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Abstract 

The gut microbiota in early life, when critical immune maturation takes place, may influence the 

immunogenicity of childhood vaccinations. We assessed the association between mode of delivery, 

gut microbiota development in the first year of life, and mucosal antigen-specific immunoglobulin 

G (IgG) responses against pneumococcal and meningococcal conjugate vaccination at ages 12 and 

18 months, respectively, in a prospective birth cohort of 120 infants. Birth by natural delivery was 

associated with higher IgG responses against both vaccines, which for the anti-pneumococcal IgG 

response could be explained by a gut microbial community composition with high abundances of 

Bifidobacterium and Escherichia coli in the first weeks of life. High E. coli abundance in the same 

period was also associated with higher anti-meningococcal IgG responses. Our results suggest that 

associations between mode of delivery and antibody responses to routine childhood vaccines are 

mediated by gut microbiota development. 
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Introduction 

Vaccination in early childhood is estimated to save millions of lives each year1. Vaccine-induced 

protection is mediated through a combination of innate, humoral and cellular immunity, and is 

often quantified by measuring antigen-specific antibody titers2. Large interindividual variation in 

antibody responses to vaccines administered in early life may limit vaccine effectiveness, leaving 

some fully vaccinated infants unprotected against serious infectious diseases3. Factors that 

influence vaccine responses include, among others, genetics, sex, perinatal characteristics like 

gestational age, birth weight, maternal antibodies, and feeding type, but also more general factors 

like geographical region (reviewed in 4). Recent research has shown that the gut microbiota, i.e. the 

sum of all microorganisms residing in the human intestinal tract, also plays a role in immune 

responses to vaccination5–11. This offers a potentially modifiable target to improve immunogenicity 

of childhood vaccines.  

The gut microbiome is seeded at birth and rapidly develops over the first months of life under the 

influence of mode of delivery, breastfeeding, antibiotic administration and nutrition12–15. Timely 

exposure to specific microbes within the critical ‘window of opportunity’ in early infancy shapes 

the immune system16–18, including the B cell and immunoglobulin repertoire19,20. Microbial 

imprinting on the immune system may in turn explain part of the variation in vaccine responses. In 

support of this hypothesis, it has been shown that antibiotic-induced microbial perturbances in an 

infant mouse model led to impaired antigen-specific immunoglobulin G (IgG) responses against 

five common childhood vaccines21. Microbiota perturbance due to antibiotic exposure also resulted 

in impaired immune responses to seasonal influenza vaccination in healthy adults without pre-

existing immunity, suggesting that primary responses are more sensitive to microbiota changes 

than recall responses7. In human infants, the composition of the microbial community pre-

vaccination has been correlated with systemic immune responses to oral rotavirus vaccine, oral 

poliovirus vaccine, Bacillus Calmette-Guérin, hepatitis B, and tetanus vaccines5,6,10,11,22,23. 

However, the temporal relationship between 1. early-life exposures, 2. gut microbiota composition, 

and 3. subsequent childhood vaccine responses has not yet been studied. 
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 Here, we demonstrate in a healthy birth cohort that mode of delivery-associated differences in 

early-life gut microbial colonization patterns are associated with antigen-specific IgG responses to 

pneumococcal and meningococcal conjugate vaccination in saliva. These findings are key for the 

design of intervention strategies that modulate the gut microbiota to enhance vaccine 

immunogenicity in infants.  
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Methods 

Study design and participants 

Fecal samples, saliva and questionnaires were collected from 120 healthy, full-term infants who 

participated in a prospective birth cohort study, where we previously reported a significant effect 

of mode of delivery on the gut microbiota in the first months of life24. Details on study design were 

previously published24,25. For the current analyses, we expanded our dataset with data and samples 

up to 18 months from 78 (65%) subjects, who participated in the follow-up study beyond the first 

year of life. Both parents provided written informed consent. Ethical approval was granted by the 

Dutch national ethics committee. 

Study visits were conducted within 2 hours post-partum, 24-36 hours after birth, at 7 and 14 days 

and at 1, 2, 4, 6, 9, 12 months and, for those who participated in the follow-up study, 18 months of 

age. Saliva for antibody measurement was collected at the ages of 12 and 18 months. Fecal samples 

for gut microbiota profiling were collected by the parents prior to each visit, and were directly 

stored in the home freezer. Details on sample collection are in the appendix. Saliva and feces were 

transported on dry ice and stored at -80˚C.  

