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We correct common assumptions about COVID burden and disease
characteristics in high-income (HIC) versus low- and middle-income
(LMIC) countries by augmenting widely-used surveillance data with
auxiliary data sources. We constructed an empirically-based model
of serological detection rates to quantify COVID reporting rates in
national and sub-national locations. From those reporting rates, we
estimated relative COVID burden, finding results that contrast with
estimates based on case counts and modeling. To investigate COVID
mortality by age in an LMIC context, we utilized a unique morgue
study of COVID in Lusaka alongside the population attributable frac-
tion method to account for HIV comorbidity. We calculated the
comorbidity-corrected age-adjusted mortality curve in Lusaka and
found it significantly skewed toward younger age groups as com-
pared to HICs. This unexpected result recommends against the un-
examined use of HIC-derived parameterizations of COVID character-
istics in LMIC settings, and challenges the hypothesis of an age-
structure protective factor for COVID burden in Africa. Indeed, we
found overall COVID burden to be higher in Lusaka than in HICs.
Concurrent with high COVID burden, many LMICs have high preva-
lence of other public health issues such as HIV, which compete
for limited health investment resources. Given differences in age-
structure, comorbidities, and healthcare delivery costs, we provide a
case study comparing the cost efficacy of investment in COVID ver-
sus HIV and found that even in a high HIV prevalence setting, invest-
ment in COVID remains cost-effective. As a whole, these analyses
have broad implications for interpretations of COVID burden, model-
ing applications, and policy decision-making.
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Effective counter-measures against the raging COVID-191

pandemic require accurate geographically-specific knowl-2

edge, but surveillance and data inequities present major chal-3

lenges to these efforts. Surveillance systems are generally more4

robust in high-income countries (HICs), meaning that data5

from HICs tend to be more readily available and complete6

than data from low- and middle-income countries (LMICs)7

(1, 2). For lack of locally-specific data, epidemiological charac-8

teristics of COVID are often based on data from HICs, but the9

transferability to LMIC contexts remains an open question (3).10

Accounting for differences in surveillance and incorporating11

auxiliary data sources can help fill these data gaps and inform12

our understanding of COVID across contexts.13

For example, official statistics on regional COVID burden14

are based on reported case counts (4), despite evidence of15

substantial case underreporting particularly in LMIC contexts16

(5, 6). Such differences in reporting rates can significantly alter17

estimates of relative disease burden across regions (7). COVID18

reporting rates are difficult to determine, but incorporating19

serological data can inform reporting rate estimates. While 20

serology is challenging to work with, it offers some of the 21

best information in data-sparse settings if the limitations of 22

serological data are accounted for (8, 9). 23

Surveillance and reporting influence our understanding of 24

COVID dynamics in other ways as well. For example, while 25

there is strong evidence that COVID parameters such as infec- 26

tion fatality rate (IFR) vary even within HICs, data challenges 27

in LMICs mean that HIC estimates are often used in LMIC 28

settings (10). This practice has major implications for esti- 29

mates of COVID burden and risk factors, and subsequently for 30

policies and public health practices targeting COVID. The com- 31

mon understanding of IFRs and the age-structure of COVID 32

mortality has led to hypotheses that Africa’s young population 33

distributions have a protective effect against COVID (11), yet 34

questions remain about impacts of comorbidity distributions, 35

differences in disease characteristics across settings, and the 36

role of COVID interventions in the context of other public 37

health concerns. 38

We address these questions and assumptions through aux- 39

iliary data sources. Using serological modeling, we calculate 40

reporting rates for different national and sub-national locations 41

in HICs and LMICs. We then use that data in a reporting 42

rate model to adjust national burden estimates accounting 43

for differences in surveillance. Taking a closer look at a local 44
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context, we use morgue sampling data to circumvent issues45

