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Deep neural networks are increasingly used for neurological
disease classification by MRI, but the networks’ decisions are
not easily interpretable by humans. Heat mapping by deep
Taylor decomposition revealed that (potentially misleading) im-
age features even outside of the brain tissue are crucial for
the classifier’s decision. We propose a regularization technique
to train convolutional neural network (CNN) classifiers utiliz-
ing relevance-guided heat maps calculated online during train-
ing. The method was applied using T1-weighted MR images
from 128 subjects with Alzheimer’s disease (mean age=71.9+8.5
years) and 290 control subjects (mean age=71.3+6.4 years). The
developed relevance-guided framework achieves higher classi-
fication accuracies than conventional CNNs but more impor-
tantly, it relies on less but more relevant and physiological plau-
sible voxels within brain tissue. Additionally, preprocessing ef-
fects from skull stripping and registration are mitigated, render-
ing this practically useful in deep learning neuroimaging stud-
ies. Understanding the decision mechanisms underlying CNNs,
these results challenge the notion that unprocessed T1-weighted
brain MR images in standard CNNs yield higher classification
accuracy in Alzheimer’s disease than solely atrophy.
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Introduction

Alzheimer’s disease (AD) is the most common form of de-
mentia with about 50 million patients and a substantial bur-
den for our healthcare systems, caregivers and next of kin
(Scheltens et al., 2021). While postmortem diagnosis can
be obtained from the histological examination of tissue sam-
ples from affected anatomical regions (Braak et al., 2006;
Braak and Braak, 1991), in vivo diagnosis is hampered
by clinical symptom similarities and its accuracy is rather
low (71%—-87% sensitivity and 44%—71% specificity) (Oldan
et al., 2021). In addition to clinical and neuropsychological
tests, medical imaging is increasingly used to strengthen di-
agnosis by PET imaging ligands to amyloid-3 and tau pro-
teins combined with MRI. Recently revised diagnosis cri-
teria for AD are clinical-biological and require both clini-
cal phenotype and biomarker evidence (AP or tau) of AD
(Dubois et al., 2021). Although the presence of extracellular
neuritic A plaques is part of several diagnosis criteria their
clinical value is discussed controversially, whereas selective

tau ligands do reflect clinical severity and memory impair-
ment and also serve for in-vivo Braak-staging (Biel et al.,
2021). Based on imaging tau pathology, recent fascinating
data-driven work found that tau-PET can be used to iden-
tify four spatiotemporal phenotypes which exhibit different
clinical profiles and longitudinal outcomes and thus opens
an avenue for personalized treatment (Vogel et al., 2021).
However, AD has a long prodromal and asymptomatic in-
flammatory phase where radioactive PET tracers cannot be
used as a means for its prognosis in a healthy population.
Because pathological changes are occurring decades before
initial clinical manifestations, early biomarkers in a broad
population might be obtained best by MRI, where volume-
try and especially hippocampal atrophy are presently used as
imaging marker (Henneman et al., 2009; Leung et al., 2013;
Sluimer et al., 2008).

Deep learning is omnipresent in medical imaging, including
image reconstruction (Hammernik et al., 2018), segmenta-
tion (Kleesiek et al., 2016), and classification (Esteva et al.,
2017; Béckstrom et al., 2018). Convolutional neural net-
works (CNNs) are utilized for neurological disease classifi-
cation (Noor et al., 2020; Vieira et al., 2017; Zhang et al.,
2020) and regression (Dinsdale et al., 2021a) in prevalent
neurological disorders such as Alzheimer’s disease (Oh et al.,
2019; Bickstrom et al., 2018; Bohle et al., 2019; Korolev
et al., 2017), Parkinson’s disease (Karapinar Senturk, 2020)
and multiple sclerosis (Eitel et al., 2019).

Despite their improved performance, those models are gener-
ally not easily interpretable by humans and deep neural net-
works (DNNs) are mostly seen as black boxes where data in
combination with extensive learning efforts yields decisions
(Davatzikos, 2019). One striking example of misguided fea-
ture extraction of DNNSs is described in (Lapuschkin et al.,
2019), where secondary photo watermarks identified horses
better than the actual animal print. In the context of brain
MRI it has been shown that learned features for age estima-
tion are influenced by the applied registration type (linear vs.
nonlinear) (Dinsdale et al., 2021a). However, no systematic
investigation of the preprocessing of brain MR images for
disease classification with CNNs has been conducted, but the
studies (Bohle et al., 2019; Eitel et al., 2019; Oh et al., 2019)
aimed at explaining their applied classifier. Preprocessing is
a crucial step, with skull stripping (brain extraction) creating
artificial edges and interpolation and regridding necessary for
registration. CNNs can incorporate these newly introduced
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features during training and base their classification results
thereon.