Extensive questionnaires including vaccination dates were collected. Infants were vaccinated 

according to the Dutch national immunization program (NIP). Ten-valent pneumococcal conjugate 

vaccine (PCV-10) was administered to infants born before September 2013 (52/120 participants) at 

the ages of 2, 3, 4, and 11 months, and to infants born from September 2013 (68/120 participants) 

at the ages of 2, 4, and 11 months due to changes in the NIP. Meningococcus type C (MenC) 

conjugate vaccination was administered at the age of 14 months. 

Laboratory procedures 

Antigen-specific IgG against the capsular polysaccharides of pneumococcal vaccine serotypes 1, 4, 

5, 6B, 7F, 9V, 14, 18C, 19F, and 23F was measured in saliva obtained at 12 months of age, and 

IgG against MenC polysaccharide in saliva obtained at 18 months of age. Antibodies were 

quantified using fluorescent bead-based multiplex immunoassays (MIA) as previously described26–
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28 (appendix). IgG concentrations below the lower limit of detection, which ranged from 0.08 ng/ml 

for pneumococcal serotype 4 to 0.37 ng/ml for pneumococcal serotype 14, and was 0.21 ng/ml for 

MenC, were set at half the lower limit of detection. 

Laboratory processing and microbiota profiling of fecal samples was previously described24. In 

short, bacterial DNA was extracted using a combination of mechanical and chemical lysis methods, 

and was quantified by quantitative (q)PCR targeting the 16S rRNA gene29. The V4 hypervariable 

region of the 16S rRNA gene was amplified, and amplicon pools were sequenced on the Illumina 

MiSeq platform (Illumina, San Diego, CA) along with isolation and PCR blanks as negative 

controls. Sequences were processed in our previously described bioinformatics pipeline30. This 

resulted in an abundance-filtered data set containing only operational taxonomic units (OTU) that 

represented at least 0.1% of all reads in at least two samples (623/6690 OTUs). Taxonomic 

annotations of the 16S rRNA gene sequences were validated using shotgun metagenomics (subset 

of 20 samples), and species-specific qPCR (all samples)24. 

Statistical analyses 

Data analysis was performed in R version 4.0.3. All statistical tests were two-tailed, and p-values 

below 0.050 or Benjamini-Hochberg adjusted p-values below 0.100 was considered statistically 

significant. All analyses were performed using log-transformed IgG concentrations, and were adjusted 

for time between vaccination and saliva collection using a second degree polynomial to account for the 

natural kinetics of the antibody response.  

Concordance between IgG concentrations was evaluated using Spearman’s rank-order correlations. 

IgG geometric mean concentrations (GMCs) were compared using ANOVA with post-hoc Tukey 

tests. Associations between early-life host or microbiota characteristics and IgG concentrations were 

assessed using multivariable linear models.  

Gut microbiota alpha diversity was assessed by the number of observed species, and the Shannon 

diversity index (phyloseq31). Stability of the microbial community composition over time was 

calculated as the Bray-Curtis (BC) similarity (1–BC dissimilarity) between consecutive samples 
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within individuals. Dirichlet multinomial mixture models were used to group infants into community 

state types (CSTs) based on gut microbiota composition (DirichletMultinomial32) (appendix). 

Differences in the gut microbial community composition according to CST were evaluated using 

permutational analysis of variance (PERMANOVA) (vegan33). Smoothing-spline analysis of variance 

(metagenomeSeq-package34,35) was used to detect differences in individual OTU abundances (present 

in at least 10% of samples) over time between infants with responses above and below the median 

antigen-specific IgG concentration. This method detects differentially abundant OTUs, and identifies 

the time intervals in which significant differences exist. 

