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Abstract 
 
Clinical heterogeneity is common in Mendelian disease, but small sample sizes make it difficult 

to identify specific contributing factors. However, if a rare disease represents the severely 

affected extreme of a spectrum of phenotypic variation, then modifier effects may be apparent 

within a larger subset of the population. Analyses that take advantage of this full spectrum 

could have substantially increased power. To test this, we developed cryptic phenotype analysis 

(CPA), a model-based approach that uses symptom data to infer latent quantitative traits that 

capture disease-related phenotypic variability.  By applying this approach to 50 Mendelian 

diseases in two large cohorts of patients, we found that these quantitative traits reliably 

captured disease severity. We then conducted genome-wide association analyses for five of the 

inferred cryptic phenotypes, uncovering common variation that was predictive of Mendelian 

disease-related diagnoses and outcomes. Overall, this study highlights the utility of 

computationally derived phenotypes and biobank-scale cohorts for investigating the complex 

genetic architecture of Mendelian diseases.  
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 Advances in sequencing technology, cohort generation, and data dissemination have 

enabled the rapid identification of thousands of rare genetic variants associated with 

Mendelian diseases1,2. A great deal of this success can be attributed to their relatively simple 

genetic architectures: they are predominantly caused by deleterious alleles clustered within a 

limited number of genomic loci. Nevertheless, clinical heterogeneity is commonly observed 

among cases1,3,4. For example, Marfan Syndrome, an autosomal dominant disorder caused by 

mutations in the FBN1 gene, is associated with cardiovascular, ocular, skeletal and even 

pulmonary abnormalities. Individuals with pathogenic FBN1 alleles rarely manifest all of the 

associated symptoms5, and even individuals within the same family can display disparate 

phenotypes6. Some of the clinical variability observed among Mendelian disease cases is 

attributable to allelic heterogeneity1,3, but multiple lines of evidence also suggest a role for 

environmental and genetic background effects4,7–11. 

 The identification of specific factors that modify Mendelian disease severity is inherently 

limited by the low prevalence of these disorders. Generally, it is difficult (but not 

impossible12,13) to construct cohorts of affected cases that are large enough to identify genetic 

and environmental modifiers, especially if they have relatively modest effect sizes. Given this 

limitation, many studies that investigate modifier effects have instead relied on model 

organisms14,15 or the integration of orthogonal analyses16,17. As an alternative approach, we and 

others hypothesize that some Mendelian disorders may represent the severely affected 

extreme of a spectrum of pathologic variation. For conditions like familial 

hypercholesterolemia18, hereditary breast cancer19, and long QT syndrome20, this relationship is 

well documented. As a result, the interplay between rare and common genetic variation has 
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been systematically investigated21–24.  In each of these examples, however, the analyses were 

possible because the condition of interest mapped to a univariate (often quantitative) 

phenotype. For Mendelian disorders that instead map to complex arrays of disparate 

symptoms, investigating the interplay between common and rare genetic variation becomes 

substantially more difficult. 

 With this in mind, we developed a probabilistic, model-based approach that infers latent 

quantitative traits that capture Mendelian disease severity using their diagnosed symptoms 

(Cryptic Phenotype Analysis). We then systematically tested the method on 50 different 

Mendelian disorders in two independent patient cohorts (UCSF Clinical Data Warehouse 

[UCSF]25, UK Biobank [UKBB]26), uncovering multiple traits that captured disease severity. To 

validate the latent phenotype model, we used exome sequencing data to demonstrate that 

pathogenic variation in known disease genes was associated with the inferred traits. Finally, we 

performed genome-wide association studies (GWAS) to identify common variation (in the form 

of polygenic scores) that is associated with cryptic phenotype severity and Mendelian-disease 

related outcomes. This approach replicated the known architecture of a well-characterized 

genetic condition (a-1-Antitrypsin Deficiency [A1ATD]) while also identifying common variant 

modifiers for two Mendelian kidney diseases: Alport Syndrome (AS) and Autosomal Dominant 

Polycystic Kidney Disease (ADPKD). Overall, this study suggests that phenotype-driven 

approaches applied to biobank-scale data represent a powerful method for investigating the 

complex genetic architecture of rare diseases.    
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Results 

Overview of a phenotype-driven approach for identifying common variant Mendelian disease 

modifiers 

 Figure 1 outlines the approach taken to identify common-variant modifiers of 

Mendelian disease severity. It assumes that the Mendelian disorder of interest maps to the 

severely affected extreme of a spectrum of phenotypic variation (Figure 1A, upper left). 

Furthermore, this trait is not limited to the Mendelian disease cases but is present throughout a 

larger subset of the population. Critically, this spectrum of variation cannot be measured 

directly. Instead, the trait is analyzed implicitly by a clinician, who translates their observations 

into a set of symptoms (Figure 1A, upper left). These symptoms are then documented in the 

medical record, typically as a combination of structured and unstructured data.  Building upon 

previous work9,27,28, we aligned structured electronic medical record (EMR) data (i.e. ICD10 

diagnostic codes29, see Supplemental Figure 1 and Methods) to the symptoms annotated 

within the Human Phenotype Ontology30. This enabled us to construct a symptom matrix that 

encodes the severity of a specific Mendelian disease (Figure 1A, right), which can then be used 

to recover the cryptic, quantitative trait of interest (Figure 1B). 

 The process of decoding an observed symptom matrix into an underlying cryptic 

phenotype is equivalent to a form of matrix decomposition (Figure 1B). In this scenario, the 

symptom matrix is decomposed into a risk function (Figure 1B, upper right) and collection of 

one or more latent phenotypes (Figure 1B, lower right). There are numerous ways to perform 

matrix decomposition31. Using methods developed for machine learning32,33, we designed a 

simple probability model for the observed symptom matrix that preserved its binary nature and 
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enabled accurate, scalable inference of the desired latent phenotypes (see Methods). Note, the 

recovery of these phenotypes is inherently limited by the loss of information that occurs when 

translating a quantitative trait into collection of symptoms. Therefore, inferred cryptic 

phenotypes will be inherently noisy (see Figure 1B, lower right for example) unless the matrix 

contains hundreds of distinct observations, which is unrealistic for most rare diseases.  

 There is no guarantee that cryptic phenotypes inferred using this approach capture the 

severity of the intended Mendelian diseases, as the method is unsupervised. Therefore, we 

performed multiple analyses to ensure that the inferred traits reliably modeled the phenotypic 

variability of interest (see Figure 1C, study overview). We hypothesized that genetic factors 

associated with this variability are consistent across the full spectrum of phenotype severity. As 

a result, genetic modifiers identified in more mildly affected individuals should be predictive of 

outcomes in Mendelian disease cases. To test this, we used GWAS to identify common variation 

associated with each cryptic phenotype (Figure 1C, bottom). Using a withheld sample of 

unrelated control and rare-disease affected individuals (as determined by genetic data), we 

confirmed that the identified common variant effects were indeed associated with cryptic 

phenotype severity, disease-related laboratory measurements, and symptom 

onset/progression.    
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Figure 1: A phenotype-driven approach to identifying common variant modifiers. (A): Schematic illustrating the assumptions 
underlying cryptic phenotypes and the proposed workflow. (B): Illustration of the model-based approach to symptom matrix 
decomposition and cryptic phenotype recovery. (C): Flow diagram describing the approach to inferring and validating cryptic 
phenotypes, which were subsequently used to identify common variant modifiers. UCSF: UCSF Clinical Data Warehouse; UKBB: 
UK Biobank. Figure 1C was created using Biorender.com. 

 
Quantifying disease-related severity through Cryptic Phenotype Analysis (CPA)  

 The approach to cryptic phenotype inference relies on fitting a generative probability 

model to the observed disease symptom matrix. Due to the unsupervised nature of this 

inference, the latent phenotypes inferred with this approach may or may not capture the 

severity of the desired Mendelian disease. To circumvent this issue, we performed cryptic 

phenotype inference only for those diseases that: 1) mapped to specific diagnoses available in 

structured EMR data and 2) had prevalence of at least 10!"	in the UCSF dataset (to ensure 

adequate sample size for validation, see Supplemental Data File 1 for complete list). 

Generative probability models were fit to the symptom matrices for each of the 50 Mendelian 
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disorders meeting these criteria within both the UCSF (N»1.2 million) and UKBB (N»500,000) 

datasets. Consistent models were recovered for 38 of the 50 disorders (Methods), with the 

remainder suffering from convergence issues in at least one of the two datasets (Figure 1C).  