Medical imaging has high legal requirements as e.g. the EU’s
General Data Protection Regulation (GDPR) explicitly re-
quires the right to explanation for users subjected to decisions
of an automated processing system (Goodman and Flaxman,
2017) and the US are endorsing the OECD Al Principles
of transparency and explainability (OECD, 2019). Conse-
quently, medical decision-supporting algorithms require ver-
ifying that this is not the result of exploiting data artifacts
and that the high accuracy of classification decisions are ex-
plainable to avoid biased results (Lapuschkin et al., 2019,
2016). In the present work we used heat (or saliency) map-
ping, which is enabling perceptive interpretability to explain
a classification result in terms of maps overlaid on the in-
put (Tjoa and Guan, 2020). Regions in the input image
contributing most to the classification result are highlighted
in the heat map. From several methods currently available
generating heat maps (Ribeiro et al., 2016; Simonyan et al.,
2014; Springenberg et al., 2015; Zeiler and Fergus, 2014;
Zintgraf et al., 2017), we based our proposed method on the
deep Taylor decomposition (DTD) method (Montavon et al.,
2017) which is a special case of layer-wise relevance propa-
gation (LRP) (Bach et al., 2015). LRP, has a solid theoretical
framework, has been extensively validated (Montavon, 2019;
Samek et al., 2017) and can be efficiently implemented, en-
abling online heat map generation during training.

Besides indications from aforementioned studies, our ex-
periments on Alzheimer’s disease classification showed that
CNNs might learn from (misleading) features outside the
parenchyma or features introduced by the skull stripping al-
gorithm. Thus, besides investigating how preprocessing steps
including registration and skull stripping identify relevant
features, we additionally present a novel relevance guided al-
gorithm, mitigating the necessity and impact of skull strip-
ping for classification of brain diseases. Based on its im-
plementation this is referred to as Graz™ technique (guided
relevance by adaptive z T -rule).

In summary, the specific contributions of this work are:

* CNN-based disease classification in a cohort of 128 pa-
tients with AD and 290 age-matched normal controls.

» Using subject-level 3D T1-based MR image data, dif-
ferently preprocessed regarding registration and skull
stripping.

 Graz™ technique: A relevance-guided regularization

technique for CNN classifiers to mitigate the impact
of MRI preprocessing.

* Making the framework’s source code freely available
for reproducibility of the presented results.

Methods

Subjects. Inclusion criteria for all participants was a diag-
nosis of probable or possible AD according to the NINCDS-
ADRDA criteria (Knopman et al., 2001) and a complete MRI
and study protocol as described in detail in (Damulina et al.,

2020). The healthy control (HC) group was selected from
participants of a study in community-dwelling individuals.
These volunteers were randomly selected from the commu-
nity register, had a normal neurological status, and were with-
out cerebrovascular attacks and dementia as previously de-
scribed (Schmidt et al., 2003). This study was approved by
the ethics committee of the Medical University of Graz' and
signed written informed consent was obtained from all study
participants or their caregivers. The trial protocol for this
prospective study was registered at the National Library of
Medicine (trial identification number: NCT02752750).

MR imaging. We retrospectively selected 264 MRI scans
from 128 patients with probable AD (mean age=71.9+8.5
years) from our outpatient clinic and 378 MRIs from 290 age-
matched healthy controls (mean age=71.3+6.4 years) from
an ongoing community dwelling study. Patients and con-
trols were scanned using a consistent MRI protocol at 3
Tesla (Magnetom TimTrio; Syngo MR B17; Siemens Health-
ineers, Erlangen, Germany) using a 12-channel phased-
array head coil. Structural imaging included a T1-weighted
3D MPRAGE sequence with 1 mm isotropic resolution
(TR/TE/TI/FA = 1900 ms/2.19 ms/900 ms/9°, matrix =
176x224x256) and an axial FLAIR sequence (resolution of
1x1x3mm?3) for the assessment of white matter abnormalities.

