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Abstract. Compartmental models have long served as important tools in mathematical epi-
demiology, with their usefulness highlighted by the recent COVID-19 pandemic. However, most
of the classical models fail to account for certain features of this disease and others like it, such as
the ability of exposed individuals to recover without becoming infectious, or the possibility that
asymptomatic individuals can indeed transmit the disease but at a lesser rate than the symp-
tomatic. Furthermore, the rise of new disease variants and the imperfection of vaccines suggest
that concept of endemic equilibrium is perhaps more pertinent than that of herd immunity.

Here we propose a new compartmental epidemiological model and study its equilibria, char-
acterizing the stability of both the endemic and disease-free equilibria in terms of the basic
reproductive number. Moreover, we introduce a second compartmental model, generalizing our
first, which accounts for vaccinated individuals, and begin an analysis of its equilibria.

1. Introduction

When modeling epidemics, compartmental models are vital for studying infectious diseases
by providing a way to analyze the dynamics of the disease spread over time. The most basic of
such models is known as the SIR model, which groups the population into three compartments
(susceptible, infectious, recovered) and has a simple flow where an individual moves from sus-
ceptible to infectious to recovered ([3]). An additional compartment called the exposed group,
can be included to obtain the SEIR model ([18]). This model is better suited for diseases with
a latent period, the time when an individual has contracted the disease but is unable to infect
others.

Although the SEIR model is a more accurate portrayal of an infectious disease than the SIR
model, as most infectious diseases have a latent period, one limitation of this model is that it
assumes that when someone recovers from the disease, they are immune to it forever. This is
unrealistic because one can lose their immunity over time. The SEIRS model is used to rectify
this issue as this model assumes that individuals in the recovered group are able to return to
the susceptible group ([4]).

Here we take this theme even further and introduce our SE(R)IRS model (Section 2), which
generalizes the classical SEIRS model in two important ways. First, as the acronym suggests,
individuals in the E compartment can pass directly to the R compartment without ever entering
the I compartment. This choice was motivated by the recent COVID-19 pandemic, in which
many people contracted the virus but recovered without ever demonstrating symptoms ([6, 14]).
While it makes no difference mathematically when analyzing equilibria and their stability, here
it is important to point out that because we take COVID-19 as our motivating example, in this
paper we think of the E compartment as representing infected but asymptomatic individuals,
while the I compartment represents individuals who are both infected and symptomatic. We
have chosen to retain the traditional labeling for simplicity.

This naturally leads to our second generalization of the classical SEIRS model: we allow
individuals from the E compartment to infect those who are susceptible, although at a lesser rate
than those from the I compartment. This tracks with COVID-19, as asymptomatic individuals
have been shown to transmit the disease, but less so than symptomatic individuals ([11, 19, 20]).

In Section 3 we generalize further still, adding a V compartment representing vaccinated
individuals. The resulting model, which we call SVE(R)IRS, is significantly more complicated.
We are still able to derive a few minor properties, but this section is an open invitation to future
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research. A novel feature is that one can treat the vaccination rate as a control (as it depends on
people, not the disease) and subsequently consider some interesting optimal control problems.

Creating a model is one thing, while analyzing it is quite another. Here we have chosen to
focus our analysis on the equilibria of the systems and their stability. This choice was also
motivated by COVID-19 and what will be the “end” of the pandemic. As the concept of herd
immunity has received much attention in both the media and academia ([1, 2, 5, 9, 21]), so far the
notion of endemic equilibrium seems both important and relatively inconspicuous in the public
discourse. There is a mathematical foundation for the idea of herd immunity ([13]), but as we
demonstrate in Section 4.1, this does not mean the disease is eradicated. It is compatible with
what we consider the more relevant idea of an endemic equilibrium: that the disease will always
exist (hopefully in small enough numbers to no longer characterize a pandemic). Moreover,
the stability of such an endemic equilibrium would reflect the possibility that new outbreaks
or variants could cause spikes in infections, but that over time these numbers would drift back
towards some state of “new normal.” The main idea is to design maintenance strategies to
control the dynamic of the spread of the disease (through a yearly vaccine or seasonal non-
pharmaceutical measures) to stay in a neighborhood of a sustainable endemic equilibrium.

While this discussion makes clear that our models and objects of study are motivated by
COVID-19, we hope that our contributions can be applied to other infectious diseases with
similar characteristics, including those yet to be discovered.