 To ensure that the inferred cryptic phenotypes captured the variability of the intended 

Mendelian disease, we assessed whether the trait was systematically elevated among already 

diagnosed cases using withheld testing data (Figure 2A, exemplar Mendelian disease HHT). For 

31 of the 38 disorders, the cryptic phenotypes were significantly increased among the 

diagnosed cases in the UCSF dataset (Bonferroni-corrected bootstrapped P-value < 0.05, 

Supplemental Data File 6). To verify that the cryptic phenotypes were not dataset dependent, 

symptom matrix probability models were independently inferred using the UKBB, a population 

with different ascertainment, demographics, and healthcare infrastructure26. For 18 of the 31 

disorders, the model inferred with the UKBB dataset reproduced the elevated cryptic 

phenotypes among withheld cases (Bonferroni-corrected bootstrapped P-value < 0.05, 

Supplemental Data File 5).  

Although the cryptic phenotype models replicated in both datasets for nearly 40% of the 

original 50 conditions, their performance (with respect to increased severity among diagnosed 

cases) in the UKBB was systematically worse (Figure 2A and Figure 2B for HHT; Figure 2D for 

global comparison; unpaired T-test P-value=0.003). The source of this decreased performance is 

likely multifactorial. For example, the ICD10 encoding within the UKBB is less granular (see 

Methods). This in turn decreases the number of symptoms available for model inference, which 

can lead to decreased performance. Consistent with this hypothesis, we note that much of the 

difference in dataset performance disappears when models inferred within the UKBB are 
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applied to the UCSF data (Figures 2A, 2B and 2C for HHT; see Figures 2D and 2E for a global 

comparison; unpaired T-test P-value=0.17). That said, there are many differences between the 

clinical datasets in general (sample sizes, population demographics, data provenance, etc.), and 

it is difficult to disentangle all potential factors. Ideally, cryptic phenotypes would be jointly 

inferred in both datasets simultaneously, allowing their unique information to be shared 

systematically. However, because our follow up genetic analyses can only be performed in the 

UKBB (the UCSF dataset lacks genetic information), all subsequent analyses were performed 

using models inferred in the UKBB.  

Note, even with stringent filtering, the models that replicated within both datasets had 

variable consistency (as assessed using the R2 among their inferred cryptic phenotypes, Figure 

2F). Ultimately, 10 of the 18 disorders resulted in phenotype models that generated R2 values 

among the inferred traits ³ 0.2. From this set of 10 conditions, five had a known genetic 

mechanism that could be directly ascertained within UKBB data (autosomal dominant, X-linked, 

or phased autosomal recessive); these were selected for follow up rare and common variant 

genetic analyses (Table 1). Among this group of five, there was still variability in cryptic 

phenotype consistency (MFS R2=0.21 vs. A1ATD R2=0.89; Table 1), which may have affected the 

performance of downstream analyses.  
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Figure 2: Cryptic phenotype inference in the UCSF and UKBB datasets. (A): Distribution of HHT cryptic phenotype severities 
among the subjects in the UCSF testing dataset, stratified by their HHT diagnostic status (green: controls; purple: HHT cases). (A, 
inset): Precision-recall curve for the prediction of HHT diagnoses using the cryptic phenotype. The approximate performance of 
a random classifier is shown in red. Panel (B) displays the same information for the UKBB dataset, which was generated using 
an independently inferred phenotype model. Panel (C) displays the same information as (A), except that the UKBB phenotype 
model is used to generate the cryptic phenotypes in the UCSF dataset. (D, E): The increase in cryptic phenotype severities 
among diagnosed cases is displayed jointly for both datasets. Panel (D) compares the results of the UCSF model with those 
generated by UKBB model directly. Panel (E) instead compares the UKBB results with those obtained in the UCSF dataset using 
the UKBB model. Panel (F): The coefficient of determination (R2) between the cryptic phenotypes generated by the UCSF and 
UKBB models was computed for each replicating disease in the UCSF dataset. The resulting distribution over this statistic is 
displayed.    

Table 1: Mendelian diseases selected for cryptic phenotype validation and analyses.  

Disease Name Abbreviation Cryptic 
Phenotype 

Consistency (R2) 

Causal 
Genes 

Variants 
Analyzed 

Alpha-1-antitrypsin 
Deficiency 

A1ATD 0.89 SERPINA1 Missense (E342K) 

Hereditary Hemorrhagic 
Telangiectasia 

HHT  
0.23 

ACVRL1; 
ENG; 

SMAD4 

LP/P ClinVar Variants; 
Novel LoF 

Marfan Syndrome MFS 0.21 FBN1 LP/P ClinVar Variants; 
Novel LoF 

Alport Syndrome AS 0.45 COL4A3; 
COL4A4; 
COL4A5 

LP/P ClinVar Variants; 
Novel LoF 

Autosomal Dominant 
Polycystic Kidney 

Disease 

ADPKD 0.88 PKD1; PKD2 LP/P ClinVar Variants; 
Novel LoF 
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Validating the inferred cryptic phenotypes through exome sequencing 

 To further validate the cryptic phenotypes inferred for the conditions in Table 1, we 

conducted rare variant association analyses to ensure that these traits could replicate known 

mechanisms of disease. Because these analyses were conducted for validation rather than 

discovery, we focused on rare variants that were either: 1) annotated as pathogenic/likely-

pathogenic (P/LP) in ClinVar2 or 2) predicted34 to be loss-of-function (LoF) alleles (referred to as 

P/LP variants subsequently, Supplemental Data File 7 for full list).  Linear modeling was 

performed to assess whether variants were significantly associated with the corresponding 

cryptic phenotype (Methods).  For all five disorders, the disease-associated variants had large 

effect sizes and were significantly associated with their corresponding cryptic phenotypes 

(Figures 3A-C and Supplemental Figure 6A, 6B). However, there was significant phenotypic 

variability seen among P/LP variant carriers, and many of these subjects had few if any 

apparent symptoms (i.e. cryptic phenotypes=0). 

There are multiple factors that may contribute to the phenotypic variability seen among 

P/LP carriers. First, EMR data is an imperfect proxy for an individual’s true symptoms, and it is 

certainly possible that missing information accounts for significant fraction of this variability. 

Second, some of the P/LP variants may be misclassified. Consistent with this hypothesis, we 

note that variants that were flagged due to annotation issues (see Methods) tend to have a 

systematically reduced effect size (see Figures 3A-C). Third, confirmation bias could result in the 

diagnosis of symptoms that would otherwise be left out of the EMR (ex: epistaxis in a known 

case of HHT), resulting in inflated cryptic phenotypes among diagnosed cases (see Figures 3A-C, 

inset).  
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Figure 3: Exome sequencing validation of the inferred cryptic phenotypes. Panels A-C: Distribution of cryptic phenotype 
severity across three different genotypes: Reference (grey), P/LP Carrier (purple), and Flagged P/LP Carrier (green). The 
marginal (flagged and unflagged variants) P/LP cryptic phenotype effect size is shown at the top of each panel. The baseline and 
unflagged variant effects are displayed below the marginal effects. Parentheses contain the standard errors and P-values for 
effects, which were estimated using ordinary least squares. The insets display the cryptic phenotype severity estimates among 
the P/LP carriers for each condition, stratified by whether the rare disease diagnosis is absent (Abs.) or present (Pres.) in the 
EMR. Gray bars represent average values, and P-values were computed using least squares. (A): Hereditary Hemorrhagic 
Telangiectasia (HHT). (B) Marfan Syndrome (MFS). (C) Autosomal Dominant Polycystic Kidney Disease (ADPKD). (D): Illustration 
of the two biases that could lead to increased cryptic phenotypes among diagnosed carriers. Top: post-diagnosis confirmation 
bias. Bottom: pre-diagnosis ascertainment bias. (E): Common variant modifiers could be used to distinguish between these 
competing models, as common variation would only be correlated with disease diagnosis under the ascertainment bias 
scenario.  

That said, the inflated cryptic phenotypes would also be observed if only the most 

severely affected individuals receive a rare disease diagnosis. In other words, the inflation of 

cryptic phenotypes seen among diagnosed pathogenic variant carriers could instead be driven 

by ascertainment bias at the level of disease diagnosis (Figure 3D). The identification of specific 

genetic modifiers could help differentiate between these two models (Figure 3E). Since it is 

impossible for a disease diagnosis to alter an individual’s genotype, an association between 

common variation that modifies disease expressivity and the diagnosis itself is only consistent 
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with a model in which symptom severity affects disease ascertainment (Figure 3E, bottom). 