Preprocessing. Brain masks from T1-weighted images for
each subject were obtained using BET from FSL 6.0.3 with
a fractional intensity threshold of 0.35 and bias field/neck
cleanup enabled (Smith et al., 2004). T1-weighted images
were registered to the MNI152 T1 template (A) affinely, us-
ing FSL flirt with 6 degrees of freedom and a correlation ratio
based cost function, and (B) nonlinearly, using FSL fnirt with
the 71_2_MNI152_2mm configuration.

Volumetry. For comparison between deep learning and lo-
gistic regression models for AD classification, we calculated
whole brain, grey matter as well as ventricular volume using
FSL-SIENAX with a fractional intensity threshold of 0.35
and bias field/neck cleanup enabled (Smith et al., 2002).

Classifier network. We utilized a 3D classifier network,
combining a single convolutional layer (kernel 8x8x8, 8
channels) with a down-convolutional layer (kernel 8x8x8, 8
channels, stridding 2x2x2) as the main building block. The
overall network stacks 4 of these main building blocks fol-
lowed by two fully connected layers (16 and 2 units). Each
layer is followed by a Rectified Linear Unit (ReLU) nonlin-
earity, except for the output layer where a Softmax activation
is applied.

Heat mapping. Heat maps were created based on the deep
Taylor decomposition method described in (Montavon et al.,
2017). Due to the nature of brain MRI data, we extended the
currently available implementation from (Alber et al., 2019)
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to full 3D. The heat mapping method is used for both visual-
ization and the relevance-guided classifier network.

Relevance-guided classifier network. The proposed
relevance-guided network architecture focuses the classifier
network on relevant features by extending the given network
(cf. Figure 1 top) with a relevance map generator (cf. Figure
1 bottom). To this end we implemented the deep Taylor de-
composition (zT-rule) to generate the relevance maps of each
input image depending on the classifier’s current parameters
during training, yielding the Graz™ technique (guided rele-
vance by adaptive zt-rule).

Loss function. In order to guide the training process by the
attention mask (IM), we extended the classifier’s categorical
cross entropy loss (lossccg) by a relevance-guided loss term:

lossrelevance(R M) VCC(R ® M) €))

consequently yielding the total loss per data sample:

10886, + = 10SSrelevance 1+ 108SccE

outputs (2)
Vec (RoOM) — Z yi - log(9:),

where R denotes the relevance, M is a predefined (binary)
attention mask, vec(A) denotes the row major vector repre-
sentation of A, and 1 is a vector where all elements are set to
one. For the categorical cross entropy y; is the target value of
the ¢-th output class and g¢; its predicted value. The negative
sign accounts for the maximization of the relevance and ®
denotes the Hadamard product.

Attention mask. Brain masks obtained by FSL-BET (pa-
rameters described before) were used to focus the classifiers
to brain parenchyma.

Training. We trained models for 3 differently preprocessed
T1-weighted input images

* in native subject space,

* linearly registered to MNI152 template and

* nonlinearly registered to MNI152 template

and all cases were tested in

« standard classifier network with native images,
¢ standard classifier network with the skull removed and

* our relevance-guided method with predefined attention
masks,

creating overall nine models. Each model was end-to-end
trained with standard loss minimization and error backprop-
agation using Adam optimizer with learning rate set to le-4,
51 set t0 0.9, Bo set to 0.999 and € set to le-7 (Kingma and
Ba, 2015) for 60 epochs with a batch size of 8.
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Cross validation. AD and HC data were split up randomly
into five folds, while maintaining all scans from one person in
the same fold (Wen et al., 2020). Final folds were created by
combining one fold from each cohort to ensure class distribu-
tion within. The difference in the class sizes was accounted
for using a class weighting in the loss function.

Model selection. The optimal models based on the standard
classifier networks were selected by highest validation clas-
sification accuracy. The relevance inside the attention mask
threshold was set to 90% for the Graz' networks, enforc-
ing models where most of the relevance is inside the brain
parenchyma.

Relevance-weighted heat map representation. Besides
qualitatively investigating individual heat maps, we calcu-
lated mean heat maps and histogram for each mean heatmap.
Starting with the bin with the highest relevance values, the
bin contents were added up until 50% of all relevance was
included. The lower value of the last bin added was used as
the lower value for windowing the mean heatmap. All heat
maps shown in this paper are overlaid on the MNI152 1mm
template and windowed to present the top 50% of relevance.