introduced by sampling bias, and statistical approaches to46

adjust for comorbidity. With this age-disaggregated data we47

compare mortality age-structure and burden between LMIC48

and HIC contexts. Cognizant of competing public health is-49

sues, particularly in LMIC contexts, we examine relative costs50

and benefits of investing in COVID vaccine.51

In this article, we first present our results on reporting rates52

across locations and relative regional COVID burden informed53

by serology. Next, we use auxiliary data from Zambia to54

examine mortality age-structure in an LMIC-specific location,55

and conduct an impact comparison of COVID intervention56

with other public health interventions. We follow with a57

discussion describing broader implications of our study results58

for programmatic and modeling applications. Finally, we59

describe in detail our data and methods, including serological60

and reporting rate modeling, mortality burden quantification,61

statistical correction of COVID mortality for comorbidity62

factors, and the cost modeling used to compare public health63

investments.64

Results65

Serology across World Health Organization (WHO) regions.66

Reporting rates in the European region and the region of the Amer-67

icas (EURO and AMRO) are higher than elsewhere. Matching sero-68

prevalence estimates with reported cases in a particular lo-69

cation allows calculation and comparison of reporting rates70

(Figure 1). We take the cumulative reported cases for a loca-71

tion, up until the time of the serostudy, and adjust the case72

rate by a model of seroconversion and reversion. This case73

rate is lower than the raw reported cumulative case rate, as74

serosurveillance does not detect all infections. Reporting rates75

follow the dashed gray lines on the plot. In general, countries76

in the AMRO and EURO regions have the highest reporting77

rates, shown on a log scale. Note that seroprevalence cannot be78

directly compared across locations because of the differences79

in the dates of the serostudies.80

Because serostudy data from the African region (AFRO)81

are sparse, we include sub-national prevalence estimates, and82

match those with case data from the particular sub-national83

locations only. Kenya and Zambia have data for multiple84

sub-national locations, and in both countries reporting rates85

vary by more than a factor of ten. While there is a clear86

correlation between seroprevalence and reported cases, there87

are notable exceptions that appear to align with national88

wealth. For example, Niger State and Cape Town both have89

similar seroprevalence rates, but differ a thousand-fold in90

reported cases. South Africa is a country with considerable91

resources, expertise, and infrastructure for disease surveillance,92

and there is reason to expect that capacity to test and report93

COVID cases is likely better in Cape Town than across Niger94

State. A similar argument can be hypothesized for other low95

income countries on this matrix.96

Ranked estimated infections show lowest burden in EURO. To iden-97

tify the location-specific effects of reporting rates on reported98

case burden, we estimated infection burden across locations on99

the same date. Serostudies provide estimates of reporting rates100

for a specific window of time, but we don’t assume reporting101

rates are constant in time. To address this challenge, we used102

our point estimates of reporting rates to build an model for103

Fig. 1. Adjusted reported cases vs. crude seroprevalence by location. Dashed gray
lines indicate reporting rates, labeled on the inside of the y-axis. WHO region is shown
in color; sub-national locations in Kenya and Zambia are indicated with symbols.

the relationship between reporting rate and testing rate, for 104

which we have continuous time series data. We then used the 105

testing rate time series to model dynamic reporting rates and 106

unify the dates of estimated infections. 107

Figure 2 shows a ranking of COVID burden across locations 108

on November 12th, 2020, the most recent date with continuous 109

available testing data for all locations. The top plot shows 110

the ranking based on reported cases; the bottom plot shows 111

the ranking of estimated infections calculated using reporting 112

rates. In the reported case burden ranking, the EURO region 113

is high relative to other regions; however in the estimated 114

infections ranking, EURO countries have low burden relative 115

to other regions. 116

We note that increased estimated cases relative to reported 117

cases occurs mainly, but not exclusively, in lower resource 118

country settings. As with the analysis presented in Figure 1, 119

these data support the concern that underreporting, perhaps as 120

a consequence of resource limitations, may lead to a significant 121

under-counting of cases in certain parts of the world. 122

Fig. 2. Ranking of cumulative COVID reported cases (top) and estimated infections
(bottom) as of November 12th, 2020.
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COVID mortality in Lusaka.123