Therefore, investigating a role for common variation in cryptic phenotype severity may serve 

two purposes. It can identify background genetic variation that may modify symptom severity, 

but it can also help distinguish different types of bias that may be present within EMR data.      

 

Genome-wide association analyses uncover common variation associated with cryptic 

phenotype variability 

 To identify potential common variant cryptic phenotypic modifiers, we first generated 

two datasets using the UKBB for each disease-trait pair, which we refer to as the training and 

target cohorts. The training cohort included a set of unrelated subjects with similar ancestry 

(Caucasian, Methods); the corresponding P/LP carriers, diagnosed rare disease cases, and all 

their 3rd degree or closer relatives were specifically excluded from this dataset (see Methods). 

This training cohort was used for genome-wide association analyses and polygenic prediction 

model inference (N=294,133-308,381). Alternatively, the target cohort contained a subset of 

unaffected and unrelated subjects of similar ancestry (to provide power for replication; 

N=32,682-34,265) plus all the individuals affected by the monogenic disease of interest (after 

removing any 3rd degree or closer relatives among this subset; N=166-17,163).  
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Figure 4: Common variation associated with cryptic phenotype severity. (A-E): Each panel displays the observed versus 
expected P-value quantiles for the cryptic phenotype genome-wide association statistics, stratified by allele frequency (purple: 
0.01£AF£0.05; blue 0.05£AF£0.50). Genomic inflation factors (lIF) are provided in addition to common variant heritability 
estimates (h2 ± std errors, Methods). (A): a-1-Antitrypsin Deficiency. (B) Hereditary Hemorrhagic Telangiectasia. (C): Marfan 
Syndrome. (D) Alport Syndrome. (E) Autosomal-Dominant Polycystic Kidney Disease.  

 The results of the genome-wide analyses conducted on the training cohort for the five 

cryptic phenotypes are summarized using Quantile-Quantile plots in Figure 4. For three of the 

five disorders (A1ATD, AS, and ADPKD, Figure 4A, 4D, and 4E), the common variant heritability 

was significantly increased from zero, consistent with a role for genetic background effects in 

phenotypic variability. For two disorders (HHT and MFS), the heritability was indistinguishable 

from zero, even though there was evidence for test-statistic inflation at low minor allele 

frequencies (potentially secondary to the non-Gaussian nature of the cryptic phenotype 

distribution). These results do not exclude a role for common genetic background effects in the 

phenotypic variability of these traits. The cryptic phenotype models for both these conditions 
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showed reduced consistency across datasets (R2=0.23 and R2=0.21 for HHT and MFS), 

suggesting that improved modeling may be able to infer cryptic phenotypes with better 

performance. Nonetheless, based on these heritability results, polygenic prediction models 

were inferred (using individual level data35, see Methods) for the cryptic phenotypes belonging 

to A1ATD, AS, and ADPKD (models provided in Supplemental Data Files 8-10). These models 

were then used to impute polygenic scores (PGS) into the target cohorts so that the detected 

genetic effects could be replicated and validated (see below).  

 

Cryptic phenotype-associated genetic variation modifies alpha-1 antitrypsin deficiency 

(A1ATD) severity. 

 Alpha-1-antitrypsin deficiency (A1ATD) is a relatively common genetic disorder that 

leads to early-onset emphysema, liver disease, and auto-inflammatory conditions36. The Pi*Z 

allele (rs28929474) in SERPINA1 is the most common cause of severe A1ATD, although the 

penetrance of this variant is incomplete. The clinical manifestations associated with the Pi*Z 

allele are known to depend heavily on environmental background effects (smoking, alcohol use, 

etc.)37, and common variant modifiers likely also play a significant role38. Using the cryptic 

phenotype approach, we aimed to further investigate the potential effects of background 

genetic variation on A1ATD severity. 

 The GWAS conducted on the A1ATD cryptic phenotype (Figure 5A, Manhattan plot) 

detected three genome-wide significant loci. Not surprisingly, they have all been previously 

been linked to chronic pulmonary disease, lung function, and smoking39 (Supplemental Table 

2). Such results are consistent with the strong effects that smoking is known to have on A1ATD 
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severity37. To further investigate, we examined the interaction between smoking history 

(measured as reported pack-years; UKBB Data Field: 20161) and the Pi*Z allele using the 

inferred cryptic phenotype. Symptom severity was substantially elevated among heavy 

smokers, both within and across the pathogenic genotypes (Figure 5B and 5B inset for Pi*MZ 

and Pi*ZZ genotypes respectively). The cryptic phenotype polygenic score (PGS) was strongly 

associated with smoking history (Figure 5C), and after regressing out the effects of smoking, the 

PGS remained associated with phenotypic severity (bPGS=0.02; P-value=1.6 × 10!##). This 

suggests that the PGS may capture background effects that are independent of smoking history. 

However, it is important to note that the relationship among smoking history, SERPINA1 

genotype, and polygenic load is likely complex. For example, Figure 5E depicts the PGS effects 

on cryptic phenotype severity among pathogenic variant carriers, stratified by smoking history 

and genotype. Notably, the PGS effect varies considerably depending on whether an individual 

has ever smoked, particularly among Pi*ZZ carriers (bPGSxPi*ZZ=0.41 among smokers vs. 

bPGSxPi*ZZ=-0.13 among non-smokers; LR test for smoking-by-PGS interaction effects: P-

value=2.1 × 10!$). The source of this variability is uncertain, but we hypothesize that it may be 

partially driven by smoking cessation/abstinence among more severely affected pathogenic 

variant carriers (Supplemental Figure 7B). 

 To further validate the inferred PGS, we tested whether polygenic load was significantly 

associated with A1ATD diagnoses. Unfortunately, structured diagnostic data for A1ATD is not 

available in the UKBB medical records, but A1ATD diagnoses (as provided by a physician) were 

ascertained as part of a survey that was conducted among the study participants (UKBB Data 

Field: 22152). Consistent with ascertainment bias at the level of disease diagnosis (see Figures 
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3D and 3E), we note the cryptic phenotype PGS was significantly associated with the risk for 

A1ATD diagnosis (Firth-corrected logistic regression LR test; bPGS =0.50; P-value=0.01), which 

was compounded by the large (and expected) effects of the pathogenic genotypes themselves 

(bPiZZ=8.98; P-value=1.5 × 10!%&;  bPiMZ=4.75; P-value=2.3 × 10!#").  

To determine if increased polygenic load translated to other outcomes, we examined 

the variability in age-of-onset for chronic obstructive pulmonary disease (COPD; Data Field: 

42016) among the different genotypes within our target cohort. Consistent with prior 

knowledge, both the Pi*MZ and Pi*ZZ genotypes resulted in more frequent and earlier onset 

COPD (bPiZZ=2.8±0.2, P-value=2.2 × 10!%"; bPiMZ=0.16±0.06, P-value=0.02; Cox-Proportional 

Hazard regression, Methods). Furthermore, smoking history (in pack-years) had a profound 

effect on COPD onset (bSmoke=0.47±0.01; P-value=6.8 × 10!%'$), which included significant 

smoking-by-genotype interaction effects (LR Test P-value=1.9 × 10!"). Finally, after correcting 

for smoking history, the cryptic phenotype PGS had a significant, additive effect (b=0.20±0.03; 

P-value=2.5 × 10!#", Figure 5E), which persisted even when limiting the analyses to only those 

individuals that carry the Pi*MZ/Pi*ZZ genotypes (bPGS=0.19±0.04; P-value=4.7 × 10!&; see 

Figure 5F). This additive PGS effect also replicated in spirometry measurements (Supplemental 

Figure 7C). Note, we performed this analysis using only those subjects with the Pi*ZZ genotype, 

but the sample size (N=102) was likely too small to detect a significant effect (bPGS=0.17±0.24; 