Relevance density. The relevance density describes the
contribution of individual voxels of the heat map to the classi-
fication result. For all models we compare how many voxels
are necessary to reach a certain level of explanation, e.g. how
many voxels are needed to explain 85% of the total relevance.

Source code and data availability. Source code for Graz™
and the image preprocessing is available under www.
neuroimaging.at/explainable—-ai. The MR im-
ages used in this paper are part of a clinical data set and there-
fore are not publicly available. Formal data sharing requests
will be considered.

Results

Model performances. Table 1 reports the mean perfor-
mance for the cross validation setup of all tested configura-
tions. In summary:

* While models with skull stripping perform better than
those without, the Graz™ models yield even better bal-
anced accuracy.

* The Graz™ model with linearly registered input had the
highest balanced accuracy (86.19%), AUC (0.92) and
also regarding specificity (92.66%).

e Linear and nonlinear registration improves the bal-
anced accuracy independently of skull stripping and
utilization of Graz™.

* The logistic regression model based on volumetric in-
formation for the entire brain, grey matter, and ventric-
ular volume yielded a balanced accuracy of 82.00%,
which is comparable or even outperforming some CNN
models without skull stripping.
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Fig. 1. Schematic overview of the Graz network and the adapted training process. A conventional classifier network (top) is extended by the heat map generator (bottom).
For each classifier network layer a corresponding relevance redistribution layer with shared parameters and activations is attached to the generator network. The online
calculated heat map is guiding the classifier training by adding a relevance sum inside the binary attention mask (10ssrelevance), Which is added to the categorical cross entropy

loss (losscce), yielding the total loss (l0ssg,,,+ ). © denotes the Hadamard product.

Table 1. Mean performance (in %) for the different models on all holdout data sets of cross validation. Highest values per column are highlighted in bold.
*logistic regression by FSL-SIENAX (BET + tissue segmentation)
AUC, area under the curve of the receiver operating characteristics.

Classifier Skull stripping Registration Balanced accuracy Sensitivity Specificity AUC
- 71.26+2.86% 55.55£751%  86.96+3.95%  0.75+0.02
CNN no lin. 74.27£3.83% 63.13+9.05%  85.40+6.45%  0.80%0.05
nonlin. 77.61+4.44% 64.79£5.02%  90.43£5.19%  0.85+0.06
- 77.66+4.39% 69.70£7.65%  85.63x4.06%  0.83+0.05
CNN yes lin. 79.45£3.34% 76.87+4.81%  82.03+6.23%  0.86+0.05
nonlin. 82.13+£5.08% 73.47+£7.89%  90.78+4.92%  0.88+0.05
- 80.66+4.80% 74.95£7.85%  86.36+2.85%  0.88+0.04
CNN+Graz™ no lin. 86.19+6.01% 79.73£10.72%  92.66%£3.73%  0.92+0.04
nonlin. 83.50+5.90% 77.16+£8.95%  89.83+4.49%  0.90+0.04
Logistic Regression*  yes n.a. 82.00+4.25% 80.57£7.16%  83.43+2.45%  0.90+0.04
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As the wused dataset is nearly balanced (Saito and
Rehmsmeier, 2015), the corresponding mean receiver operat-
ing characteristics (ROC) curves for these models are shown
in Figure 2.

Heat mapping. Mean heat maps for classification decisions
on cross validation holdout data sets for all trained models
are shown in Figure 3, overlaid on the MNI152 Imm tem-
plate. Visual inspection of the heat maps reveals that the
processing type (unmasked/masked/Graz™) yields substan-
tially different results (columns), while the impact of the reg-
istration type (no registration/linear/nonlinear) is rather lim-
ited. Although mean heat maps in each column appear visu-
ally similar, applying registration to input MRIs improves the
balanced accuracy. When using the native T1-weighted im-
ages as input, the most relevant features are obtained in the
scalp/skull outside brain parenchyma (unmasked configura-
tions, left column). When skull stripping of the input MRIs
is applied, the highest relevances are found in the cerebral
and cerebellar cortex or generally adjacent to the brain-CSF-
interface (middle column). While the aforementioned classi-
fiers also show minor relevances in central brain regions, the
maps from Graz' show relevant regions exclusively within
deep gray and white matter tissue adjacent to the ventricles
(right column).