As in any mathematical modeling, there is naturally a trade-off between a model’s complexity
and its accuracy. In many ways the classical SIR model is useful mainly due to its simplicity,
making both mathematical analysis and simulations painless. But its accuracy may be conse-
quently limited. On the other hand, much more complicated compartmental models, such as
that in [8], may represent the dynamics of the disease very well at the expense of being compu-
tationally difficult. We hope that, like the popular SEIRS model, the models introduced here
strike a reasonable balance by being simple enough for elementary dynamical systems theory and
computations, while proving more flexible and accurate than the SEIRS model. In particular,
our main result, Theorem 2.2, characterizes the stability of both the endemic and disease-free
equilibria in terms of the basic reproductive number R0 using only basic theory. But ignoring
the effects of vaccination greatly misrepresents the course of pandemics like COVID-19. Yet
our SVE(R)IRS model, while more accurate, was just complicated enough that similar analy-
ses failed and we could prove no such theorem. For these reasons we believe these models lie
somewhere near the right balance of complexity and simplicity. To our knowledge, neither has
appeared in the literature before.

2. SE(R)IRS model

The usual SEIRS model ([4]) can be visualized as

S
βI/n // E

σ // I
γ // R

ω

ii

where

• β is the transmission rate, the average rate at which an infected individual can infect a
susceptible
• n is the population size
• 1/σ is the latency period
• 1/γ is the symptomatic period
• 1/ω is the period of immunity.

All parameters are necessarily non-negative. Note that, for simplicity, here and throughout this
paper we choose to present our models without vital dynamics (also known as demography),
often represented by the natural birth and death rates Λ and µ. Also note that when ω = 0, this
reduces to the usual SEIR model, and one can further recover the simple SIR model by letting
σ →∞.

As described in Section 1, we now think of individuals in the E compartment as infected but
asymptomatic, while individuals in the I compartment are infected and symptomatic. Therefore
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TWO NEW COMPARTMENTAL MODELS 3

in our new SE(R)IRS model certain asymptomatic individuals can recover without ever becom-
ing symptomatic; the duration of the course of their infection is denoted by 1/δ. Moreover,
asymptomatic individuals can indeed infect susceptible individuals, however they do so at a
reduced rate when compared to symptomatic individuals; this reduction is accounted for by the
parameter α. We may assume α ∈ [0, 1] and δ ≥ 0. Note that when α = δ = 0 we recover the
SEIRS model.

The SE(R)IRS model can be visualized as

S
β(I+αE)/n // E

σ //

δ

��
I

γ // R

ω

jj

and the corresponding dynamical system is given by

dS

dt
= −βS(I + αE)/n+ ωR (1)

dE

dt
= βS(I + αE)/n− (σ + δ)E (2)

dI

dt
= σE − γI (3)

dR

dt
= δE + γI − ωR. (4)

In any of these various compartmental models, the equilibrium points come in two types.
A disease-free equilibrium has no individuals in the E, I, or R compartments; this represents
a steady state where there is no disease at all. Any other equilibrium point is considered an
endemic equilibrium; this represents a constant state where there is always some proportion of
the population infected by the disease. The first step towards analyzing either type of equilibrium
is to calculate the basic reproductive number, which represents the average number of cases
directly resulting from a single infection in a population of only susceptible individuals.

Proposition 2.1. The SE(R)IRS basic reproductive number is

R0 =

(
αγ + σ

δ + σ

)(
β

γ

)
.

Proof. We follow [12] by computing R0 as the spectral radius of the next generation matrix.
First, it is easy to see that the system has a disease-free equilibrium at (S,E, I,R) = (n, 0, 0, 0).
We compute

F =

(
αβ β
0 0

)
and V =

(
σ + δ 0
−σ γ

)
so our next generation matrix is

FV −1 =

(
β(αγ+σ)
γ(δ+σ)

β
γ

0 0

)
.

The basic reproductive number R0 is the spectral radius of this operator, which is the largest

eigenvalue
(
αγ+σ
δ+σ

)(
β
γ

)
. �

If we use the fact that n = S +E + I +R is constant we can reduce this to a 3× 3 system in
S,E, I. The reduced equations are

dS

dt
= −βS(I + αE)/n+ ω(n− S − E − I) (5)

dE

dt
= βS(I + αE)/n− (σ + δ)E (6)

dI

dt
= σE − γI. (7)

In the sequel we will study this simpler version of the system, recovering the value of R when
convenient.