P-value=0.46, see Supplemental Figure 7D). In total, these results indicate that the cryptic 

phenotype for A1ATD replicates much of the known architecture for A1ATD37 while also 

identifying common genetic variation that modifies symptom expression and severity. 
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Figure 5: Cryptic phenotype-associated genetic variation modifies A1ATD severity. (A): Manhattan plot displaying the 
genome-wide association statistics as a function of chromosomal position. Genes were assigned to loci using FUMA40. The 
5 × 10!" significance threshold is displayed as dashed red line, and significant variants (along with those SNPs in linkage 
disequilibrium) are highlighted with red stars. (B): Cryptic phenotype residuals are stratified by the Pi*MZ/Pi*MM genotypes 
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and plotted as function of pack-year quantiles. Inset: Cryptic phenotype residuals plotted against pack-year quantiles, now 
stratified by the Pi*ZZ/Pi*MM genotypes. The association statistics for the genotype x smoking interaction terms are included 
below the inset. (C): Smoking history (expressed as pack-years after adjusting for baseline covariates) is plotted against PGS 
quantiles. (D): Cryptic phenotype residuals, after adjusting for baseline covariates, genotype, and smoking history, are plotted 
against PGS quantiles and stratified by the Pi*MZ/Pi*MM genotypes. The inset displays the same information but now stratified 
by the Pi*ZZ/Pi*MM genotypes. The association statistics for the PGS effects are included below the inset. (E) Cryptic 
phenotype residuals within the upper and lower 50th percentiles of the PGS distribution are stratified by both genotype and 
smoking history. (F): Kaplan-Meier curves for COPD onset after stratifying the target cohort according PGS quintiles. (G): Same 
as in (F), except subjects were restricted to the Pi*MZ/Pi*ZZ genotypes only. The PGS effect size and association statistics 
(computed using a Cox PH model) are provided for the subjects depicted in both (F) and (G).  

 

Cryptic phenotype analysis reveals common genetic variation associated with monogenic 

kidney disease severity and outcomes.  

 Alport Syndrome and Autosomal-Dominant Polycystic Kidney Disease represent two of 

the most common forms of hereditary kidney disease41,42, although their underlying molecular 

pathophysiology is distinct. Alport Syndrome is a genetically heterogenous Type IV 

collagenopathy linked to the COL4A3, COL4A4, and COL4A5 genes. The collagen isoforms 

produced by these genes play an integral role in maintaining basement membrane integrity 

within the glomerulus43, cochlea44 and eye45.  In its mildest form (often referred Thin Basement 

Membrane Nephropathy46), the disorder is associated with persistent hematuria that 

uncommonly progresses to chronic kidney disease. In such cases, the disease is typically caused 

by heterozygous pathogenic variants located within any of the three causative genes. In the 

severe form, the disease is characterized by end-stage renal disease, hearing loss, and vision 

abnormalities. Such individuals typically harbor hemizygous variants in COL4A5 (X-linked) or 

biallelic pathogenic variants in COL4A3/COL4A441.  

Alternatively, ADPKD is linked to the PKD1 and PKD2 genes, which encode two integral 

membrane proteins that play critical but complex roles in Ca2+ regulation and ciliary 

functioning42. Phenotypically, ADPKD leads to chronic kidney disease more consistently, 
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although there is again a great deal of variability in age of onset and rate of progression47. 

Moreover, extra-renal manifestations are present in a significant fraction of ADPKD patients, 

and such symptoms include other organ cysts, vascular aneurysms, hernias, and 

bronchiectasis48.  

To investigate a role for common genetic variation in AS and ADPKD variability, we 

conducted GWAS on their respective cryptic phenotypes. The results are displayed in Figures 

6A and 6D. For Alport Syndrome, three loci reached genome-wide significance (see 

Supplemental Table 3). Interestingly, the locus on chromosome 19 has previously been linked 

to hematuria48, and the locus on chromosome 13 is located within the intron of another Type IV 

collagen isoform (COL4A2). This locus has also been linked to neurovascular phenotypes39. The 

third locus is proximal to the MHC region on chromosome 6, and due to complex linkage 

disequilibrium, it has been associated with many disparate phenotypes39. The GWAS for ADPKD 

uncovered 30 independently associated loci (see Figure 6D and Supplemental Table 4), most of 

which have been previously linked to kidney disease and blood pressure regulation39. 

After performing the genome-wide association analyses, prediction models were 

constructed to capture the global effects of polygenic load on cryptic phenotype severity. With 

respect to Alport Syndrome, the inferred PGS had a significant marginal effect in the withheld 

target cohort (bPGS=0.03±0.00; P-value=9.8 × 10!#(), which was more pronounced among the 

P/LP carriers (bPGSxP/LP=0.09±0.03; P-value=0.002). Diagnostic data for Alport Syndrome is not 

available within the UKBB, so we instead focused on two critical outcomes related to the 

disease: Recurrent and Persistent Hematuria (UKBB Data Field: 132002) and End-Stage Renal 

Disease (ESRD; UKBB Data Field: 42026). P/LP variants in AS genes were significantly associated 
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with both outcomes (Persistent Hematuria: bP/LP=1.06, P-value=0.04; ESRD: bP/LP=1.70, P-

value=3.7 × 10!(; Firth-corrected logistic regression), although these effects were less 

apparent within the age-of-onset data (see Supplemental Figure 8D and 8E). The cryptic 

phenotype PGS was marginally associated with Persistent Hematuria (bPGS=0.31; P-value=0.007; 

Firth-corrected logistic regression), an effect that was also apparent when modeling the age-of-

onset (bPGS=0.31±0.12; P-value=0.03 see Figure 6C). Unfortunately, there were too few 

Persistent Hematuria cases to determine if there was a significant interaction effect between 

the polygenic background and P/LP variants (bPGSxP/LP=-0.00±0.62; P-value=0.86). Note, there 

was no evidence that the cryptic phenotype PGS for Alport Syndrome was associated with ESRD 

(bPGS=0.03; P-value=0.82; Firth-corrected logistic regression). However, it was significantly 

predictive of urine microalbuminuria (bPGS=3.10±1.36; P-value=0.023; Supplemental Figure 8C), 

suggesting that the PGS correlates with glomerular dysfunction.  

As was the case for AS, the PGS constructed using the cryptic phenotype for ADPKD was 

again strongly associated with the trait in the target cohort (bPGS=0.06±0.00; P-

value=3.5 × 10!#'(), and like before, the effect was more pronounced among the P/LP carriers 

(bPGSxP/LP=0.15±0.05; P-value=0.003; see Figure 6E). In contrast to AS, diagnostic data for ADPKD 

is available within the UKBB.  As expected, P/LP carrier status was strongly associated with 

Mendelian disease diagnoses (Firth-corrected logistic regression; bP/LP=4.47; P-

value=3.5 × 10!'#), but the inferred PGS had no discernable marginal (bPGS=0.02; P-value=0.67) 

or interaction (bPGSxP/LP=0.37; P-value=0.13) effects. A substantial fraction of P/LP carriers in the 

UKBB were diagnosed with ADPKD (specifically, 35% with polycystic kidney disease and 48% 

with cystic kidney disease in general), so it is possible that these diagnoses lacked the variability 
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needed to detect interaction effects. Therefore, we also examined if the cryptic phenotype PGS 

affected ADPKD onset and rate-of-progression.  

Cystic Kidney Disease onset (UKBB Data Field: 132533) was modeled as a function of 

both P/LP carrier status and polygenic load. As expected, ADPKD P/LP carriers were at high risk 

for early-onset cystic kidney disease (Cox PH model; bP/LP=3.73±0.29; P-value=3.2 × 10!'&), 

consistent with the known pathophysiology of disorder. Interestingly, there was a significant 

interaction effect between the cryptic phenotype PGS and P/LP carrier status (bPGSxP/LP=0.50 

±0.16; P-value=0.002; see Figure 6F), consistent with a model in which polygenic load 

modulates ADPKD severity. Because ESRD is the downstream effect of severe cystic kidney 

disease, we used the onset of this phenotype as a proxy for ADPKD progression. Once again, 

P/LP carrier status had a profound effect on ESRD onset (bP/LP=3.91±0.37; P-value=7.0 × 10!#$, 

see Supplemental Figure 9D), and there was again a significant interaction effect between P/LP 

carrier status and polygenic load (bPGSxP/LP=0.50 ±0.21; P-value=0.02; see Supplemental Figure 