Role of the funding source 

The study funders had no role in study design; data collection, analysis, or interpretation; or writing of 

the report. The corresponding author had full access to all study data and final responsibility for the 

decision to submit for publication.   
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Results 

We investigated associations between early-life exposures, gut microbiota development in the first 

year of life, and subsequent antibody responses against pneumococcal and meningococcal conjugate 

vaccination in 120 healthy, full-term infants. Basic, lifestyle and environmental characteristics were 

previously published24, and are briefly summarized in Table 1. Follow-up of the infants and sample 

inclusion for IgG measurement are shown in Figure S1. Serotype-specific anti-pneumococcal IgG 

concentrations in saliva were measured in 101/120 (84.2%) infants at the age of 12 months (median 28 

days [IQR 21-33] after the PCV-10 booster dose). Anti-MenC IgG concentrations in saliva were 

measured in 66/78 (84.6%) infants at the age of 18 months (median 116 days [IQR 105-120] after 

MenC vaccination). Geometric mean concentrations (GMC) of anti-pneumococcal IgG ranged 

between 7.33 ng/ml (95% CI 5.75-9.33 ng/ml) for serotype 23F and 27.30 ng/ml (95% CI 22.14-

33.67) for serotype 19F. The anti-MenC IgG GMC was 10.64 ng/ml (95% CI 8.64-13.11 ng/ml) 

(Figure 1A). IgG concentrations against the 10 pneumococcal vaccine serotypes strongly correlated 

with each other (Spearman’s rho 0.53-0.84, adjusted p<0.001 for all pairwise correlations), and not 

with anti-MenC IgG antibodies (Spearman’s rho 0.14-0.30, adjusted p>0.469 for all pairwise 

correlations) (Figure 1B). As serotype-specific anti-pneumococcal IgG concentrations were strongly 

correlated, we focused our analyses on serotype 6B, which shows relatively weak antigenic properties, 

and is commonly found during (severe) pneumococcal disease36. Significant findings were validated 

for the other serotypes.  

Mode of delivery was associated with  vaccine responses 

We first investigated whether early-life host characteristics previously associated with differences in 

gut microbiome development and/or vaccine immunogenicity, were related to anti-Ps6B and anti-

MenC IgG responses. Mode of delivery, feeding type, sex, antibiotics use in the first 3 months of life, 

and pets in the household were related to vaccine responses against one or more serotype, while 

having older siblings, and daycare attendance were not. These variables were included in multivariable 

linear models, including an interaction term between mode of delivery and feeding type due to the 

interdependency of these variables. Natural delivery (in contrast to caesarean (C-)section birth) was 
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independently associated with higher anti-Ps6B IgG concentrations (β=0.51 [95% CI 0.043-0.97], 

p=0.033; Figure 2A). However, we also observed a negative interaction between natural delivery and 

exclusive formula feeding on anti-Ps6B responses (β=-1.32 [95% CI -2.43 - -0.21], p=0.021), 

suggesting that the positive effect of natural birth was diminished by subsequent formula feeding. 

Similar associations were found for IgG responses to most of the other pneumococcal vaccine 

serotypes (Table S1). Stratified analyses confirmed that, within the breastfed group, the anti-Ps6B IgG 

GMC of naturally born infants (n=51) was two-fold higher compared to C-section born infants (n=33; 

adjusted p=0.067); similarly, within the naturally born group, the anti-Ps6B IgG GMC of breastfed 

infants (n=51) was 3.5-fold higher compared to formula fed infants (n=7; adjusted p=0.083). Anti-

Ps6B IgG concentrations did not differ between feeding types within the C-section born group (Figure 

2B).  

Likewise, for MenC, natural delivery was also associated with higher IgG concentrations compared to 

C-section delivery (β=0.42 [95% CI 0.016-0.83], p=0.042), which was independent of feeding type 

(Figure 2A). In a stratified analysis of breastfed infants, naturally born infants (n=38) showed a 1.5-

fold higher anti-MenC IgG GMC compared to C-section born infants (n=18; adjusted p=0.088; Figure 

2B). Sex, antibiotic use, and having pets were not significantly associated with IgG responses against 

Ps6B or MenC. 

Gut microbial community composition at 1 week of age was associated with vaccine responses 

We then studied whether gut microbiota development in the first year of life was associated with anti-

Ps6B and anti-MenC IgG responses. Overall, 1052 out of 1177 fecal samples (89.4%) passed quality 

control for 16S rRNA gene-based sequencing, and were included in further analyses as previously 

described24.  

No association was found between alpha diversity and anti-Ps6B or anti-MenC IgG concentrations at 

any time point, with the exception of an inverse correlation between the observed number of species at 

the age of two months and anti-Ps6B IgG concentrations (β=-0.029 [95% CI -0.049- -0.0087], adjusted 
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p=0.082). This association was not observed for the other pneumococcal vaccine serotypes (data not 

shown).  

