkel

Snorkel10, 11 generates weak labels in three steps: a) LF construction; b) creation of a generative model to capture
label agreements/disagreements; and c) generation of probabilistic labels for sentences. Input for Snorkel pipeline are
unlabeled sentences from RCT publications extracted from PMC-OA.

LFs are expert-defined heuristic rules that can be used to label sentences. For NLP tasks, these can be based on text
patterns, syntactic structure, or external knowledge bases. In general, LFs that have high coverage and low overlap are
desirable. Such LFs apply to many instances in the dataset yet are unique enough to distinguish instances with different
labels. In this study, we used three LF approaches to label CONSORT items: keyword-based, section header-based,
and sentence similarity-based. 17 individual LFs were created for each approach (one corresponding to each label).

Keyword-based LFs. These LFs mimic the keyword-based method used in previous work7. Each CONSORT item is
associated with a set of keywords or phrases (e.g., power to detect with Sample Size Determination (7a)). A total of
232 phrases are used. Each LF checks whether an input sentence contains one of its keyphrases, and if so, returns the
corresponding label as a weak label (or NO-LABEL, if the sentence does not contain a relevant keyword/phrase).

Section header-based LFs. These LFs also mimic a baseline method from earlier work7. In this case, common
subsection headers in Methods sections are associated with CONSORT labels. 48 section header key words/phrases
are mapped to CONSORT items (e.g., the word concealment to the item Allocation Concealment (9)). These LFs
check whether the header of the section to which the sentence belongs matches one of the relevant key phrases.

Sentence similarity-based LFs. These LFs assign weak labels to unlabeled sentences based on their similarity to a
small set of “ground truth” sentences (a set of 95 sentences provided as examples for specific checklist items in the
CONSORT Explanation and Elaboration document1 and the CONSORT websiteg). We used BioBERT to generate
low-dimensional vector representations of these sentences. For a given unlabeled sentence, we calculate its cosine
similarity with every ground truth sentence and consider two labels based on similarity scores: the label of the sentence
with the highest similarity and the label that appears most frequently for the top 10 most similar ground truth sentences.
If two labels are the same, we use it as the sentence label. Manual checks showed this combination to be more accurate
than the most similar sentence label only.

Snorkel applies all LFs to generate a LF matrix that shows the coverage, overlaps, and conflicts between the LFs.
Coverage information indicates the fraction of the dataset that a particular LF is applied. Overlap information shows
the fraction of dataset where a particular LF and at least one other LF agree. Conflict indicates the fraction of dataset
where a particular LB and at least one other LF disagree. Snorkel pools noisy signals from the these three features into
a generative model to learn the agreements and disagreements of the LFs, thus assessing the weights of accuracy for
each LF. The model then takes into account these accuracies to make a final prediction of the label for each sentence.

Generating synthetic data using UMLS-EDA

Several CONSORT items are infrequently reported, as they are contingent upon changes in the trial, which may or
may not occur (e.g., Changes to Trial Design (3b)h). In previous work, text mining methods yielded poor results for
these classes7, as may be expected. BASELINE model, although it performed best overall in terms of micro-averaging,
yielded no predictions for five labels (out of 17) and less than 0.5 F1 score for 11 items. We do not expect Snorkel
to provide significant number of examples for infrequently reported items, since they are also likely to be rare in the
unlabeled dataset and Snorkel’s generative model relies on LF agreement, also likely to be uncommon for such labels.

Therefore, we sought to improve the classification performance for such infrequently reported labels using data aug-
mentation. Specifically, we used UMLS-EDA21 and leveraged UMLS synonyms to generate sentences that are similar
to the training instances in CONSORT-TM. We define a class as rare if the class frequency in the original dataset
(f ) is under a pre-determined threshold (t). In generating additional instances, we make up the difference between
the frequency in the original dataset and the threshold (i.e., t - f instances generated) to make the distribution of the
training dataset more uniform. If a class is not rare in the original dataset (i.e., f >= t), no sentences are generated for
that label.

ghttp://www.consort-statement.org/examples/sample
hWe use the item numbers used in CONSORT guidelines, as well, hereafter.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.14.21263586doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263586
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: Example of data augmentation using UMLS-EDA. Bold words indicate modifications made by UMLS-EDA.
The label of the original sentence is Eligibility Criteria (4a).