COVID mortality burden is substantial among younger age groups in124

Lusaka and higher overall as compared to HICs. Based on a morgue125

study in Lusaka, Figure 3, top left, shows the percentage of126

all-cause deaths that tested positive for COVID postmortem,127

adjusted to exclude HIV-attributable comorbid deaths. The128

frequency of COVID deaths by age-bin hovers between 9% and129

19% for all age groups up to age 70. COVID death frequencies130

in the 70s and 80+ age bins are 24% and 34%, respectively.131

Using age structures of population and life expectancy, COVID132

mortality frequencies can be translated into years of life lost133

(YLL) by age group, which we present for Lusaka alongside134

the United States for a comparison of LMIC and HIC contexts135

(Figure 3, top right). While as expected, YLL per capita due136

to COVID is highest in older age groups in the US, the pattern137

in Lusaka is drastically different: young age groups, instead138

of older age groups, suffer the highest COVID burden. In139

addition, total years of life lost per capita across all age-bins140

is higher overall in Lusaka than in the United States.141

Plotted in Figure 3, bottom right, are age-adjusted COVID142

mortality rates in Lusaka vs. HICs (log scale). In all age-143

groups, age-adjusted COVID mortality rates are higher in144

Lusaka than in HICs. Fitting an exponential model to each145

age-adjusted mortality curve provides an estimate of the rate146

of increase of mortality with age. The slope of this model147

is defined as the growth constant of the curve, plotted for148

multiple locations in Figure 3, bottom left. The significantly149

lower growth rate of mortality with age in Lusaka indicates150

age-adjusted mortality is skewed toward higher mortality in151

younger age groups as compared to HICs. While Lusaka is not152

necessarily representative of all LMICs, these results highlight153

the pitfall of generalizing COVID disease parameters from154

HIC to LMIC contexts.155

Costing mortality reduction.156

Investment in COVID mortality reduction should be prioritized even157

in the context of other public health challenges. Building on the158

age-specific mortality dataset from Lusaka, we used basic cost159

modeling to demonstrate the utility of investment in COVID160

mortality reduction. As HIV is the number one cause of death161

in Zambia, we examine HIV investment alongside COVID162

(12). We include for comparison the United States, a low HIV-163

burden HIC setting. Based on the age structures of population164

as well as COVID and HIV mortality, we calculate total YLL165

per capita for different levels of combined mortality reduction166

of COVID and HIV across age groups. The heat maps in167

Figure 4 show these results for Zambia (left) and the United168

States (right). Model input data are detailed in the table in169

Figure 4. Costing model results are shown as white isotropic170

lines on the heat maps, indicating cost per percent mortality171

reduction for COVID and HIV combined.172

In both Zambia and the United States, the cost of HIV173

mortality reduction outstrips that of COVID mortality reduc-174

tion. As a result, the gradients across the cost model isotropic175

lines are dominated by HIV mortality reduction in both plots.176

The underlying structure of YLL per capita, however, differs177

between the two countries. In the United States, the mag-178

nitude of COVID-attributed YLL per capita is twice that of179

HIV-attributed YLL per capita, as annotated by the white180

circles on the right plot. As a result, the gradient direction181

of YLL per capita in the United States is dominated by the 182

COVID mortality reduction axis. In Zambia, HIV as the 183

number one cause of death might be expected to dominate 184

the gradient of YLL per capita, but COVID-attributed YLL 185

per capita is nearly 70% that of HIV. This skews the gradi- 186

ent direction of total combined YLL per capita to a roughly 187

diagonal orientation, from lower left to upper right. 188

The overlay of the cost/percent mortality reduction 189

isotropic lines and the YLL per capita heat map indicate the 190

cost efficacy of investment in HIV vs. investment in COVID. 191

In both the United States and Zambia on a constant per capita 192

budget, maximizing investment in COVID mortality reduction 193