Gut microbiota stability between day one and week one, and between week one and week two 

correlated with higher anti-Ps6B IgG concentrations (day one-week one: β=1.66 [95% CI 0.44-2.88], 

adjusted p=0.074; week one-week two: β=1.22 [95% CI 0.22-2.22], adjusted p=0.077), which was not 

observed for any other time interval. Microbiota stability in the first two weeks of life was also 

significantly positively associated with IgG concentrations against all other pneumococcal vaccine 

serotypes (adjusted p≤0.083, Table S2). In contrast, no significant associations were found between 

microbiota stability and anti-MenC IgG concentrations.  

The first two weeks of life, where gut microbiota stability was associated with anti-pneumococcal IgG 

concentrations, is compatible with the time frame when we previously found the largest difference in 

gut microbial composition between naturally born and C-section born infants in this cohort (at the age 

of one week)24. Therefore, we decided to focus on the microbial community composition in ‘week 

one’ samples, where we identified three distinct community state types (CSTs) (Figure S2). These 

CSTs differed considerably in community composition (PERMANOVA: R2=34.8%, p<0.001). Infants 

with CST1 (n=55) had a microbial community with low abundances of both Bifidobacterium and 

Escherichia coli, while infants with CST2 (n=48) had profiles with high Bifidobacterium abundances, 

and infants with CST3 (n=16) had high E. coli abundances  (Figure 3A). Species-level microbial 

composition of the CSTs was largely confirmed by shotgun sequencing of 20 week one samples 

(Figure S3). 

We then studied whether these CSTs were associated with anti-Ps6B and anti-MenC IgG 

concentrations following vaccination. Infants with CST1 had the lowest IgG concentrations against 

both Ps6B and MenC (anti-Ps6B IgG: GMC 7.84 ng/ml [95% CI 4.88-12.60]; anti-MenC IgG: GMC 

8.28 ng/ml [95% CI 5.93-11.56]) (Figure 3B). Compared to infants with CST1, anti-Ps6B IgG 

concentrations were approximately two-fold higher in infants with CST2 (GMC 17.05 ng/ml [95% CI 

12.64-23.00], adjusted p=0.030) as well as in infants with CST3 (GMC 14.85 ng/ml [95% CI 7.36-

29.97], adjusted p=0.273), though only the comparison of anti-6B responses between CST1 and CST2 
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infants was significant. We observed similar associations between week one CSTs and IgG responses 

against most other pneumococcal vaccine serotypes (Table S3). By contrast, anti-MenC IgG 

concentrations were not significantly different between CST groups, although infants with CST3 

showed a nearly two-fold higher anti-MenC GMC (15.76 ng/ml [95% CI 7.25–34.26], adjusted 

p=0.148) than infants with CST1.  

Mode of delivery was a strong driver of week one CSTs. All infants with CST2 were naturally born, 

which was significantly more than infants with CST1 (29.1%; Fisher’s exact test, adjusted p<0.001), 

or CST3 (62.5%, adjusted p<0.001). Natural birth was also overrepresented in infants with CST3 

compared to CST1 (adjusted p=0.020). In contrast, feeding type (breastfeeding vs. exclusive formula 

feeding) was not significantly different between these CSTs. Interestingly, a post-hoc analysis 

revealed that the association between mode of delivery and anti-Ps6B IgG responses disappeared with 

the addition of week one CST as an independent variable, indicating that the positive effect of natural 

delivery on anti-Ps6B IgG depended fully on the CST. In contrast, natural delivery remained 

significantly associated with anti-MenC IgG responses, regardless of week one CST, suggesting an 

independent effect (Table S4). 

To evaluate whether observed differences in early-life microbial community composition were 

sustained for a prolonged time, including time points closer to vaccination, temporal development of 

the gut microbiota according to week one CST was assessed using PERMANOVA. The microbial 

community composition of children according to their CST defined at week one converged over time, 

resulting in no differences between samples belonging to the CST groups from month six onward 

(Figure 4A). In pairwise comparisons, the observed differences in microbial community composition 

disappeared between infants with CST1 and CST3 by month one, between infants with CST2 and 

CST3 by month four, and between infants with CST1 and CST2 by month six. Similarly, relative 

abundances of Bifidobacterium and E. coli converged over time between CST groups (Figure 4B). At 

the age of 12 months, we identified two distinct CSTs, which were not significantly associated with 

anti-Ps6B or anti-MenC IgG responses, confirming that early-life microbiota were more strongly 

related to vaccine responses than the microbiota close to time of vaccination (Figure S4).  
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Early-life dynamics of individual OTUs are related to vaccine responses 

Finally, we investigated differences in individual OTU succession patterns within the first two months 

between high and low vaccine responders (stratified along the median antigen-specific IgG response). 