Our main result, proved in the next two sections, is the following.
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Theorem 2.2. If R0 < 1 then the disease-free equilibrium is locally asymptotically stable and
the endemic equilibrium is irrelevant. If R0 > 1 then the endemic equilibrium is locally asymp-
totically stable and the disease-free equilibrium is unstable.

Proof. The theorem follows from Lemmas 2.3, and 2.4, and 2.7. �

Here “irrelevant” means epidemiologically nonsensical, as certain compartments would contain
negative numbers of people; it still exists mathematically. This theorem is sometimes known as
the “endemic threshold property”, where R0 is considered a critical threshold. In [13], Hethcote
describes this property as “the usual behavior for an endemic model, in the sense that the disease
dies out below the threshold, and the disease goes to a unique endemic equilibrium above the
threshold.” The SEIR version is derived nicely in Section 7.2 of [18]. The SEIRS version can be
found in [17].

2.1. Analysis of endemic equilibria. Our system has a unique endemic equilibrium at

p = (S,E, I,R) =
n

R0

(
1, ωε,

σω

γ
ε, (σ + δ)ε

)
where

ε =
1

δ + σ

β(αγ + σ)− γ(δ + σ)

σω + γ(δ + σ + ω)
. (8)

Note that this endemic equilibrium is only realistic if all coordinates are positive, which
requires ε positive, which requires

β(αγ + σ) > γ(δ + σ), (9)

which is equivalent to

R0 > 1. (10)

In other words, we have the following.

Lemma 2.3. If R0 < 1 then the endemic equilibrium contains negative coordinates, and is thus
epidemiologically irrelevant. If R0 > 1 then all coordinates are positive.

The linearization of the reduced system at p is

M =

−εω(δ + σ)− ω −αβ
R0
− ω − β

R0
− ω

εω(δ + σ) − βσ
γR0

β
R0

0 σ −γ

 .

As expected, this matrix does not depend on n. Unfortunately, the eigenvalues of M are not an-
alytically computable for general parameters. Note that M is nonsingular for generic parameter
values. But the determinant does indeed vanish if and only if R0 = 1.

Lemma 2.4. If R0 > 1 then the endemic equilibrium is locally asymptotically stable.

Proof. We apply the criteria (12.21-12.23) from [10] to M . Note that the trace is obviously
negative, so (12.22) is immediately satisfied. Now compute

det(M) = −εω(δ + σ)(σδ + γ(δ + σ + ω))

which is clearly negative, so (12.21) is satisfied. Finally, we compute the bialternate sum of M
with itself,

G =

−εω(δ + σ)− ω − βσ
γR0

β
R0

β
R0

+ ω

σ −εω(δ + σ)− ω − γ −αβ
R0
− ω

0 εω(δ + σ) − βσ
γR0
− γ
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TWO NEW COMPARTMENTAL MODELS 5