relative to HIV investment minimizes YLL per capita, the 194

desired outcome. Note that there are many components to 195

decision-making about public health investment, and we do not 196

claim that our model results establish exact cost for mortality 197

reduction or that COVID investment is definitively indicated. 198

Rather, this analysis serves to unseat any a priori assumptions 199

that COVID burden is insignificant in settings with other 200

high-burden public health issues. Rather, COVID investment 201

should be considered as a possible avenue for cost-effective 202

reduction in total disease burden. 203

Discussion 204

Using surveillance data auxiliary to reported COVID cases 205

and deaths, we demonstrate that common assumptions about 206

regional COVID burden must be reconsidered. We calculate 207

reporting rates across locations and show the impact of regional 208

differences on perceived COVID burden. Further, contrary 209

to impressions derived from case counts, we establish higher 210

burden of COVID in the African context as compared to 211

HICs, particularly in younger age groups. This challenges 212

predominant assumptions about the age structure of mortality 213

rates and the protective effects of younger populations in 214

Africa (3, 8, 13). 215

Combining seroprevalence data with seroconversion and 216

reversion modeling, we calculate reporting rates across WHO 217

regions and present estimated infections across locations. Our 218

analysis shows high reporting rates in EURO and AMRO 219

relative to other regions, a data-based result consistent with 220

anecdotal understanding (1, 7). Heterogeneity of reporting 221

rates at the sub-national level adds to the common under- 222

standing of geographic heterogeneity of COVID prevalence 223

(14, 15). By identifying a relationship between reporting rate 224

and testing rate, we unify the date of COVID prevalence es- 225

timates and rank countries according to relative estimated 226

prevalence. The relatively low burden in EURO countries 227

contradicts geographic burden distributions based on reported 228

cases as well as modeling estimates (13, 16). 229

Randomly sampled morgue-based COVID testing data pro- 230

vides the opportunity to evaluate mortality dynamics in an 231

African context, without the challenges associated with report- 232

ing systems. The age structure of mortality in the African 233

setting is significantly different from HIC settings, with unex- 234

pectedly higher burden in younger age groups. In addition, 235

overall mortality burden in the African setting outstrips that 236

in HICs. This poses serious risks for LMIC countries where 237

age distributions are skewed younger, directly contradicting 238

the age-protection hypothesis. We use the mortality data 239

alongside a simple cost model to show that even in a context 240

with substantial other public health concerns such as HIV, 241
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DRAFTFig. 3. COVID mortality for Lusaka and HICs. Upper left: Frequency of COVID-positive deaths among all-cause deaths by age bin (Lusaka). Upper right: Years of life lost per
capita by age bin for Lusaka and the United States. Lower right: Age-adjusted mortality for Lusaka and HICs by age bin. Lower left: Exponential rate of increase of age-adjusted
mortality with age across locations. All mortality data is from early August, 2020. COVID mortality in Lusaka is adjusted to exclude HIV-attributable comorbid deaths. Shading
and error bars represent 95% confidence intervals.

COVID HIV
Vaccine 
delivery

Vaccine 
cost

Vaccine 
efficacy

$/% mort. 
redux

$/% mort. 
redux

Zambia $1.98 $3.00 10% $0.50 $10.40
USA $2.32 $17.25 95% $0.21 $11.74

Fig. 4. Cost models of reduction of COVID and HIV mortality for Zambia (left) and
the United States (right). Axes indicate model inputs of percent mortality reduction
for HIV and COVID. Heat map illustrates remaining YLL/total population for HIV and
COVID combined. Cost per capita for combined HIV and COVID mortality reduction
are shown in white isotropic lines, labeled on the right y-axis of each plot. White
circles on the plot are annotated with the total YLL per capita for one disease only, as
indicated. Table shows model inputs for COVID and HIV cost per percent mortality
reduction, sources cited in the Materials and Methods section.