Higher abundances of E. coli (days 0-41, adjusted p=0.013) and Bifidobacterium (days 0-5, adjusted 

p=0.027) were associated with high anti-Ps6B responses (confirmed for 7/9 other pneumococcal 

vaccine serotypes, Table S5). This was also observed for several Bacteroides OTUs, whereas 

Clostridium, Prevotella and Streptococcus pyogenes were associated with low responses (adjusted 

p<0.050).  

Higher E. coli abundance (days 0-13, adjusted p=0.072) was also associated with high anti-MenC 

responses (Table S6).  Because the MenC vaccination is administered at the age of 14 months, which 

is much later in life than the pneumococcal vaccinations, we extended the analysis to 12 months to 

allow for identification of associations with OTUs that colonize later in life. In high anti-MenC 

responders, we observed significantly higher abundances of multiple low abundant OTUs belonging to 

the Lachnospiraceae family, including Fusicatenibacter saccharivorans (days 101-381, adjusted 

p=0.080), Pseudobutyrivibrio (days 125-381, adjusted p=0.036) and several Blautia and Roseburia 

OTUs (Table S7).   
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Discussion 

We studied interactions between early-life exposures, gut microbial community development in the 

first year of life, and subsequent antibody responses in saliva against pneumococcal and 

meningococcal conjugate vaccination in a healthy birth cohort. A stable gut microbial community 

with high abundances of potentially beneficial bacteria in the first weeks of life, including 

Bifidobacterium and E. coli, was associated with high antibody responses to pneumococcal 

vaccination at 12 months of life. Furthermore, high E. coli abundance in early life was associated 

with high antibody responses to meningococcal vaccination at 18 months of life. Natural delivery 

was associated with high antibody responses to both vaccines, and, as we previously showed in this 

cohort24, with the early-life gut microbiota colonization patterns that we now associated with high 

antibody responses. Previous studies on associations between gut microbiota composition and 

serum antibody responses have focused on the microbiota near the time of vaccination5,6,10,11,22. 

However, our findings suggest that especially early-life gut microbiota development may set the 

stage for immune responses to childhood vaccinations. 

Antibody responses to vaccination are elicited through activation of vaccine-specific B 

cells which will differentiate into immunoglobulin-secreting plasma cells and memory B cells. The 

gut microbiota have been implicated in the shaping of the systemic B cell and immunoglobulin 

repertoire in early life19,20,37. For instance, a deficient production of IgA and IgG1 in germ free 

mice can be restored by microbial exposure38. In infants, a culture-based study showed that the 

presence of E. coli and bifidobacteria in the gut in the first weeks of life was related to higher 

numbers of circulating CD27+ memory B cells at four and 18 months of life39. This suggests that 

bacterial colonization patterns in early infancy drive B cell maturation, and have a lasting effect on 

immunity39. In line with this observation, we found associations between gut microbiota 

community state types (CSTs) characterized by high abundances of E. coli and/or Bifidobacterium 

in 1-week-old infants and higher antibody responses to vaccination months later in childhood.  

Previous studies have provided evidence for a positive effect of E. coli and Bifidobacterium on the 

immune response to vaccination. For instance, higher abundances of Gram-negatives including E. 
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coli were associated with an adequate immune response against oral rotavirus vaccines5. Another 

study showed that treatment with the probiotic E. coli Nissle in a pig model enhanced the immune 

response to human rotavirus infection40, providing a causal link. A potential mechanism whereby 

E. coli may influence vaccine responses was pinpointed by a study demonstrating that impaired 

antibody responses to seasonal influenza vaccination in germ-free or antibiotic-treated mice were 

restored through TLR5-signaling by flagellated, but not unflagellated, E. coli8, suggesting strain- 

and antigen-specific immune enhancement. Furthermore, early-life absence of Bifidobacterium has 

been associated with reduced systemic immune responses to Bacillus Calmette-Guérin, polio virus, 

tetanus and hepatitis B vaccination11,22, which we also found for pneumococcal conjugate 

vaccination. Lack of early bifidobacterial colonization has been linked to immune dysregulation at 

the age of three months in a previous study, showing reduced levels of circulating plasmablasts, 

and naïve and transitional B cells17. Although the exact mechanisms remain to be unraveled, very 

early-life microbiota-host crosstalk at the intestinal mucosa appears to imprint on systemic 

immunity, including vaccine responses. 