whose determinant

detG = − ω

(αγ + σ)2
(α2γ4 + α2γ4δε+ 2αγ3σ + 2αγ2δσ + α2γ4εσ + 2αγ3δεσ

+ αγ2δ2εσ + αγδ3εσ + γ2σ2 + 2αγ2σ2 + 2γδσ2 + δ2σ2 + 2αγ3εσ2 + γ2δεσ2

+ 2αγ2δεσ2 + γδ2εσ2 + 3αγδ2εσ2 + δ3εσ2 + 2γσ3 + 2δσ3 + γ2εσ3 + αγ2εσ3

+ 2γδεσ3 + 3αγδεσ3 + 3δ2εσ3 + σ4 + γεσ4 + αγεσ4 + 3δεσ4 + εσ5 + α2γ3ω

+ 2α2γ3δεω + α2γ2δ2εω + α2γ3δ2ε2ω + α2γ2δ3ε2ω + 2αγ2σω + αγδσω

+ 2α2γ3εσω + 4αγ2δεσω + α2γ2δεσω + 4αγδ2εσω + 2α2γ3δε2σω

+ 2αγ2δ2ε2σω + 3α2γ2δ2ε2σω + 2αγδ3ε2σω + γσ2ω + αγσ2ω + δσ2ω

+ 4αγ2εσ2ω + 2γδεσ2ω + 6αγδεσ2ω + 3δ2εσ2ω + α2γ3ε2σ2ω + 4αγ2δε2σ2ω

+ 3α2γ2δε2σ2ω + γδ2ε2σ2ω + 6αγδ2ε2σ2ω + δ3ε2σ2ω + σ3ω + 2γεσ3ω

+ 2αγεσ3ω + 5δεσ3ω + 2αγ2ε2σ3ω + α2γ2ε2σ3ω + 2γδε2σ3ω + 6αγδε2σ3ω

+ 3δ2ε2σ3ω + 2εσ4ω + γε2σ4ω + 2αγε2σ4ω + 3δε2σ4ω + ε2σ5ω + α2γ2δεω2

+ α2γ2δ2ε2ω2 + α2γ2εσω2 + 2αγδεσω2 + 2α2γ2δε2σω2 + 2αγδ2ε2σω2

+ 2αγεσ2ω2 + δεσ2ω2 + α2γ2ε2σ2ω2 + 4αγδε2σ2ω2 + δ2ε2σ2ω2 + εσ3ω2

+ 2αγε2σ3ω2 + 2δε2σ3ω2 + ε2σ4ω2)

is also negative, satisfying (12.23). �

Example 2.5. In all of our examples the time units are taken to be days, and we choose the
parameter values

(α, γ, δ, n, σ, ω) =
( 1

10
,
1

7
,

1

14
, 100,

1

7
,

1

90

)
.

These values are somewhat realistic for COVID-19. While there are no known precise values,
these are at least roughly in agreement with some of the literature. Specifically, we assume that
an asymptomatic individual is 10% as infectious as a symptomatic one, that individuals who
become symptomatic have seven day periods of latency and of symptoms, that individuals who
never develop symptoms are infected for 14 days, and that the period of immunity is 90 days.
We choose the population size of 100 simply so that compartment values can be interpreted as
percentages of a generic population.

When β = 0.4 we have

R0 ≈ 2.053

and

p = (S,E, I,R) ≈ (49, 2, 2, 46).

The eigenvalues of M are

λ1 ≈ −.340, λ2 ≈ −.010− .031i, λ3 ≈ −.010 + .031i.

These three eigenvalues all have negative real part, so the equilibrium is stable. It appears to
be a spiral sink, signifying epidemic waves ([4]), as shown in Figure 1. In Figure 2 we see that
for small numbers of initial infections, the number of individuals in the E and I compartments
initially rise, before settling down toward the smaller values of the endemic equilibrium. This
may hold a lesson for officials and policy-makers: an initial spike in cases (perhaps caused by a
new variant) does not always portend an exponential outbreak necessitating intervention. With
patience the case numbers may naturally drop back to the endemic equilibrium.

This example represents a potentially new normal post the COVID-19 pandemic, with rela-
tively small but nonzero proportions of the population infected at any given time.

Example 2.6. Taking β = 0.2 and the other parameters as in the previous example yields

R0 ≈ 1.027

and the endemic equilibrium

p = (S,E, I,R) ≈ (97.40, 0.12, 0.12, 2.35).
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Figure 1. The endemic equilibrium of Example 2.5. The left plot displays
E versus S compartments, while the right plot displays I versus S compart-
ments. Each colored curve represents a different initial condition of the form
(S,E, I,R) = (S0, (n− S0)/2, (n− S0)/2, 0) for S0 = 10, 20, . . . , 90.
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Figure 2. The endemic equilibrium of Example 2.5 with colors as in Figure 1.
The left plot displays the I versus E compartments. The right plot shows the
same, zooming in on the equilibrium point.

In this relatively realistic scenario, on any given day we find 97.40% of our population is sus-
ceptible, 0.12% is asymptomatic, 0.12% is symptomatic, and 2.35% is recovering yet immune.

2.2. Analysis of disease-free equilibria. One easily checks that the system has a disease-free
equilibrium at (S,E, I,R) = (n, 0, 0, 0). The linearization of the reduced system there is

N =

−ω −αβ − ω −β − ω
0 αβ − δ − σ β
0 σ −γ

 .

This is singular if and only if R0 = 1, just like M .

Lemma 2.7. The disease-free equilibrium is locally asymptotically stable if and only if R0 < 1.

Proof. The eigenvalues of N are

λ1 = −ω (11)

λ2 =
1

2

(
αβ − γ − δ − σ −

√
(−αβ + γ + δ + σ)2 − 4(−αβγ + δγ − βσ + γσ)

)
(12)

λ3 =
1

2

(
αβ − γ − δ − σ +

√
(−αβ + γ + δ + σ)2 − 4(−αβγ + δγ − βσ + γσ)

)
. (13)

It is not obvious, but algebra shows that all three eigenvalues are real since our parameters
are positive: the discriminant simplifies to 4βσ + (αβ + γ − δ − σ)2. Now λ1 is clearly always
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negative. Next, we have

2λ2 = αβ − γ − δ − σ −
√

4βσ + (αβ + γ − δ − σ)2

≤ αβ − γ − δ − σ − (αβ + γ − δ − σ)

= −2γ < 0.