Figures 3 and 4 show mean heat maps for classification de-
cisions of all cross validation holdout data sets for all trained
models, overlaid on the MNI152 template.

Figure 5 shows that the Graz™ training increased the spar-
sity of the utilized features, where the 10% most relevant
voxels (x-axis) explain approximately 20% (unmasked), 35%
(masked) and 75% (Graz™) of the total relevance.

Discussion

Summary. The present work investigated the mechanisms
underlying brain disease classification by CNNs. Under-
standing the classifier’s decision(s) is highly relevant, not
only from an ethno-clinical but particularly from a legal
perspective. We demonstrated how dramatic T1-weighted
Alzheimer’s disease classification is depending on volumet-
ric features. Moreover, we show that preprocessing of neu-
roimaging data is decisive for feature identification because
it introduces novel misleading features subsequently utilized
for classification. The presented Graz™ technique is address-
ing these issues by focusing the feature identification on the
parenchyma only. This yields higher classification accuracy
than conventional CNN-methods, but more importantly, it
renders MR image preprocessing obsolete and is resolving
an essential practical neuroimaging question.

Impact to deep learning-based neuroimaging studies.
Our motivation for this work was driven by simple recur-
ring questions in clinical brain MRI studies: Should the skull
from a conventional T1-weighted MRI be stripped for fur-
ther processing or should the entire MRI including skull and
neck be used? Additionally, whether and which type of im-
age registration is required or best as the next preprocess-
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ing step? Showing that the preprocessing of MR images is
crucial for the feature identification by CNNs has severe im-
plications for neuroimaging based machine learning classifi-
cations. A majority of analysis pipelines apply skull strip-
ping during image processing. This avoids the identification
of features outside of the brain tissue, but in turn introduces
new edges at the newly created brain mask, which are sub-
sequently used by the CNN for classification. We anticipate
that decisions also might be misled by underlying contrib-
utors such as the implementation of the skull stripping al-
gorithm, brain atrophy, but also might reflect visually not
observable information as involuntary patients’ movements.
Generally, the source and extent of the newly introduced
features remains unclear, however it was demonstrated that
skull stripping algorithms can be biased by the patient cohort
(Fennema-Notestine et al., 2006), thus, additionally biasing
the classification. Addressing these shortcomings, the pro-
posed relevance-guided Graz™ method identified regions of
highest relevance in brain parenchyma while the balanced ac-
curacy remained comparable or even better. Moreover, pool-
ing data from rare diseases or generally small datasets often
yield potentially spurious results and low replicability (Varo-
quaux, 2018). Its invariance from registration and skull strip-
ping methods provides a clinically usable method for CNN-
based classification studies which might be practically useful
when pooling data from different scanners and sites (Clarke
et al., 2020) or assisting statistical harmonization (Dinsdale
et al., 2021b; Pomponio et al., 2020).

Neuroanatomical and Biophysical Interpretation. This
section highlights plausible mechanisms underlying CNN-
based disease classification in AD by analyzing the neu-
roanatomical position of voxel relevance observed by heat
mapping. The highest relevances were observed in the scalp
for the CNN models using native (unmasked) input images.
With skull stripping (masked), the most relevant voxels were
found at the brain-CSF-interface, respectively, at the newly-
introduced edges of the brain parenchyma. Anatomically,
these regions are substantially overlapping with cortical grey
matter, where atrophy is a well-known effect in AD. Cor-
tical grey matter changes might be reflected in the masked
CNNs decision, but seem rather implausible because of the
small magnitude compared to global atrophy and ventricular
enlargement. However, we cannot entirely rule out a sec-
ondary effect from the brain extraction algorithm biased by
the patient cohort (Fennema-Notestine et al., 2006). Both
CNN methods also identified some relevant voxel clusters
in deep gray and white matter adjacent to the lateral ventri-
cles (center of the brain), which were substantially smaller.
Given the spatial distribution of the relevances, we argue that
the two conventional CNN models are overwhelmingly sen-
sitive for global volumetric features. Further evidence there-
fore comes from the complementary volumetric analysis us-
ing an established neuroimaging tool for brain segmentation
(FSL-SIENAX) in a logistic regression model. The obtained
balanced accuracy of 82% is on par with the top CNN results.
Here the question arises whether these computational expen-
sive CNNs just resample a refined volumetric measurement?
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Fig. 2. Comparison of mean receiver operating characteristics curves for all nine configurations. The Grazt models (blue) show higher values for the area under the curve

(AUC in legend) compared to unmasked (purple) and masked (orange) configurations.