9E). To further verify this effect, we estimated49 the glomerular filtration rate (eGFR) within our 

target cohort. P/LP carriers had significantly lower eGFR values (bP/LP=-15.2 ±2.0; P-

value=7.2 × 10!#"), and there was again a significant interaction effect between carrier status 

and the inferred PGS (bPGSxP/LP=-3.8±1.3; P-value=0.005; see Supplemental Figure 9C). Overall, 

these results suggest that polygenic burden is associated with worse outcomes among P/LP 

carriers, consistent with a role for common variant effects in modifying ADPKD disease severity.  
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Figure 6: Common variant modifiers of monogenic kidney disease revealed through cryptic phenotype analysis. (A): 
Manhattan plot displaying the genome-wide association statistics for the AS cryptic phenotype as a function of chromosomal 
position. Genes were assigned to loci using FUMA40. The 5 × 10!" significance threshold is displayed as dashed red line, and 
significant variants (along with those SNPs in linkage disequilibrium) are highlighted with red stars. (B): AS cryptic phenotype 
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residuals, after adjusting for baseline covariates, P/LP genotype, and pack-years, are plotted against PGS quantiles and stratified 
by the P/LP carrier status. The association statistics for the P/LP variants, the PGS, and their interaction effects are included to 
the right. (C): Kaplan-Meier curve for Persistent Hematuria (Methods) is stratified by PGS quintile. The marginal PGS effect was 
estimated using a Cox PH model. (D): Manhattan plot displaying the genome-wide association statistics for the ADPKD cryptic 
phenotype as a function of chromosomal position. (E): ADPKD cryptic phenotype residuals, after adjusting for baseline 
covariates, P/LP genotype, smoking status (Methods), are plotted against PGS quantiles and stratified by the P/LP carrier status. 
(F): Kaplan-Meier curve for Cystic Kidney Disease onset stratified by PGS quintile. Note, the P/LP carriers are depicted; however, 
the PGSxP/LP interaction effects were computed using the complete target cohort.  

 

Discussion 

 
 Cryptic Phenotype Analysis (CPA) provides a model-based approach for inferring 

quantitative traits that capture rare disease variability. In the current study, we used these 

traits to identify common variants putatively associated with the clinical heterogeneity 

observed among Mendelian disease cases. This approach relies on two assumptions. First, the 

condition of interest must represent the extreme of a spectrum of pathologic variation. Second, 

shared genetic factors need to drive phenotypic variability among the mild and severely 

affected individuals. If true, then the effects of genetic and potentially even environmental 

modifiers should be detectable within a subset of the population that extends beyond the rare 

disease cases. Consistent with this hypothesis, CPA enabled us to identify common variation 

that was putatively associated with Mendelian disease severity. This variation was predictive of 

disease-related symptoms, laboratory tests, and outcomes in withheld cases. Overall, our study 

suggests that CPA represents a powerful new method for investigating the genetic architecture 

of rare disease-associated traits, although there are multiple avenues for further investigation. 

 Cryptic Phenotype Analysis (CPA) has several attractive properties. First, it performs 

latent phenotype inference using an unsupervised generative model, thereby directly 

estimating a quantitative trait that captures symptom variability. Second, its model-based 
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nature allows cryptic phenotypes to be directly imputed into new datasets, albeit only if the 

observed data is encoded using the same format. Third, the model is modular (i.e. composed of 

multiple conditionally independent components), so it could easily be extended in multiple 

ways (direct incorporation of disease labels, the inclusion of laboratory data, joint modeling 

across multiple independent datasets, etc.). This could potentially result in more accurate latent 

phenotypes and increased power for downstream analyses. Alternatively, simpler heuristic9 and 

discriminative50 approaches also exist for quantifying rare disease variability, and additional 

work is needed to determine if and/or when such indirect approaches can be used to perform 

the types of genetic analyses illustrated here.  

 The results from the common variant association analyses demonstrate that polygenic 

load likely plays a role in Mendelian disease variability. These polygenic effects were detected 

at the level of the cryptic phenotypes themselves (Figures 5D, 5E, 6B, and 6E), but they were 

also apparent when examining outcomes known to be associated Mendelian disease severity 

(spirometry measurements, glomerular filtration rate, symptom age-of-onset, etc.). Although 

the results replicated across Mendelian diseases (i.e. polygenic load was consistently associated 

with more severe outcomes), it is difficult to replicate the results across datasets, as a unique 

combination of information (extensive EMR data, genome-wide common variation, exome 

sequencing data) is required. However, biobanks with linked medical and genetic data are 

becoming increasingly common51–55, and as a result, we suspect that phenotype-driven 

approaches that incorporate the full-spectrum of genetic variation will be more widely applied.  

 In summary, Cryptic Phenotype Analysis enables the systematic estimation of 

quantitative traits that capture spectrums of pathologic variation. Although the focus here was 
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on Mendelian disorders, the approach could theoretically be applied to diseases with even 

more complex genetic architectures provided that they are associated with a diverse array of 

symptoms (e.g. systemic lupus erythematosus). Moreover, we inferred these distributions to 

perform common variant genetic analyses. However, they likely have other applications as well. 

For example, the cryptic morbidity distributions could be used in conjunction with other data to 

assist with rare variant annotation and interpretation (see Figure 3A-C for examples), 

particularly in cases where there is limited availability of legacy sequencing data (ex: 

populations that are under-represented in variant databases). The work described here builds 

upon a growing number of studies9,56,57 that demonstrate the utility of applying statistical 

models of human phenotypes to large-scale medical record and genetic datasets. Ongoing 

developments in this field will continue to shed light onto the genetic complexity of human 

diseases.   
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Methods 

Clinical datasets 

Phenotypic analyses were conducted using the University of California San Francisco De-

Identified Clinical Data Warehouse (UCSF-CDW)25, a database of structured health information 

that is made available to UCSF researchers free-of-charge. The data was captured for use on 

May 31st, 2019 and includes roughly 8 years of clinic visits and inpatient hospitalizations (see 

Supplemental Methods). Following capture, patient demographic data was aligned to the 

International Classification of Disease, Tenth Revision, Clinical Modification (ICD10-CM)29 

diagnostic codes available within the medical encounters. The individual diagnostic codes were 

simplified by collapsing multiple appearances of each code into a single value (at-least-one 

binarization), enabling the full set of diagnostic codes specific to each patient to be stored as a 

sparse, binary array. The ICD10-CM codes were filtered according to multiple criteria, which are 

described in the Supplemental Methods. This generated a dataset containing the diagnostic 

status of 10,483 ICD10-CM codes aligned to 1,204,212 patients. This is subsequently referred to 

as the UCSF-ICD10-CM dataset. 

The UCSF-ICD10-CM was further processed in two ways. First, the ICD10-CM codes were 

transformed into Human Phenotype Ontology (HPO)30 terms using a customized mapping, the 

construction of which is outlined below and in the Supplemental Methods (resulting dataset 

denoted UCSF-HPO). This alignment resulted in a global diagnostic matrix encoding 1,674 HPO 

symptoms. Second, we translated the ICD10-CM codes into the ICD10 terminology utilized by 

the UK Biobank (ICD10-UKBB)58, taking advantage of the fact that the UKBB encoding is a less 

granular subset of the ICD10-CM (details regarding the precise translation can be found within 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.26.21262300doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21262300
http://creativecommons.org/licenses/by/4.0/


 

 

our vLPI software package available on Github). This processed dataset is subsequently referred 

to as UCSF-ICD10-UKBB. The UCSF-ICD10-UKBB dataset was also translated into HPO terms 

(denoted UCSF-HPO-UKBB). These less granular datasets contained 4,933 and 1,423 diagnostic 

terms respectively.  

The UK Biobank (UKBB) is a collection of »500,000 middle-aged British adults who have 

received extensive genotyping and phenotyping26.  The bulk UKBB dataset was downloaded on 

Jan 22nd, 2020 using the software provided by the organization. Following download, the raw 

data file was parsed, isolating demographic variables of interest and collapsing main/secondary 

inpatient summary diagnoses into a single data value (using at-least-one binarization). The 

resulting diagnostic codes were filtered according to multiple criteria (see Supplementary 

Methods), resulting in a 1:1 correspondence between the diagnostic codes available within the 

UKBB and the UCSF-ICD10-UKBB datasets. These ICD10 codes were then translated into HPO 

terms. The full UKBB dataset (after removing withdrawn subjects; N=502,488) was used for 

cryptic phenotype inference, but the subjects were also filtered according to recommended 

best practices for genetic analyses26,59. Filtering resulted in the following two subsets: 1) 

485,014 subjects (with exome data, N= 199,234) that remained after removing individuals 

whose genetic data is likely to be confounded by artefact (UKBB-Full), and 2) 342,796 unrelated 

subjects (with exome data, N=153,182) of likely Western European (Caucasian) ancestry (UKBB-

Unrelated). Further details regarding the processing can be found in the Supplemental 

Methods. 