Thus λ2 is also always negative, and in fact we have

λ2 ≤ −γ.

Finally, Mathematica shows that

λ3


< 0 if R0 < 1

= 0 if R0 = 1

> 0 if R0 > 1.

Thus (n, 0, 0) is stable if and only if R0 < 1. �

Example 2.8. When

(α, β, γ, δ, n, σ, ω) =
( 1

10
, 0.19,

1

7
,

1

14
, 100,

1

7
,

1

90

)
we have the disease-free equilibrium at (S,E, I,R) = (100, 0, 0, 0) and

R0 ≈ 0.975.

The eigenvalues of N are

λ1 ≈ −.336, λ2 ≈ −.011, λ3 ≈ −.002.

The three eigenvalues are negative real, so the equilibrium is stable. See Figure 3.
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Figure 3. The disease-free equilibrium of Example 2.8. Plots as in Figure 1.

3. SVE(R)IRS model

Adding a vaccinated compartment to the model in Section 2 yields the following model, which
we denote SVE(R)IRS:

V

ψ
		

ρβ(I+αE)/n

!!
S

β(I+αE)/n //

φ

II

E
σ //

δ

��
I

γ // R

ω

jj

Here 1 − ρ represents the efficacy of the vaccine, 1/ψ is the duration of efficacy of the vaccine,
and 1/φ is the rate at which people are vaccinated. The first two are intrinsic to the vaccine
itself, while φ can be thought of as a control (see Section 4.2). We may assume ρ ∈ [0, 1] and
φ, ψ > 0.
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The associated dynamics are given by:

dS

dt
= −βS(I + αE)/n+ ωR− φS + ψV (14)

dE

dt
= βS(I + αE)/n− (σ + δ)E + ρβV (I + αE)/n (15)

dI

dt
= σE − γI (16)

dR

dt
= δE + γI − ωR (17)

dV

dt
= −ρβV (I + αE)/n+ φS − ψV. (18)

The dynamics of this model are significantly more complicated than those of the SE(R)IRS
model in the previous section. We do manage to prove the analogue of Lemma 2.7 holds. We
were unable to prove the analogues of Lemmas 2.3 and 2.4, although experimental evidence
suggests that both hold.

Proposition 3.1. The SVE(R)IRS basic reproductive number is

R0 =

(
β

γ

)(
αγ + σ

σ + δ

)(
ψ + ρφ

ψ + φ

)
.

Proof. Again we follow [12] by computing R0 as the spectral radius of the next generation matrix.
We use tildes to not confuse with the compartment V . First, a short computation shows that the

system has a disease-free equilibrium at p1 = (S,E, I,R, V ) =
(
ψn
φ+ψ , 0, 0, 0,

φn
φ+ψ

)
. We compute

F̃ =

( αβ
φ+ψ (ψ + ρφ) β

φ+ψ (ψ + ρφ)

0 0

)
and Ṽ =

(
σ + δ 0
−σ γ

)
so our next generation matrix is

F̃ Ṽ −1 =

(
β(αγ+σ)(ψ+ρφ)
γ(ψ+φ)(δ+σ)

β(ψ+ρφ)
γ(ψ+φ)

0 0

)
.

The basic reproductive number is the spectral radius of this operator, which is the largest

eigenvalue:
(
β
γ

)(
αγ+σ
σ+δ

)(
ψ+ρφ
ψ+φ

)
. �

If we use the fact that n = S+E+ I+R+V is constant we can reduce this to a 4×4 system
in S,E, I, V . The reduced equations are

dS

dt
= −βS(I + αE)/n+ ω(n− S − E − I − V )− φS + ψV (19)

dE

dt
= βS(I + αE)/n− (σ + δ)E + ρβV (I + αE)/n (20)

dI

dt
= σE − γI (21)

dV

dt
= −ρβV (I + αE)/n+ φS − ψV. (22)

In the sequel we will study this simpler version of the system, recovering the value of R when
convenient.