The Graz ™" -based models identified regions with highest rel-
evance mainly in deep gray and white matter located adjacent
to the lateral ventricles. However, the anatomical/biophysical
underpinnings of the decisions are less clear than in the con-
ventional CNN models. Beside aforementioned contributions
of volumetric features (AD progression is commonly par-
alleled by ventricular enlargement and global atrophy) also
the T1-weighted contrast can pathologically change in AD
(Besson et al., 1985). White matter hyperintensities (WMH)
are commonly seen in brain MRI in older people and beside
their underlying heterogeneous histopathology, they repre-
sent radiological correlates of cognitive and functional im-
pairment (Prins and Scheltens, 2015). In a previous study,
we found WMHs preferentially in a bilateral periventricular
location, partly overlapping with the regions identified here
by the Graz T -based models (Damulina et al., 2019). Further-
more, other plausible contributors are increased brain iron
deposition in the deep gray matter (basal ganglia) of AD pa-
tients (Damulina et al., 2020) or cumulative gadolinium de-
position of macrocyclic contrast agents (Kanda et al., 2014).
Nevertheless, with the given setup we cannot definitely dis-
entangle the underlying constituents and refer to the valida-
tion section below. The relevance density analysis revealed

that Graz™-based models learn much sparser features, sub-
sequently needing less voxels for inferring classification de-
cisions. Consequently, we hypothesize that the lack of mis-
leading voxels from the scalp or newly-introduced edges is
responsible for the increased accuracy.

Related work. With the availability of accessible large MRI
databases from patients, such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), AIBL or OASIS databases,
various studies using machine learning techniques exploiting
structural imaging data have been published, formerly using
classical machine learning classification methods (e.g.
LDA, SVM) in combination with feature extraction methods
based on tissue density (Kloppel et al., 2008), cortical
surface (Eskildsen et al., 2013) and hippocampal mea-
surements (Sgrensen et al., 2016). Reported classification
accuracies range between 75% and 100%, comprehensively
summarized in (Rathore et al., 2017). Recently, interests
switched to deep learning CNNs for (A) classification
(Bickstrom et al., 2018; Noor et al., 2020; Zhang et al.,
2020), (B) classification with explanation (Bohle et al.,
2019; Tang et al., 2019; Oh et al., 2019) and (C) regression
with explanation (Dinsdale et al., 2021a) of AD. A recent
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Fig. 3. Mean heat maps (highest relevances in yellow, overlaid on MNI152 template) and balanced classification accuracy (percentage). Unmasked and masked CNN
classifiers obtain relevant image features overwhelmingly from global volumetric information (left and center columns), whereas Graz™ exclusively relies on deep gray and

white matter tissue adjacent to the ventricles (right column).

review summarizes the state-of-the-art using CNNs for AD
classification, comparing various network architectures,
input data and disease subtypes (Wen et al., 2020). Strictly
in line with the data leakage analysis in this work we utilized
stratified cross validation, while maintaining all data sets
from one person in the same fold. Furthermore, we used the
input MR images in their native spatial resolution, avoiding
unpredictable influence from down- or resampling. While
most of the analyzed studies are based on the ADNI dataset,
our classification performance results are on par with both
remaining 3D subject-level approaches without data leakage
(Béckstrom et al., 2018; Korolev et al., 2017).