Operation Sentence
Original children were excluded if they had impaired fasting glucose, were diabetic, or reported

a diagnosed renal, or hepatic disease that might alter body weight.
Synonym replacement
(WordNet)

children were leave off if they had impaired fast glucose, were diabetic, or account a
diagnosed renal, or liverwort disease that mightiness alter body weight.

Random insertion children mightiness were excluded if they had impaired fasting mightiness leave off
glucose, were diabetic, or reported a diagnosed child renal, or hepatic disease that might
alter body weight.

Random swap children were diagnosed if they had impaired fasting glucose, might excluded or a
reported renal, diabetic, hepatic disease that were alter body weight.

Random deletion children were excluded if they had impaired fasting glucose, were diabetic, or reported
a diagnosed renal, or hepatic disease that might alter body weight.

Synonym replacement
(UMLS)

children were excluded if they had impaired fasting glycaemia, were diabetic, or in-
forming a diagnose nephros gastric, or liver disease that might alter body weight.

UMLS-EDA uses five operations to augment data. Synonym replacement using WordNet randomly chooses n words
from the given sentence that are not stopwords and replaces each with a synonym randomly chosen from WordNet.
Random insertion inserts random WordNet synonyms of n words in the sentence in random positions. Random swap
randomly swaps the position of two words and repeats this n times. Random deletion samples and deletes n words
according to a uniform distribution. Synonym replacement using UMLS36 identifies all the UMLS concepts in the
sentence and randomly replaces n words in the sentence with a UMLS synonym, also randomly selected. Operations
of UMLS-EDA data augmentation are illustrated on an example sentence in Table 1. The parameter n is determined
dynamically based on the sentence length (l) and the operation type (n = 0.5*l for synonym replacement with UMLS
at most and n = 0.2*l for others). While UMLS-EDA aims to generate t-f instances, in most cases, a larger number of
instances are generated using these operations and we subsample from the generated instances to reach the threshold.

Evaluation

We evaluated whether weak supervision strategies generated labels useful for improving sentence classification per-
formance. For this purpose, we compared the results obtained with BASELINE model on the CONSORT-TM dataset
using 5-fold cross validation to results obtained when weakly labeled examples from different strategies are added to
the training portion of the folds in cross validation. Note that in this setup, data used for validation and testing in each
fold remain the same for all the models. As in previous work, we used standard metrics for evaluation: precision,
recall, and their harmonic mean, F1 score. In addition to calculating these measures per CONSORT item, we also
report micro- and macro-averaged results and the area under ROC curve (AUC).

Results
Weak supervision using Snorkel

Our search strategy retrieved a total of 608K RCTs from PubMed, with 155,183 publications having XML full text in
PMC. RCT Tagger predicted 71,948 of these as RCTs. Considering only those predicted with a confidence score over
0.95 reduced the dataset to 14,534 publications. Further eliminating publications with protocol in the title, we obtained
a set of 11,988 papers. A total of 721,948 sentences from these publications was reduced to 551,936 sentences after
the filtering approaches discussed above were applied.

We processed 551,936 unlabeled sentences using the Snorkel model, which resulted in 17 probabilities generated for
each sentence by the model. We empirically set a probability threshold of 0.8 to predict the final weak labels for
the unlabeled sentences. If no label was predicted with a probability higher than 0.8, no label was assigned. The
distribution of weak labels generated by Snorkel are shown in Table 2. Noting that most weak labels corresponded to
items that are already relatively well-represented in the dataset, we limited the number of weakly labeled examples
for each CONSORT item to a pre-determined threshold in our classification experiments and randomly sampled these
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examples. We report the results with the threshold that performed best in our experiments (500).