3.1. Analysis of endemic equilibria. Mathematica gives two endemic equilibria, p2 and p3,
which are square root conjugate to each other. One of them is given by

pT3 = (S,E, I,R, V )T =

β2γnρ(αγ+σ)2w+βγn(αγ+σ)(γ(ψ+φρ)(δ+σ)+(ψ+φρ)σw+γ(ψ+δ(−2+ρ)+φρ+(−2+ρ)σ)w)−
√
Y

2β2γ(−1+ρ)(αγ+σ)2w
β2γnρ(αγ+σ)2w+βγn(αγ+σ)(−γ(ψ+φρ)(δ+σ)−((ψ+φρ)σ+γ(ψ+ρ(δ+φ+σ)))w)+

√
Y

2β2ρ(αγ+σ)2(σw+γ(δ+σ+w))
σ(βγnσ2(−γ(ψ+φρ)−(ψ+(−β+γ+φ)ρ)w)+αβγ3n(−δ(ψ+φρ)−(ψ+(−αβ+δ+φ)ρ)w)+βγ2nσ(−((αγ+δ)(ψ+φρ))−((1+α)ψ+(δ+φ+α(−2β+γ+φ))ρ)w)+

√
Y )

2β2γρ(αγ+σ)2(σw+γ(δ+σ+w))

− ((δ+σ)(−β2γnρ(αγ+σ)2w+βγn(αγ+σ)(γ(ψ+φρ)(δ+σ)+(ψ+φρ)σw+γ(ψ+ρ(δ+φ+σ))w)−
√
Y )

2β2ρ(αγ+σ)2w(σw+γ(δ+σ+w)))

−β2γnρ(αγ+σ)2w−βγn(αγ+σ)(γ(ψ+φρ)(δ+s)+(ψ+φρ)σw+γ(ψ−ρ(δ−φ+σ))w)+
√
Y

2β2γ(−1+ρ)ρ(αγ+σ)2w
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where

Y = β2γ2n2(αγ + σ)2((γ(ψ + φρ)(δ + σ)

+ (ψ + (−β + φ)ρ)σw + γ(ψ + ρ(−αβ + δ + φ+ σ))w)2

− 4ρ(−β(ψ + φρ)σ + γ(δ(φ+ ψ)− αβ(ψ + φρ) + (φ+ ψ)σ))w(σw + γ(δ + σ + w))).

These are clearly very complicated, and it is not clear whether the components are even
positive for positive parameters. Examples suggest that for realistic COVID-19 parameters, p2
has some negative components and can be ignored, while p3 has all positive components and
should be treated as a realistic endemic equilibrium.

The linearization of our system at either point is unwieldy; Mathematica cannot even deter-
mine when the determinant vanishes, let alone compute eigenvalues. It can, however, produce
the characteristic polynomial, so the methods of [10] applied in the proof of Lemma 2.4 could
potentially work. However, the characteristic polynomial is a complex expression and it is hard
to tell whether the coefficients are positive; something similar is expected for G, the bialternate
product of this matrix with itself.

Therefore the existence, uniqueness, and stability of p3 remain open. The methods used to
prove Lemmas 2.3 and 2.4 could potentially work with more insight or computational power,
but other techniques might be necessary. For now we limit ourselves to examples, which provide
hope that the analogues of these Lemmas may indeed hold for the SVE(R)IRS model.

Example 3.2. When

(α, β, γ, δ, n, σ, ω, φ, ψ, ρ) =
( 1

10
,
1

5
,
1

7
,

1

14
, 100,

1

7
,

1

90
,

1

360
,

1

180
,

1

10

)
we have R0 ≈ 0.719 and we find that neither p2 nor p3 contains all positive coordinates. So
there is no relevant endemic equilibrium for these parameters. Section 3.2 shows that there is
in fact a stable disease-free equilibrium.

If we free φ and keep all other parameters the same, we find that p3 has all positive coordinates
if and only if φ < 0.000165, which unsurprisingly corresponds precisely to those φ values for
which R0 > 1.

Example 3.3. Here we keep all parameters the same as in Example 3.2 except β. When

(α, β, γ, δ, n, σ, ω, φ, ψ, ρ) =
( 1

10
,

9

10
,
1

7
,

1

14
, 100,

1

7
,

1

90
,

1

360
,

1

180
,

1

10

)
we have

R0 ≈ 3.23

and an endemic equilibrium at

p3 = (S,E, I,R, V ) ≈ (21, 3, 3, 66, 7).

The point p2 contains negative components and is thus irrelevant.
The eigenvalues of the reduced linearization at p3 are

λ1 ≈ −.345, λ2 ≈ −.009, λ3 ≈ −.020 + .053i, λ4 ≈ −.020− .053i.