The inconsistency between learned features with linear
and nonlinear registration is systematically investigated
in (Dinsdale et al., 2021a). They found that the use of
nonlinearly registered images to train CNNs can drive the
network by registration artefacts. However, the influence
of further preprocessing steps on the resulting models and
performances is less well known. Heat mapping using the
LRP framework has been sparsely applied for explaining the
underpinnings of an AD diagnosis in convolutional neural
networks trained with structural MRI data beside the exten-
sive work of (Bohle et al., 2019). Heat maps obtained by
two techniques (LRP and guided backpropagation) indicate
relevant features adjacent to the brain-CSF interface, which
is in line with our work.
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Regularized heat map learning has been proposed be-
fore, however, differently to the Graz™ method integrating
a-priori knowledge with predefined attention masks. Tech-
nically, the gradient of the function learned by the network
with respect to the current input can be interpreted as a
heat map (Simonyan et al., 2014). Regularization of this
input gradient was first introduced by (Drucker and Le Cun,
1992) as double back-propagation, which trains neural
networks by not only minimizing the energy of the network
but the rate of change of that energy with respect to the
input features. In (Ross et al., 2017) this regularization was
extended by selectively penalizing the gradient. Whereas
(Sun et al., 2021) use LRP to create maps during training,
which are multiplied with the corresponding input and
then fed to the original classifier to dynamically find and
emphasize important features. Furthermore, attention gated
networks for medical image analysis have been proposed to
automatically learn to focus on target structures of varying
shapes and sizes (Schlemper et al., 2019).

Validation. Direct validation of the classifier’s decision is
generally hardly feasible in the absence of a ground truth.
While we anticipate a correspondence of the volumetric fea-
tures with Alzheimer’s atrophy, this conclusion might not be
final. However, in future work, indirect validation is possi-
ble using quantitative MRI parameters such as relaxometry,
susceptibility, or magnetization transfer, where regional ef-
fects are known from ROI-based, voxel-based morphometry


https://doi.org/10.1101/2021.09.09.21263013
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.09.21263013; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

‘ v\“/v\ "\,"--\ r R R
(NN ) \/\/\“

e o) Va \«u\ﬁ»\zk\
'@@@udy@\/

; :

(W
©
(O]
A
o
(@)
c

Fig. 4. MNI152 template overlaid by mean relevance maps (highest relevances in yellow) obtained for all nine models. Unmasked and masked MRI classifiers obtain relevant
image features from volumetric information (left and center columns). In contrast, the proposed Grazt-method bases the classifier's decision on deep brain image features,
virtually independently of the registration method (right column).
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Fig. 5. The relevance density describes the contribution of individual voxels to the classification decision. Removal of scalp tissue voxels (orange) yields higher relevance
density compared to unmasked T1 images (purple). The Graz T -models (blue) identify sparser but substantially more relevant voxels, which improves the classification

accuracy.

(VBM) or radiomics studies. While those methods statisti-
cally assess neuroanatomical features including ventricular
enlargement or hippocampal atrophy, quantitative MRI pa-
rameters describe the underlying biophysical tissue compo-
sition. The effective relaxation rate 5 can assess increased
iron deposition in the basal ganglia, a frequent finding in AD
(Damulina et al., 2020). Consequently, the potential overlap
with heat maps in those regions is better suited to disentangle
biophysical tissue changes from atrophy. Optionally, direct
validation of our method would require the generation of a
cohort of realistic in silico phantoms (as recently used in the
quantitative susceptibility mapping (QSM) image reconstruc-
tion challenge 2.0 (Marques et al., 2021)) with modulateable
regional relaxation times in conjunction with an adjustable
atrophy deformator (Khanal et al., 2017, 2016).

Limitations. Several aforementioned neuroimaging studies
used the ADNI (or other publicly available) database for deep
learning based classification. Generally, the clinical rele-
vance of an automated AD classification is limited. The pro-
dromal state of mild cognitive impairment (MCI) is preced-
ing AD and identification of individuals rapidly progressing
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to AD (or differential diagnosis of frontotemporal dementia
types) would be of higher importance for clinical manage-
ment. We acknowledge the absence of an MCI group as
a limitation and therefore provide the source code for the
fast reproducibility using alternative network topologies, in-
put data (quantitative MRI, PET), and other diseases. While
aforementioned databases are designed multi-centrically, all
MRI scans used in this paper were acquired with a single 3T
scanner. Beside the underlying AD patient data, comparison
with other studies is hampered by different network archi-
tectures, preprocessing and hyperparameter selection (Wen
et al., 2020). While this study only applied whole brain
masks, more focused masks guiding the attention to e.g. the
precuneus, the entorhinal cortex, the parietal lobe, the tem-
poral lobe or the hippocampi are feasible, especially when
regional a-priori knowledge for a certain pathology exists.
Because of the explorative nature of the novel methodolog-
ical framework we focused on the entire brain parenchyma.
Organs outside the brain are more variable in size and shape,
which render registration and ROI-definition more challeng-
ing. We originally developed Graz™ for clinical brain stud-
ies, but its invariance to preprocessing might be even more
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pronounced beyond neuroimaging. Lastly, the absence of
CSF biomarkers or amyloid/Tau-PET for the AD diagnosis
reduces the accuracy of the clinical diagnosis. However, AD
diagnosis using the NINCDS-ADRDA criteria has a sensi-
tivity of 81% and specificity of 70% as shown in clinico-
pathological studies (Knopman et al., 2001).