Mode of delivery and breastfeeding are important drivers of early-life Bifidobacterium and E. coli 

abundance13,24,41, whereas antibiotic treatment in the neonatal period has shown to dramatically 

reduce these bacteria42. Our results suggest that early-life microbiota mediate the relationship 

between mode of delivery and anti-pneumococcal vaccine responses, further emphasizing the 

importance of discouraging the increasing application of C-section in the absence of medical 

urgency to preserve the microbiota-immune axis in infants. Similarly, antibiotic-induced 

microbiota disruption may lead to reduced vaccine responses7,21. Preterm infants have also been 

shown to generate lower antibody levels following vaccination compared to term-born controls43. 

In our healthy, term-born cohort, very few infants required antibiotic treatment in the first weeks of 

life, and further studies are required to compare our findings to (preterm) infants who received 

antibiotics as neonates. 

We observed stronger associations of specific gut colonization patterns in early life with antibody 

responses to pneumococcal vaccination than with antibody responses to meningococcal 
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vaccination. Furthermore, antibody responses against pneumococcal serotypes were not correlated 

to those against MenC, suggesting that early-life microbe-mediated immune modulation might be 

antigen-specific. A more likely explanation is that pneumococcal and meningococcal vaccinations 

are administered at different ages. When meningococcal vaccination is administered at 14 months 

of age, the immune system has been exposed to other factors, and is already more mature and 

possibly more resilient to microbiota-related cues than when the first pneumococcal vaccination is 

administered at two months of age16. Notably, we associated higher abundances of members of the 

Lachnospiraceae family, including butyrate-producing taxa, with higher anti-meningococcal 

antibody responses. The abundance of these bacteria in the gut typically increases following the 

cessation of breastfeeding41,44, and are generally found to be beneficial for the developing immune 

system45.  

Our findings lay a foundation for studies investigating interventions that modulate the infant gut 

microbiota to improve vaccine immunogenicity. Perturbed gut microbial colonization patterns 

likely contribute to reduced vaccine effectiveness across certain populations and settings9. Methods 

to modulate the gut microbiota following perturbations such as C-section birth are being 

investigated, and range from probiotic administration46 to maternal fecal microbiota transplants47, 

but it remains unknown if such interventions confer any long-term health benefits including 

enhanced vaccine immunogenicity. Our findings also suggest that different interventions may be 

indicated for vaccinations given earlier in life compared to later in life, and this should be 

considered in future studies. 

Strengths of our work include the dense sampling at different timepoints, especially in the 

beginning of life. The extensively documented epidemiological data and microbiota composition of 

our cohort allowed us to establish associations between gut microbiota and vaccine responses in 

healthy infants. Furthermore, with the sensitive MIA technology, we could accurately measure 

antigen-specific antibody concentrations, even in very low volumes of saliva. Limitations of our 

work include using saliva for antibody measurements rather than serum. However, IgG 

concentrations in saliva were shown to correlate with serum concentrations48, and are, therefore, a 
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valid proxy for systemic IgG. Furthermore, while pneumococcal and meningococcal vaccination 

protect from infection primarily through neutralizing IgG, we did not assess other parameters of 

immunity such as IgA, antibody affinity, and T cell responses. Future studies could employ a 

systems biology approach to obtain a complete overview of the mechanisms that underlie 

interindividual variation in vaccine responses2,49. Our observational study was also not primarily 

designed to study relationships between drivers, microbes and health outcomes such as antibody 

responses to vaccination, which limited our power to detect significant associations. Finally, the 

time between vaccination of the infants and antibody measurement was variable, which we 

corrected for in our analyses, but may still have affected our results.  