The four eigenvalues all have negative real parts, so the equilibrium is stable. Note, however,
that they are not all real, in contrast to the disease-free equilibrium case (see Proposition 3.4
below). We again see the appearance of a spiral sink due to epidemic waves ([4]). See Figure 4.

20 40 60 80
Susc

10

20

30

40

Ex

20 40 60 80
Susc

10

20

30

40

Inf

Figure 4. The endemic equilibrium of Example 3.3. Plots as in Figure 1.
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3.2. Analysis of disease-free equilibrium. Setting E = I = 0 and solving the resulting
system yields the unique disease-free equilibrium

p1 = (S,E, I,R, V ) =

(
ψn

φ+ ψ
, 0, 0, 0,

φn

φ+ ψ

)
.

Linearizing at this point yields the matrix

N =


−φ− ω αβψ

φ+ψ − ω − βψ
φ+ψ − ω ψ − ω

0 −δ − σ − αβ(ψ+ρψ)
φ+ψ

β(ψ+ρφ)
φ+ψ 0

0 σ −γ 0

φ −αβρφ
φ+ψ − βρφ

φ+ψ −ψ

 .

As in the SE(R)IRS model, this matrix is singular if and only if R0 = 1.

Proposition 3.4. The disease-free equilibrium is locally asymptotically stable if and only if
R0 < 1.

Proof. The eigenvalues of N are

λ1 = −ω
λ2 = −φ− ψ

λ3 =
1

2(φ+ ψ)

(
αβ(ψ + ρφ)− (φ+ ψ)(γ + δ + σ)−

√
Z
)

λ4 =
1

2(φ+ ψ)

(
αβ(ψ + ρφ)− (φ+ ψ)(γ + δ + σ) +

√
Z
)

where large amounts of tedious algebra show that

Z = 4βσ(φ+ ψ)(ψ + ρφ) +
(
αβ(ψ + ρφ) + (γ − σ − δ)(φ+ ψ)

)2
.

This form of Z makes it apparent that Z is always positive and thus all four eigenvalues are
always real.

Now it is also clear that λ1 and λ2 are always negative. Next, we have

2(φ+ ψ)λ3 = αβ(ψ + ρφ)− (φ+ ψ)(γ + δ + σ)−
√
Z

≤ αβ(ψ + ρφ)− (φ+ ψ)(γ + δ + σ)−
(
αβ(ψ + ρφ) + (γ − σ − δ)(φ+ ψ)

)
= −2γ(φ+ ψ) < 0.

Thus λ3 is always negative as well, and in fact we have

λ3 ≤ −γ.

Finally, Mathematica shows that detN > 0 if and only if R0 < 1. Since detN = λ1λ2λ3λ4
and λ1, λ2, λ3 < 0, this shows that λ4 < 0 if and only if R0 < 1. This proves the Proposition. �

4. Discussion

In this last section we address the question of herd immunity versus endemic equilibrium, and
we open a discussion of optimal strategies for vaccination. We end conclude by stating some
open problems.

4.1. Herd immunity. In addition to our perceived need to consider compartmental models
more closely adapted to COVID-19 than the classical models, this work was motivated in part
by our observation that the national dialogue concerning the post-pandemic future focused
largely on the concept of herd immunity rather than that of endemic equilibria. According to
[13], one has herd immunity when the immune fraction of the population exceeds 1 − 1

R0
. In

this case, the disease “does not invade the population”. However, for classical models as well
as SE(R)IRS, we know that as long as R0 > 1 we still do not reach a disease-free equilibrium
which would correspond to the complete eradication of the disease.
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Example 4.1. To illustrate the shortcomings of the herd immunity concept, reconsider Example
3.3 which includes annual vaccinations. Then we have 1− 1/R0 ≈ 0.69. According to [13], herd
immunity thus occurs if more than 69% of the populations is immune to the disease. However,
at the endemic equilibrium for these parameters, we have R ≈ 66 and V ≈ 7. Thus 73% of the
population is immune, which is above the required threshold. But over 6% of the population is
either in the E or I compartment (≈ 3.4% each). This shows that although we have technically
achieved herd immunity, large numbers of people still suffer from the disease.