Conclusion

This work highlights that CNNs are not necessarily more ef-
ficient or better regarding classification accuracy than sim-
ple conventional volumetric features. However, the proposed
relevance-guided approach is neutralizing the impact of MRI
preprocessing from skull stripping and registration, render-
ing it a practically usable and robust method for CNN-based
neuroimaging classification studies. While relevance-guiding
focuses the feature identification on the parenchyma only, it
yields physiological plausible results with higher classifica-
tion accuracy.
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Appendix A

Table A.1 shows performance for the different models on all
holdout data sets of cross validation.
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Table A.1. Performance (in %) for the different models on all holdout data sets of cross validation.
*logistic regression by FSL-SIENAX (BET + tissue segmentation)
AUC, area under the curve of the receiver operating characteristics.

Classifier Skull stripping  Registration Cross validation index Balanced accuracy Sensitivity Specificity AUC
1 73.28% 54.90% 91.67% 0.74
2 67.02% 48.15% 85.90% 0.72
CNN no - 3 70.19% 49.02% 91.36% 0.77
4 70.41% 56.60% 84.21% 0.78
5 75.39% 69.09% 81.69% 0.76
1 77.49% 64.71% 90.28% 0.76
2 67.81% 57.41% 78.21% 0.75
CNN no lin. 3 73.24% 58.82% 87.65% 0.84
4 74.07% 54.72% 93.42% 0.80
5 78.73% 80.00% 77.46% 0.87
1 83.62% 68.63% 98.61% 0.92
2 71.94% 59.26% 84.62% 0.78
CNN no nonlin. 3 75.93% 66.67% 85.19% 0.80
4 74.64% 58.49% 90.79% 0.83
5 81.93% 70.91% 92.96% 0.91
1 80.15% 68.63% 91.67% 0.84
2 70.66% 59.26% 82.05% 0.76
CNN yes - 3 78.36% 76.47% 80.25% 0.82
4 75.50% 64.15% 86.84% 0.80
5 83.66% 80.00% 87.32% 0.90
1 78.35% 70.59% 86.11% 0.89
2 77.14% 72.22% 82.05% 0.80
CNN yes lin. 3 76.98% 82.35% 71.60% 0.81
4 78.81% 77.36% 80.26% 0.86
5 85.98% 81.82% 90.14% 0.93
1 89.09% 82.35% 95.83% 0.93
2 74.07% 64.81% 83.33% 0.79
CNN yes nonlin. 3 79.99% 68.63% 91.36% 0.85
4 81.99% 67.92% 96.05% 0.93
5 85.48% 83.64% 87.32% 0.90
1 86.32% 82.35% 90.28% 0.92
2 79.06% 72.22% 85.90% 0.88
CNN+Graz™  no - 3 76.03% 70.59% 81.48% 0.81
4 75.50% 64.15% 86.84% 0.84
5 86.39% 85.45% 87.32% 0.93
1 92.44% 86.27% 98.61% 0.96
2 89.67% 87.04% 92.31% 0.94
CNN+Graz™  no lin. 3 75.82% 62.75% 88.89% 0.85
4 83.22% 71.70% 94.74% 0.92
5 89.82% 90.91% 88.73% 0.94
1 89.79% 82.35% 97.22% 0.93
2 79.13% 68.52% 89.74% 0.89
CNN+Grazt  no nonlin. 3 76.54% 66.67% 86.42% 0.84
4 80.78% 77.36% 84.21% 0.88
5 91.23% 90.91% 91.55% 0.94
1 80.31% 74.51% 86.11% 0.89
2 76.50% 72.22% 80.77% 0.86
Log. Regr.* yes n.a. 3 79.34% 78.43% 80.25% 0.85
4 86.16% 86.79% 85.53% 0.94
5 87.71% 90.91% 84.51% 0.95
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