Because the UCSF-CDW and UKBB were both used for phenotype model inference and 

evaluation, the datasets were a priori divided each into training and testing subsets. To ensure 
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that the testing datasets contained positive cases for each rare disease included in our analysis, 

distinct training and testing subsets were generated for every disorder. The subsets were 

constructed by randomly subsampling 75% of the data for training and 25% for testing while 

maintaining an equal ratio of diagnosed rare disease cases in each (see below). All model 

inference and preliminary analyses were performed using the training datasets, while the 

testing datasets were only used for the final evaluation of cryptic phenotypes (Figures 2D and 

2E).  

 

Aligning rare diseases to structured medical data 

 Based on previous work60–62,9,27, we integrated multiple biomedical ontologies and 

terminologies to map rare diseases and their symptoms to structured medical data (i.e. 

diagnostic billing codes). To generate a set of rare diseases for analysis, we first used the 

Human Disease Ontology63 to obtain mappings between the Online Mendelian Inheritance in 

Man (OMIM) database64 and the ICD10-CM terminologies. Building on previous work61, we 

curated the OMIM-to-ICD10-CM alignments, selecting and grouping ICD10-CM codes that 

reliably mapped to a single or homogenous set of OMIM diseases, ensuring that the disorders 

were also annotated within the Human Phenotype Ontology30. This resulted in 166 rare, 

Mendelian conditions that were aligned to both the HPO and ICD10 terminologies 

(Supplementary Figure 1). The 166 diseases were sorted according to their diagnostic 

prevalence in the UCSF-CDW and the number of aligned HPO terms (Supplemental Methods); 

50 disorders were selected for follow up testing (listed in Supplemental Data File 1).     
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 The HPO symptoms themselves were aligned to the ICD10-CM terminology in an 

automated fashion by integrating the information contained within multiple biomedical 

ontologies65–68. Details regarding the alignment are provided in the Supplemental Methods. 

This resulted in 1,674 unique alignments between HPO terms and ICD10-CM codes 

(Supplemental Data File 2). We assessed their performance by using them as features in a rare 

disease diagnosis prediction task (Supplemental Figure 2). We found that prediction models 

constructed from the annotated69, ICD10-CM-aligned HPO terms had performances that were 

similar to models constructed using the complete ICD10-CM codebook (see Supplemental 

Table 1).  

 

Cryptic phenotype analysis  

Cryptic phenotype analysis (CPA) refers to the process by which a set of symptoms is 

used to infer a univariate, latent trait that captures the clinical heterogeneity observed within a 

disease of interest. The quantitative but cryptic phenotype can be used to assess clinical 

variability in both the diagnosed cases and the more general population, enabling the types of 

analyses that are described above. CPA consists of two stages. In the first, the symptoms 

annotated to a particular disease are decomposed into a low-dimensional set of quantitative, 

latent phenotypes. In the second stage, the trait that best captures disease morbidity (i.e. its 

symptom expressivity) is identified, since multiple latent traits are often recovered from a 

single symptom matrix. Below, we briefly outline the two stages of CPA. A more detailed 

description is provided in the Supplementary Methods.  
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Latent Phenotype Inference 

 Consider the set of 𝐾 symptoms that are associated with some rare disease of interest, 

and furthermore, assume that these symptoms are binary (present/absent) and permanent (i.e. 

once diagnosed, they do not resolve). Let 𝑆),+  denote the status of the 𝑗th symptom in the 𝑖th 

subject such that 𝑆),+ = 1 indicates that the patient has been diagnosed with this symptom. 

Furthermore, let 𝑺 denote an 𝑁 × 𝐾-dimensional matrix of symptom diagnoses such that the 

𝑖th row of the matrix (denoted 𝑆)) contains the diagnoses for subject 𝑖. Finally, let 𝒁 denote an 

𝑁 × 𝐿-dimensional matrix of latent phenotypes, where each column represents the magnitude 

(i.e. severity) of an independent latent phenotype. We modeled the joint likelihood of the 

disease symptoms and latent phenotypes according to: 

P(𝐒, 𝐙|θ) = f(𝐙; θ) 	× 𝑃(𝐙), 	

where 𝑓(𝐙; θ) is the symptom risk function (defined by the parameter set θ) that maps the 

latent phenotypes onto the matrix of symptom probabilities (i.e. 𝑓(𝒁; θ) ∈ [0,1],×. ≡

𝑃(𝑺|𝒁, θ)) and 𝑃(𝐙) is a generative model for the latent phenotypes themselves. Additional 

details regarding 𝑓(𝒁; 𝜃) and 𝑃(𝐙) are provided in the Supplemental Methods. 

 Given an observed symptom matrix (denoted 𝑺 = 𝒔), we obtained estimates for the 

symptom risk function parameters (denoted θI) by optimizing a lower bound approximation to 

the model marginal likelihood (i.e. 𝑃(𝒔|θ) = ∫𝑃(𝒔, 𝒁|θ)𝑑𝒁) using an amortized, variational 

inference algorithm32,33. Model inference was conducted using the training subsets only. 

Estimates for the latent phenotypes of interest (denoted 𝒁L) were obtained as a direct by-

product of this optimization process (see Supplemental Methods). In practice, the observed 

symptom matrices for each rare disease were constructed from the UCSF-HPO, the UKBB-HPO, 
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and the UCSF-HPO-UKBB datasets using the annotations available on the HPO website (see 

Supplemental Data File 3 for the complete disease-to-symptom mappings)69. However, some 

of the aligned symptoms were manually curated in attempt to resolve convergence issues (see 

Supplemental Methods); Supplemental Data File 4 contains the final disease-to-symptom 

mappings used to infer the cryptic phenotypes for the 10 diseases that passed all our filters (see 

below). Additional details concerning our model inference and evaluation procedures are 

provided in the Supplemental Methods.  

 

Cryptic Phenotype Identification and Evaluation 

 Following inference, we assigned each rare disease a single cryptic phenotype, which we 

define as the latent trait that best captures the symptom frequency intrinsic to the rare disease 

of interest (i.e. its morbidity). By default, all our models were initialized with a total of 10 

possible latent phenotype components, as multiple pathologic processes can contribute to the 

correlation structure observed among some set of symptoms (see Supplemental Methods for 

more information). Although this meant that many of our models were initially 

overdetermined, we found that our inference algorithm was able to automatically remove 

unnecessary components by zeroing out their parameters in the symptom risk function. The 

number of latent components that remained following model inference was termed the 

model’s effective rank (𝐿eff, see Supplementary Methods for precise definition), which was 

typically much less than the number of components used to initialize the model 

(Supplementary Figure 4). When 𝐿eff = 1, then this single component was automatically 

selected to be the disease’s cryptic phenotype. When 𝐿eff > 1, then each inferred latent 
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phenotype was used separately as a classifier to predict rare disease diagnoses in the training 

dataset, noting that the component that best captures the expressivity of a disease should be 

most predictive of diagnostic status (see Figures 3A-C, inset for examples). This top-performing 

latent component (assessed using the average precision score70) was then selected as the 

disease’s cryptic phenotype. 

 Note, the model fitting described above was completed in both the UCSF and UKBB 

datasets, with the caveat that not all the Mendelian diseases in Supplemental Data File 1 map 

to specific ICD10 diagnostic codes in the UKBB dataset (the encoding for this dataset is more 

limited, see above). Therefore, cryptic phenotype models inferred in the UKBB dataset were 

replicated in the UCSF dataset (using UCSF-HPO-UKBB, see Figure 2D and 2E for results). To 

ensure the assigned cryptic phenotypes were in fact capturing Mendelian-disease related 

morbidity, we compared the average cryptic phenotype severity among diagnosed cases to 

their undiagnosed controls (using the test datasets only). For a cryptic phenotype to replicate, 

the average symptom severity among Mendelian disease cases had to be significantly higher in 

both the UCSF and UKBB datasets (significance assessed through bootstrapped re-sampling71 

after performing Bonferroni corrections, see Figure 2D and 2E). If Mendelian disease diagnostic 

codes were not available in the UKBB, then this increase in cryptic phenotype severity only 

needed to replicate in the UCSF dataset.  