Example 4.2. Ideally, sufficient vaccination could eradicate a disease completely. By Proposi-
tion 3.4, this could happen if we took φ large enough to force R0 < 1, as the dynamics would
trend toward the disease-free equilibrium. However, consider the following parameters, which
are realistic for COVID-19:

(α, β, γ, δ, n, σ, ω, ψ, ρ) =
( 1

10
,

3

10
,
1

7
,

1

14
, 100,

1

7
,

1

90
,

1

180
,

1

10

)
.

Here we have left φ free as a control. We compute that R0 < 1 if and only if φ > 1/282.
Thus, in order to set a trajectory towards disease eradication, the population would need to be
revaccinated more often than once per year, which seems unlikely. Therefore for these parameters
it seems more realistic that the best we could hope for is an endemic equilibrium with relatively
small portion of the population infected at any given time. With annual vaccinations we would
have approximately 0.73% of the population in the E or I compartments.

4.2. Strategies for Vaccination. The vaccine can be thought of as a control over the system
to steer the variables to desired values. We can express our model as an affine control system
with drift as follows. Let u = φ be our control and q = (S,E, I,R, V )T be our state. Then the
dynamics are given by

q̇ =


−βS(I + αE)/n+ ωR+ ψV

βS(I + αE)/n− (σ + δ)E + ρβV (I + αE)/n
σE − γI

δE + γI − ωR
−ρβV (I + αE)/n− ψV

+ u


−S
0
0
0
S

 .

The first vector field here is the drift, and the second is the control vector field.
If we fix a time period T we have several meaningful choices of cost function J(u), obtaining an

optimal control problem. For example, we could choose J to be the final number of symptomatic

individuals I(T ), or the total number of symptomatic individuals over the period
∫ T
0 I(t)dt, or

the number of symptomatic individuals at the endemic equilibrium (if it exists and is unique).
Note that the number of symptomatic people can be considered a proxy for the number of
hospitalizations or deaths. Then seeking the optimal vaccination strategy for minimizing illness
or hospitalizations or deaths can be modeled as minimizing J(u) subject to the dynamics (19)
– (22). Forthcoming work will utilize tools from geometric optimal control to determine the
existence and role of singular arcs in optimal strategies.

However, initial numerical simulations have given somewhat uninteresting, if realistic, optimal
strategies. We used the optimal control software Bocop ([22]) to simulate the optimal control
u(t) = φ(t) for a small sample of initial conditions, bounds, and cost functions. These experi-
ments suggest that the optimal vaccination strategy is to constantly vaccinate at the maximum

rate for the costs J1(u) = I(T ), J2(u) =
∫ T
0 I(t)dt, and J3(u) =

∫ T
0 I(t) + φ(t)dt. Using the

cost J4(u) = I(T ) +
∫ T
0 φ(t)dt yielded the optimal strategy of vaccinating nobody until near

the end of the period T , then vaccinating at the maximum rate for a short burst. While these
strategies make sense, they are not particularly mathematically interesting. However, at this
point we only have a small sample of numerical results; a rigorous control theoretic investigation
is needed. Unfortunately our software was not able to handle the cost function given by the
I-component of the endemic equilibrium p3 (see Section 3.1), but this formulation of the problem
could potentially yield results which are interesting both mathematically and epidemiologically.

4.3. Open questions. There remain a large number of open questions suggested by this work
as well as directions for generalization. The most obvious question is whether the endemic
threshold property in Theorem 2.2 holds for the SVE(R)IRS model of Section 3. It may be that
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one, both, or neither of the analogues of Lemmas 2.3 and 2.4 hold for SVE(R)IRS. In fact, in the
SVE(R)IRS model both the existence and the uniqueness of the endemic equilibrium remains to
be established in the R0 > 1 case. All the examples we have explored suggest that the answers
to these questions are affirmative, but with so many free parameters an exhaustive search for
counterexamples is challenging.

A different set of open questions concerns generalization of both our models and our results.
In particular, a natural addition to either model would be the vital dynamics of birth and death
rates, as is common in the SEIRS literature. We suspect that this would not qualitatively affect
our results (especially in the fixed population case), but made no attempts at studying these
problems. Other generalizations could include nonlinear transmission or seasonal forcing, as well
as the appearance of new variants which would translate in a time varying coefficients such as
β. An alternative research direction would be the study of global rather than local stability of
equilibria. Global stability for classical compartmental models has an extensive literature; see
the comprehensive review article [13]. In particular, global stability was treated in [15] and [17]
for SEIR, and in [7] and [16] for SEIRS. The methods of these and related papers might also
prove effective in our models.
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