Weak supervision using UMLS-EDA

We used thresholds 50, 100, and 200 to generate on average 246, 844, and 2217 additional examples, respectively,
using UMLS-EDA. Data augmentation was implemented as part of 5-fold cross-validation, and therefore, number
of examples between folds differ. The numbers of instances for each label in the original dataset and the augmented
datasets (for one of the folds) are shown in Table 2. Note that a label can be considered rare or not at different threshold
values and may or may not be augmented. For example, while the item Statistical Methods for Other Analyses (12b)
is not rare when the threshold is 50, it is considered rare for the threshold 100 and, therefore, augmented (Table 2).
The number of rare class instances generally do not add up to the threshold exactly, because it is possible to label an
augmented example with more than one class.

Table 2: The frequency of each methodology item in CONSORT-TM and the augmented data generated by Snorkel
and UMLS-EDA. Highlighted numbers correspond to the cases when the CONSORT item was considered a rare label
and augmented for the given threshold t.

CONSORT Item Snorkel UMLS-EDA
Original t=50 t=100 t=200

Trial Design (3a) 3,932 55 66 151 312
Changes to Trial Design (3b) 0 10 60 124 249
Eligibility Criteria (4a) 17,182 129 132 140 222
Data Collection Setting (4b) 740 32 50 110 227
Interventions (5) 11,415 199 212 250 336
Outcomes (6a) 24,104 535 537 551 575
Changes to Outcomes (6b) 0 4 54 109 219
Sample Size Determination (7a) 6,674 93 93 100 203
Interim Analyses / Stopping Guidelines (7b) 124 14 50 100 200
Sequence Generation (8a) 7 35 70 174 395
Randomization Type (8b) 2915 40 66 165 358
Allocation Concealment (9) 274 13 55 116 236
Randomization Implementation (10) 1,785 42 71 174 377
Blinding (11a) 525 47 59 127 266
Similarity of Interventions (11b) 3 15 54 124 255
Statistical Methods for Outcomes (12a) 45,353 215 217 227 258
Statistical Methods for Other Analyses (12b) 49 65 65 100 200
NO LABEL 436,854

Classification results

We trained and tested BASELINE and BASELINE OPT models on CONSORT-TM using 5-fold cross-validation. In other
experiments, we used various sizes of weakly supervised data obtained using Snorkel and UMLS-EDA as additional
training data. For brevity, we only report the results for the best-performing model-data size combination. For Snorkel,
this is BASELINE OPT model augmented with maximum 500 examples per label. For UMLS-EDA, it is the same
model augmented with UMLS-EDA data with a threshold of 50. The results (Table 3) show that hyperparameter
tuning (BASELINE OPT) makes a significant difference in performance (7% increase in micro-F1 and 63% increase in
macro-F1), while the impact of weak supervision strategies seems minor; Snorkel data leads to a slight performance
degradation, while UMLS-EDA data increases micro-F1 by one percentage point and AUC with 1.6 points, with
practically no change in macro-F1.
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Table 3: Classification results using CONSORT-TM and weakly supervised data. SNORKEL(500) uses BASE-
LINE OPT with additional 500 instances per label from Snorkel data. UMLS-EDA(50) uses BASELINE OPT with ad-
ditional instances from UMLS-EDA to add up to at least 50 instances for each label. 3a: Trial Design; 3b: Changes
to Trial Design; 4a: Eligibility Criteria; 4b: Data Collection Setting; 5: Interventions; 6a: Outcomes; 6b: Changes
to Outcomes; 7a: Sample Size Determination; 7b: Interim Analyses/Stopping Guidelines; 8a: Sequence Generation;
8b: Randomization Type; 9: Allocation Concealment; 10: Randomization Implementation; 11a: Blinding Procedure;
11b: Similarity of Interventions; 12a: Statistical Methods for Outcomes; 12b: Statistical Methods for Other Analyses.
P: precision; R: recall; F: F1 score; AUC: Area Under Receiver Operator Characteristic (ROC) Curve.