 Beyond replication, we also wanted to ensure that models inferred within the two 

independent datasets were consistent, meaning that they generated similar results when 

applied to the same dataset. Therefore, the phenotype models inferred within the UKBB were 

directly applied to the UCSF-HPO-UKBB dataset. Consistency was then assessed in three ways. 
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First, the same latent component had to be assigned as the cryptic phenotype in both datasets 

(see above). Second, the UKBB model had to reproduce the increase in phenotype severity 

observed among the Mendelian disease cases within this new dataset. Third, the cryptic 

phenotypes produced by the UCSF and UKBB models needed to be highly correlated (as 

assessed through the coefficient of determination, R2). Using an R2 cutoff of 0.2, ten of the 

original fifty Mendelian disorders survived our replication and consistency filters. However, it is 

entirely plausible that replicable and consistent cryptic phenotypes could have been inferred 

for the other disorders through careful curation of annotated symptoms, larger sample sizes, 

and more focused adjustment of inference algorithm parameters (see Supplemental Methods). 

 

Validation of the cryptic phenotypes using exome-sequencing data 

  The cryptic phenotypes for the five diseases listed in Table 1 were further validated 

through rare variant association studies. This required identifying pathogenic variant carriers 

within the UKBB.  For A1ATD, the causal Pi*Z allele (rs28929474) was directly ascertained 

through array-based genotyping, so carriers of the Pi*MZ and Pi*ZZ genotypes were identified 

in the call/imputation files (see UKBB Data Category 263). For the remaining diseases, we 

downloaded the VCF files that contained the known causal genes (see Table 1). We then used 

the ClinVar database VCF (available at https://ftp.ncbi.nlm.nih.gov/pub/clinvar/) to isolate all 

variants annotated as pathogenic/likely pathogenic (accomplished using bcftools72). 

Because heterozygous loss-of-function (LoF) is an established molecular mechanism for each of 

diseases in Table 1 (except for A1ATD), we also identified LoF variants that were not listed in 

ClinVar, which were annotated using the LOFTEE plugin34 for the Ensembl Variant Effect 
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Predictor73. Not all the variants isolated in this manner have equivalent levels of evidence for 

pathogenicity. Therefore, we added a flag to each variant to indicate if: 1) it had conflicting 

annotations, 2) it was annotated by a single submitter, or 3) it was located within a non-

canonical transcript (LoF variants only). Supplemental Data File 7 contains a complete list of 

the P/LP variants analyzed in this study.    

 Using the VCF and genotype call files, we then identified all carriers of the P/LP variants 

described above. To assess whether the variants were associated with cryptic phenotype 

severity, we estimated their average genetic effects using the following linear model: 

𝐶𝑃) = β1 + β2/42 × 𝐺) + 𝑎⃗ × 𝑋⃗5, 

where 𝐶𝑃)  denotes the cryptic phenotype of the ith subject,	𝛽1	is an intercept parameter,  

𝛽2/42 is the average effect parameter for the P/LP variants, 𝐺)  is the carrier status of the ith 

patient, and 𝑋⃗5  denotes a vector of covariates (with their corresponding parameter vector 

given by 𝑎⃗). Sex, age (inverse rank-transformed to remove skew), UKBB array platform, and the 

first 10 principal components of the genetic relatedness matrix were used as covariates. The 

analysis was limited to unrelated individuals of similar ancestry (Caucasian) to reduce the risk 

for population structure confounding (N=153,182). Estimates for the parameters were 

produced using ordinary least squares, and per-parameter significance was assessed using a 

two-sided T-test. To account for effects related to variant annotation, we also fit the following 

linear model: 

𝐶𝑃) = 𝛽1 + 𝛽2/42 × 𝐺) + 𝛽6789:;;<=	2/42 × 𝐺) × 𝑈) + 𝑎⃗ × 𝑋⃗5, 

where 𝑈)  is a binary variable that indicates if the ith patient carries a variant without any 

annotation flags (see above). This enabled us to decompose the phenotypic contributions of 
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P/LP variants into baseline (𝛽2/42) and unflagged (𝛽6789:;;<=	2/42) effects, which are displayed 

at the top of the panels in Figure 3A-C and Supplemental Figure 6B. Note, the AS phenotype is 

known to be more severe among hemizygous male carriers of COL4A5 pathogenic variants, 

consistent with X-linked inheritance. Therefore, we included an interaction term between sex 

and COL4A5 carrier status during our molecular validation of the AS cryptic phenotype. This 

interaction effect did not reach statistical significance (bCOL4A5xSex=0.09±0.15; P-value=0.56), 

likely due to the small number of male P/LP COL4A5 carriers in the dataset (N=12 in UKBB-

Unrelated). As a result, sex-specific interaction effects were not included in downstream 

analyses. 

 

Common variant genome-wide association analyses for the inferred cryptic phenotypes.  

Genome-wide association studies were performed to identify common genetic variants 

associated with the cryptic phenotypes assigned to the diseases in Table 1. To reduce the risk of 

confounding, the association analyses were conducted using a subset of patients isolated from 

UKBB-Unrelated (𝑁 = 342,796) that met the following criteria: 1) did not possess a P/LP 

variant in a gene linked to the disease of interest, 2) were never diagnosed with this disease, 

and 3) were not a 3rd degree or closer relative of any of these subjects. From this training 

cohort, a random subset of 10% were removed and added to the Mendelian disease P/LP 

carriers. This second dataset is called the target cohort, and it was used to perform polygenic 

score replication and validation. All SNPs meeting the following criteria were in included into 

the analyses: directly genotyped by the UKBB, minor allele frequency (MAF) ³ 1%, missing 

genotype fraction £ 5%, and Hardy-Weinberg Equilibrium (HWE) P-value ³ 10-12. Note, a 
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relatively limited number of genetic markers (579,429 SNPs) met these criteria, but this smaller 

set of features enabled us construct individual-level prediction models for polygenic score 

inference (see below). 

 Genome-wide association studies (GWAS) were conducted by fitting the following linear 

model to each cryptic phenotype: 

𝐶𝑃) = 𝛽1 + β+?,2 × 𝐺),+ + 𝑎⃗ × 𝑋⃗5, 

where 𝐶𝑃)  indicates the cryptic phenotype in the ith patient, β+?,2 represents the average 

effect of the jth SNP, 𝐺),+  encodes the minor allele count (𝐺) ∈ {0,1,2}; additive model), and 

𝑋⃗5/𝑎⃗ denote covariates/effect parameters respectively. Sex, age (rank-normalized), UKBB array 

platform, and the first 10 principal components of the genetic relatedness matrix were used as 

covariates. Association statistics were estimated using the Plink275 software package (--

glm command). Lead SNPs and their corresponding annotations were generated using the 

FUMA40 platform. The loci identified for the three diseases with genome-wide significant effects 

are provided as Supplemental Tables 2, 3, and 4 (A1ATD, AS, and ADPKD respectively). 

 SumHer (available within the LDAK toolkit)76 was used to produce estimates for the 

fraction of the additive variance explained by the genotyped SNPs (narrow-sense heritability, 

denoted h2). This required the specification of an underlying heritability model76. Based on 

recommended best-practices, we used the LDAK-Thin model given its simplicity and portability 

to individual-level prediction. This required computing a tagging file, which was constructed 

using a random subset (N=10,000) of UKBB-Unrelated. First, duplicate SNPs were identified 

using the ldak --thin command with the following options: --window-prune .98 --

window-kb 100. Next, the tagging file itself was constructed using the ldak --calc-
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tagging command (with options --power -.25 --window-cm 1 --save-matrix 

YES). Finally, narrow-sense heritability estimates were produced from the GWAS summary 

statistics using the ldak --sum-hers command (while also storing the per-SNP 

heritability estimates for downstream analyses).   

 Polygenic scores summarizing the common variant association statistics were computed 

for the three diseases in Table 1 that had cryptic phenotype h2 estimates significantly greater 

than 0 (A1ATD, AS, and ADPKD). These scores were estimated using a prediction model that 

was inferred from the individual-level genotype data available within each training cohort. 

More specifically, we used LDAK-Bolt-Predict35 (ldak --bolt command) to estimate effect 

sizes for every SNP included in the cryptic phenotype association analyses (while conditioning 

on the covariates included in the initial linear model, see above). This required access to the 

per-SNP heritability estimates, which were produced by the SumHer model (see above). Note, 

10% of the training data was withheld during model inference (using the --cv-proportion 

.1 flag) to estimate prior parameters. After model fitting was complete, polygenic scores were 

imputed into the target cohort using the --calc-scores command (with --power flag 

set to 0). The per-SNP effect size estimates produced by the predictor models are included as 

Supplemental Data Files 8, 9, and 10 (A1ATD, AS, and ADPKD respectively).  