In conclusion, we demonstrate that mode of delivery-associated differences in the gut microbiota in 

the first weeks of life, including differences in E. coli and Bifidobacterium abundances, are 

associated with anti-pneumococcal and anti-MenC IgG responses to vaccination. Incorporating 

antibody responses to vaccination as a parameter in future trials of early-life microbiota modulation 

could offer opportunities to assess beneficial outcomes on the microbe-mediated training of the 

immune system. Improved understanding of the microbial factors driving immune maturation and 

vaccine immunogenicity is key to improve vaccine performance and combat infectious diseases in 

children.  
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Figures 
 

 

Figure 1. Anti-pneumococcal and anti-MenC IgG concentrations following vaccination. 
A) IgG concentrations against 10 pneumococcal vaccine serotypes (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F) 
and meningococcus type C (MenC) following vaccination. Black dots and error bars represent geometric mean 
concentrations with 95% confidence intervals. B) Correlation plot of IgG concentrations against the 10 
pneumococcal vaccine serotypes and against MenC following vaccination. Numbers indicate the correlation 
strength, which was evaluated using Spearman’s correlation coefficients.  
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Figure 2. Associations between early-life exposures and anti-pneumococcal and anti-MenC IgG 
concentrations following vaccination. 
A) Colored dots and error bars represent coefficients with 95% CI of a multivariable linear model with log-
transformed IgG concentrations as dependent variable. Significance is indicated by *: p<0.05; **: p<0.005; or 
***: p<0.001. Abbreviations: C-section=caesarean section; AB=antibiotics. B) post-vaccination anti-
pneumococcal serotype 6B (anti-Ps6B) IgG concentrations (left) and post-vaccination anti-meningococcus type 
C (anti-MenC) IgG concentrations (right) in infants stratified according to mode of delivery (vaginal birth vs. C-
section) and feeding type (breastfeeding vs. exclusive formula feeding from birth). Black dots and error bars 
represent geometric mean concentrations with 95% CI. Significance was assessed using analysis of variance 
(ANOVA) on log-transformed IgG concentrations followed by a post-hoc Tukey test adjusting for multiple 
comparisons using the Benjamini-Hochberg procedure, also correcting for time between vaccination and IgG 
measurements. 
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Figure 3. Gut microbial community state types at week 1 and anti-Ps6B and anti-MenC IgG 
concentrations. 
(A) Relative abundances of the top 10 OTUs per community state type (CST) defined at 1 week of age. (B) 
CSTs are plotted against anti-Ps6B IgG concentrations as representative pneumococcal serotype (left) and anti-
MenC IgG concentrations (right). Dots are colored according to mode of delivery and feeding type from birth. 
Black dots and error bars represent geometric mean concentrations with 95% confidence intervals. Significance 
was assessed using ANOVA on log-transformed IgG concentrations followed by post-hoc Tukey tests adjusting 
for multiple comparisons using the Benjamini-Hochberg procedure, also correcting for time between vaccination 
and IgG measurements. Abbreviations: OTU = operational taxonomic unit; p.adj = adjusted p-value.  
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Figure 4. Temporal gut microbial composition development according to week 1 CST. 
(A) Non-metric multidimensional scaling plots based on Bray-Curtis dissimilarity, depicting the gut microbial 
composition per timepoint. Each dot represents the microbiota composition in a single participant’s sample. 
Infants are stratified according to week 1 community state type (CST). Ellipses represent the standard deviation 
of data points for each CST. Significance of differences according to week 1 CST was assessed using 
permutational analysis of variance (PERMANOVA). (B) Relative abundances of Bifidobacterium (1) (left) and 
Escherichia coli (2) (right) over time according to week 1 CST. Significance of differences according to week 1 
CST was assessed using Kruskal Wallis tests and indicated by: *** for p<0.001, ** for p<0.005, and * for 
p<0.05. 
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Tables 
 

Table 1. Cohort description. 
n  120 

Sex, female (%)   63 (52.5)  
Mode of delivery, vaginal (%)   74 (61.7)  

Exclusive formula feeding from birth (%)   22 (18.3)  
Breastfeeding, number of days (median [IQR]) 72.50 [3.00, 236.75] 

Presence of siblings (%)   83 (69.2)  
Number of siblings (median [IQR]) 1.00 [0.00, 1.00] 

Pets in the household (%)   54 (45.0)  
Antibiotics in first 3 months of life (%)   14 (11.7)  
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