CONSORT Item BASELINE BASELINE OPT SNORKEL(500) UMLS-EDA(50)
P R F P R F P R F P R F

3a 0.93 0.49 0.63 0.83 0.82 0.82 0.74 0.77 0.75 0.82 0.75 0.78
3b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4a 0.90 0.82 0.85 0.91 0.87 0.89 0.88 0.88 0.88 0.93 0.88 0.90
4b 0.80 0.24 0.36 0.93 0.84 0.87 0.81 0.80 0.79 0.83 0.80 0.81
5 0.76 0.69 0.72 0.76 0.75 0.75 0.73 0.76 0.73 0.76 0.76 0.75
6a 0.84 0.78 0.81 0.81 0.83 0.82 0.83 0.83 0.83 0.83 0.83 0.83
6b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7a 0.88 0.80 0.84 0.90 0.88 0.88 0.87 0.93 0.90 0.90 0.90 0.90
7b 0.00 0.00 0.0 0.92 0.61 0.70 0.72 0.68 0.70 0.95 0.71 0.78
8a 0.86 0.26 0.38 0.92 0.87 0.88 0.86 0.69 0.76 0.91 0.87 0.88
8b 0.71 0.29 0.38 0.75 0.72 0.73 0.65 0.71 0.67 0.81 0.70 0.75
9 0.00 0.00 0.00 0.58 0.46 0.45 0.41 0.41 0.40 0.54 0.51 0.43
10 0.72 0.15 0.24 0.61 0.48 0.53 0.48 0.56 0.50 0.55 0.50 0.52
11a 0.77 0.29 0.42 0.71 0.65 0.66 0.60 0.61 0.59 0.744 0.61 0.66
11b 0.00 0.00 0.00 0.60 0.44 0.45 0.70 0.31 0.41 0.57 0.44 0.44
12a 0.75 0.76 0.75 0.75 0.81 0.77 0.74 0.84 0.78 0.74 0.83 0.78
12b 0.05 0.03 0.04 0.40 0.30 0.32 0.40 0.21 0.24 0.48 0.26 0.31
Micro-average 0.82 0.63 0.72 0.79 0.76 0.77 0.76 0.75 0.76 0.80 0.76 0.78
Macro-average 0.52 0.33 0.38 0.67 0.61 0.62 0.61 0.58 0.58 0.67 0.61 0.62
AUC 0.812 0.876 0.875 0.892

Discussion
Weak supervision with Snorkel

Approximately 21% of unlabeled sentences were assigned a weak label by Snorkel. The number of weakly assigned
labels reflected to some extent the distribution of labels in the original dataset; many sentences were weakly labeled
with common labels, such as Outcomes (6a). On the other hand, Snorkel failed to weakly label any sentences with
two most infrequent labels (Table 2).

The quality of Snorkel labels depends largely on the quality of LFs. We used two LFs based on heuristics explored
in previous work. Micro-F1 for both methods were found to be around 0.50 in previous work (0.50 for keyword-
based and 0.45 for section header-based). More accurate LFs could lead to better models of LF behavior, improving
Snorkel results. To better understand the quality of Snorkel-generated weak labels, we sampled 318 sentences and
two authors of this paper (LH and HK) independently labeled the sentences, without access to Snorkel labels. We
calculated the agreement of these annotations with Snorkel-generated labels, using Krippendorff’s α with the distance
metric MASI37 which accounts for partial agreement in the case of multiple labels. α agreements between Snorkel
and each annotator were found to be 0.46 and 0.61, respectively. Inter-annotator agreement was 0.59. Interestingly,
agreement between Snorkel and simple majority vote was 0.93. Agreement results suggest that Snorkel may converge
to this simple heuristic in some cases, and that it behaves more or less like another annotator in the process.