COVID may be a cost-effective investment for disease burden 242

reduction. 243

Our study is subject to a number of limitations, particularly 244

as we grapple with understanding COVID dynamics in LMIC 245

contexts. LMICs are subject to limited data availability and 246

substantial uncertainty, which we address in part by making 247

use of sub-national data sources including serology and COVID 248

testing from morgue sampling. Challenges when working 249

with serology include inconsistencies in testing protocols and 250

sampling frameworks alongside the impacts of seroconversion 251

and reversion on results. To address these hurdles, we focus 252

on serostudies that do not target particular populations, and 253

adjust estimates for seroconversion and reversion. 254

Necessitated by data and uncertainty limitations, some of 255

the models we present rely on broad approximations. Modeling 256

reporting rate as a function of testing rate, for example, is an 257

approximation made to include countries where more detailed 258

auxiliary data are not available. We do not attempt to estimate 259

the magnitude of COVID burden in different locations, only 260

their relative ranking. Finally, cost modeling is presented as 261

a ballpark framework to evaluate COVID in the context of 262

other public health concerns, rather than a comprehensive 263

costing model. We use HIV as an example to compare with 264

COVID, recognizing that there are other sources of burden 265

and other approaches to public health investment than single 266

disease-focused strategies. We do not attempt to model the 267

complexities of mortality reduction dynamics, rather seeking 268

to demonstrate that COVID should be considered as part of a 269

public health investment portfolio. 270

The substantial differences in reporting rates across lo- 271

4 | Van Gordon et al.
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cations and the subsequent influence on perceived burden272