 

Estimating the effects of polygenic load on Mendelian disease severity and outcomes.  

 Polygenic scores (PGS) were imputed into the target cohorts for each rare disease in 

order to: 1) replicate the PGS-cryptic phenotype relationships, 2) assess for interaction effects 
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between the PGS and P/LP variants, and 3) determine if high polygenic load was associated with 

established Mendelian disease outcomes.  

The first two analyses were accomplished by fitting the following linear model within 

the target cohort of each cryptic phenotype: 

𝐶𝑃) = 𝛽1 + β2@? × ξA + βB\DB × GA + βBEFGB\DB × GA × ξA + 𝑎⃗ × 𝑋⃗5, 

where ξA represents the PGS for the ith patient, β2@? represents its average phenotypic effect, 

and βBEFGB\DB × GA × ξA models the interaction between the PGS and the P/LP variants. In the 

case of A1ATD, the two pathogenic genotypes (Pi*ZZ and Pi*MZ) were modeled as separate 

genetic effects, each with their own PGS interaction terms. For AS, both flagged and unflagged 

P/LP variants were included into the analysis, as they were both shown to influence cryptic 

phenotype severity (see Supplemental Figure 6B). For ADPKD, only the unflagged variants were 

included, as there was no detectable phenotypic effect for the flagged variants, suggesting that 

they most likely represent annotation noise (see Figure 3C). The previous model was fit using 

ordinary least squares, and association statistics were computed using a two-sided T-test.  

 Regarding covariates (i.e. 𝑎⃗ × 𝑋⃗5), sex, age, UKBB array platform, and the first 10 

principal components of the genetic relatedness matrix were included in every model. Smoking 

history was also included into each model, although its incorporation varied across diseases. 

For A1ATD and AS, self-reported pack-years (defined by Data Field: 20161) were used to 

quantify smoking history. Note, there was a significant interaction effect between the Pi*Z 

allele and smoking history (as expected), so interaction terms between pack-years and the 

pathogenic genotypes were included into the cryptic phenotype model for this disease (see 

Figure 5B). There was no significant interaction effect between pack-years and P/LP carrier 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.26.21262300doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21262300
http://creativecommons.org/licenses/by/4.0/


 

 

status for AS (bPack-years x P/LP=0.03±0.05; P-value=0.55), so smoking interaction terms were not 

included for this disorder.  

Regarding ADPKD, smoking had a strong protective effect on cryptic phenotype severity 

such that those P/LP carriers with a history of ever-smoking (provided by Data Field: 20160) had 

systematically lower cryptic phenotype scores (bSmoke x P/LP=-0.41 ±0.11; P-value=1.2 × 10!(). 

This result is clearly at odds with the known pathophysiology of smoking and renal disease, and 

it likely stems from the fact that subjects with moderate-to-severe ADPKD are often diagnosed 

at a young age, prior to when smoking behavior is established (see Supplemental Figure 9D for 

Kaplan-Meier curve of ESRD among P/LP carriers). Consistent with this hypothesis, significantly 

fewer P/LP carriers reported ever-smoking when compared to the general population (see 

Supplemental Figure 9B). Based on these results, the relationship between smoking history and 

ADPKD severity is likely to be confounded by multiple unmeasured factors (specifically, medical 

intervention and counseling). Given our inability to adequately adjust for such complex 

confounding, smoking history in ADPKD was modeled using a simple binary variable (UKBB Data 

Field: 20160), which was included along with a P/LP interaction term. Note, similar confounding 

likely plays a role in the interaction effects between smoking and genotype for the other 

disorders (see Figure 5E and Supplemental Figure 7B for examples), but it was only significant 

enough to reverse the established morbidity relationship for ADPKD.   

 To confirm a role for polygenic load on Mendelian disease outcomes, we examined its 

effect on quantitative measurements that capture established pathophysiology but are distinct 

from symptoms used to construct the cryptic phenotype. For A1ATD, we used the FEV1/FVC 

ratio (UKBB Data Field: 20258), a measurement derived from spirometry that quantifies the 
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severity of obstructive lung disease (see Supplemental Figure 7C). For AS, we examined urine 

microalbumin level (UKBB Data Field: 30500), which correlates with renal health and glomerular 

barrier function (see Supplemental Figure 8C). Finally, for ADPKD, we computed an estimate49 

of the glomerular filtration rate (eGFR) from serum creatinine level (UKBB Data Field: 30700), 

which is often used as a proxy for overall renal function (see Supplemental Figure 8C). The 

models themselves incorporated the same genetic and covariate effects that were used for the 

cryptic phenotype models, and they were again fit using ordinary least squares with association 

statistics computed from a two-sided T-test.   

 Finally, the effect of polygenic load on Mendelian disease severity was assessed by 

estimating its association with: 1) the rare disease diagnosis itself (when available) and 2) the 

onset of clinically important outcomes. The effect of the PGS on Mendelian disease diagnostic 

risk was modeled using logistic regression according to: 

Log-Odds(𝐷)) = 𝛽1 + 𝛽2@? × 𝜉) + 𝛽2\DB × 𝐺) + 𝛽2@FGB\DB × 𝐺) × 𝜉) + 𝑎⃗ × 𝑋⃗5, 

where 𝐷)  is in a binary variable indicating whether a disease diagnosis is present or absent. The 

covariates included were sex, age, UKBB array platform, the first 10 principal components of 

the genetic relatedness matrix, and smoking history (plus interaction terms when relevant, see 

above). Model fitting was performed using the maximum-likelihood method with a Firth 

penalty term, which was included given the risk for Type I error rate inflation in the setting of 

unbalanced samples and rare predictors77. Significance for a given association was assessed 

using a likelihood-ratio test78. 

The age-of-onset for clinically important Mendelian disease outcomes was also used to 

assess the effects of polygenic load on disease severity. The outcomes included in this study 
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were: End-Stage Renal Disease (ESRD; UKBB Data Field: 42026), Chronic Obstructive Pulmonary 

Disease (COPD; UKBB Data Field: 42016), Recurrent and Persistent Hematuria (UKBB Data Field: 

132002), and Cystic Kidney Disease (UKBB Data Field: 132532). Details concerning the 

construction of these data fields are available through the UKBB.  For each outcome, age-of-

onset was modeled using Cox Proportional Hazard (CPH) regression: 

𝜆) = 𝛽2@? × 𝜉) + 𝛽2\DB × 𝐺) + 𝛽2@FGB\DB × 𝐺) × 𝜉) + 𝑎⃗ × 𝑋⃗5, 

where 𝜆)  represents the logarithm of the partial hazard function for the ith subject. The 

following covariates were included into the model: sex, UKBB array platform, the first 10 

principal components of the genetic relatedness matrix, and smoking history (with interaction 

terms as indicated). Model fitting was performed by maximizing the partial likelihood (using the 

lifelines software package79), and significance was assessed using a likelihood-ratio test.  

 

Dataset Availability 

The clinical and genetic datasets used in the analyses presented in this manuscript 

cannot be shared directly with third parties, as both have specific provisions against open data 

sharing outside of their usual application processes. Information regarding third party access to 

the UCSF De-Identified Clinical Data Warehouse can be found through UCSF Data Resources: 

https://data.ucsf.edu/cdrp/research, and the application process for access to the UK Biobank 

is outlined on their website: https://www.ukbiobank.ac.uk/register-apply. Datasets that were 

generated to conduct the analyses described in this manuscript are provided as Supplementary 

Data Files 1-10.  
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Code Availability 

We have deposited the software developed in this study. Latent phenotype model 

inference was performed using the vLPI software package, which was specifically constructed 

for the analyses presented in this manuscript. It is available via Github: 

https://github.com/daverblair/vlpi. A software package that automatically imputes the cryptic 

phenotypes analyzed in this study using ICD10-CM/ICD10-UKBB codes is available on Github: 

https://github.com/daverblair/CrypticPhenoImpute. A singularity container with this software 

already installed can be constructed using the following container script: 

https://github.com/daverblair/singularity_vlpi. Plink275, the LDAK Toolkit35,76, and 

lifelines79 are all freely available from their respective websites.   

 

Human Research Subject Participation 

This study used de-identified human genetic and clinical information (UCSF IRB #: 19-29458). It 

qualified for Exempt status.  
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