We found that a large percentage of annotator disagreement with Snorkel came from randomization-related labels
(items 8a, 8b, 9, and 10). These items often appear in the same sentence and the clues for them can be overlapping,
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making it a challenge to label them accurately for both humans and automated methods. In previous work, we found
inter-annotator agreement for these items to be somewhat low as well (α=0.62, 0.48, 0.34, 0.35, respectively)7. Snorkel
tends to pick a single label for sentences, and this was especially problematic for randomization-related sentences.

Weak supervision using UMLS-EDA

Data augmentation is expected to reduce overfitting and help with model robustness17. While generating data using
UMLS-EDA is relatively cheap, the resulting sentences are generally not meaningful, making it difficult to assess the
quality of the augmented data (in contrast to Snorkel), aside from the downstream model performance that it produces.
We make several observations based on our examination of the augmented data. One of the data augmentation op-
erations (synonym replacement with UMLS) may need to be refined. UMLS synonyms that are used to replace the
original words/phrases are sometimes different from the original only in trivial ways (acronyms or swapped tokens),
and strategies that only allow more significant replacements could be beneficial. For example, it might be worthwhile
to limit the replacement only to terms of particular semantic types or part-of-speech tags. Similar observations were
made for synonym replacement with WordNet, as well. Some replacements involved functional words, which may not
be as beneficial as replacing content words (nouns, adjectives).

Effect of weak supervision and model hyperparameters on classification performance

We did not observe significant improvements in classification performance due to weakly supervised data. Neither
strategy led to any correct predictions for the two most infrequent labels (3a, 6a). While this was not unexpected in the
case of Snorkel (as no additional examples were labeled with these items), it was more surprising in the case of UMLS-
EDA, which seemed to generate sufficient number of examples for these items. We observed AUC improvement with
UMLS-EDA (0.892 vs. 0.876 with BASELINE OPT), which may indicate that UMLS-EDA helps with robustness and
generalizability. As UMLS-EDA approach is cheap, further refinements to it may be promising as a future direction.

Somewhat to our surprise, we found that model hyperparameters made a much more significant difference in model
performance. BASELINE OPT model yielded about 7% improvement in micro-F1 and 63% improvement in macro-F1

over the BASELINE model, with improvements in almost all labels. To assess how hyperparameters interacted with
weak supervision, we also measured performance when BASELINE model (instead of BASELINE OPT) was trained
with weakly supervised data. Using Snorkel for weak supervision in this scenario improved micro-F1 from 0.72 to
0.75, suggesting that hyperparameter optimization may, in some cases, obviate the need for additional (noisy) data.

Limitations

Our investigation was limited to one relatively small corpus. The findings regarding weak supervision (as well as
Snorkel and UMLS-EDA specifically) may not be generalizable to other corpora. We used few heuristics with modest
performance as LFs and Snorkel label quality is likely to be improved with with additional more accurate LFs; however,
this requires some domain expertise. While we performed some hyperparameter tuning, we did not do an exhaustive
search for optimal parameters, and it is possible that more optimal hyperparameters can improve results further.

Conclusions and future work

We investigated the impact of two weak supervision strategies on multi-label sentence classification models of RCT
publications. We did not observe a clear positive impact of weak supervision on the specific task we studied. More
experiments would be needed to determine whether this is a corpus-specific finding or it is more general. Various
forms of weak supervision has been shown to improve classification performance12, 16, mostly in multi-class cases;
therefore, it is possible that our weak supervision strategies need more refinement for the multi-label case.

In future work, we plan to refine our approach. For example, in UMLS-EDA, we can devise methods to generate more
contextually appropriate synonyms from WordNet and UMLS. Snorkel would benefit from more accurate LFs. Other
semi-supervised learning approaches (e.g., self-training38, few-shot learning39) can also be investigated as alternatives.
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