highlight the pitfalls of making programmatic decisions based273

on reported cases alone. The differences in mortality and bur-274

den between Africa and HIC contexts calls for caution when275

translating epidemiological age structure assumptions from276

HIC to LMIC contexts, and rethinking assumptions about pro-277

tective factors for perceived lower burden in African contexts.278

Cost-effectiveness of COVID mortality reduction recommends279

investment even in contexts with other entrenched public280

health concerns and limited vaccine efficacy.281

Materials and Methods282

Data. Reporting rate analysis relies on serostudies and reported283

cases. In order to reduce bias in the serology data, only studies284

that do not target a particular population (e.g. health care285

workers) were included. For WHO regions other than AFRO,286

nationally pooled seroprevalence estimates were used (2, 17).287

Because serostudy data in AFRO are sparse, both national288

estimates and sub-national estimates were included (14, 18–289

22). National case rates were obtained from Our World in Data290

(16). Sub-national case rates were calculated from sub-national291

reported case counts and population data (14, 15, 19, 23–31).292

Because vital reporting systems in Africa can be limited293

(32), we used a morgue sampling study for COVID and HIV294

mortality rates in Lusaka instead of reported numbers (6), all-295

cause mortality rate for Lusaka (32), and HIV prevalence data296

for Zambia (33). Zambia HIV prevalence data was extrapo-297

lated to older age bins corresponding to other data sources via298

a Gaussian model. For HICs, where vital reporting systems299

are strong, reported age-binned mortality rates for COVID300

and HIV were used (34, 35). Years of life lost and age-adjusted301

mortality require life expectancy and population by age, which302

were pulled from the UN World Population Prospects and the303

2018 Zambia Demographic and Health Survey (36, 37). Input304

data for cost models included vaccine delivery, cost and efficacy305

for COVID, and an established costing model for HIV (38–42).306

Cost data from the literature were adjusted for inflation to307

2021 dollars.308

Methods.309

Seroconversion and reversion. Seropositivity provides an indica-310

tor of the number of past infections, which can be compared311

with cumulative reported cases to estimate reporting rate.312

The probability of testing seropositive, however, is a function313

of the elapsed time from infection because of seroconversion314

and reversion dynamics. In other words, a serostudy does not315

detect all past infections. For a fair comparison of detected316

seropositivity with reported cases, we adjusted reported cases317

down to the number of those cases that could be detected by318

serosampling based on a model of seroconversion and reversion.319

We tested two models for calculating this case adjustment,320

each with different data requirements.321

The more data-intensive model requires continuous time322

series of daily reported case data. The model provides an323

estimate of the probability for an infection to appear seroposi-324

tive at time t, where t is the time between infection and the325

serostudy. To construct this model, we combined empirical326

models for the probabilities of seroconversion (43) and rever-327

sion (44), Figure S1. Where τ is the time between infection and328

seroconversion, conv indicates seroconversion, rev indicates329

seroreversion, P (t) indicates the probability of seroconversion 330

or reversion at time t, and p(t) indicates the probability of 331

seroconversion or reversion by time t, the probability of an 332

infection being seropositive at time t is as follows: 333

Ppos(t) = pconv(t) −
∫ t

0
Pconv(τ)prev(t− τ)dτ 334

Because the empirical models from the literature include 335

only about four months of data, we used the last month of the 336

combined empirical model to extrapolate out to a year using 337

a log-linear regression. The full Ppos model is shown in Figure 338

S2. 339

The calculation for a point estimate of reporting rate using 340

this model of seropositivity is then as follows, where Tk is the 341

date the serostudy k was conducted, R is reporting rate, c is 342

daily reported cases, and S is seropositivity rate: 343

RTk =
∫ Tk

0 c(t) ∗ Ppos(t)dt
STk

344

While continuous daily case reporting data largely exists 345

for HICs, LMICs do not necessarily report data at a daily 346

frequency, particularly for sub-national locations. In order 347

to be able to include more LMIC serology studies, we also 348

developed a less data-intensive model for the case count adjust- 349

ment to approximate seroconversion and reversion dynamics. 350

In this model, only two data points for cumulative cases are 351

required: cumulative cases at 21 days and 60 days before the 352

serostudy. These time delays were selected heuristically to 353

account for seroconversion and reversion, respectively. Only 354

cases reported within these time bounds are then used for the 355

reporting estimation. Where C is cumulative cases: 356

RTk =
C(Tk−21days) − C(Tk−60days)

STk

357

We compared results from the two different models for 358

adjusting cases and estimating reporting rate. We found 359

the less data-intensive model to be a good approximation of 360

the more complete probability-based model, see Figure S3. 361

We used the second, less data-intensive model for Figure 1 362

to include sub-national locations, and the probability-based 363

model for Figure 2. 364

Dynamic reporting rate modeling. With reporting rate estimates 365

based on serostudies each conducted at a different time Tk, it 366

remains to unify dates of estimated infection rates for com- 367

parison across locations. To allow reporting rates to vary over 368

time, we constructed a hybrid reporting rate model based on 369

the reporting rate at the time of a serostudy and the log-log 370

relationship between testing rate and reporting rate in the 371

serostudy locations. 372

As the serostudies we used are relatively early in the pan- 373

demic, we approximated reporting rate up until the time of 374

a serostudy as the reporting rate at the time of the seros- 375

tudy. This offsets under-estimation of reporting rates early in 376

the pandemic when testing policies were largely symptomatic 377

and testing rates were low. For dates after the serostudy, 378

we allowed the reporting rate to vary with testing rate. The 379

parameters of the relationship between these two variables 380

were established by a log-log regression, illustrated in Figure 381

Van Gordon et al. medRxiv | August 18, 2021 | 5
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S4. Where α and β are parameters of the regression fit and E382

is testing rate:383

log(RTk ) = α+ β(log(ETk ))384

Figure S5 illustrates output from the hybrid reporting rate385

model for a few example countries. The modeled reporting386

rate over time was then used to calculate cumulative estimated387

infections per capita at time T :388

I(T ) =
∫ Tk

0

c(t)
RTk

dt+
∫ T

Tk

c(t)
eαE(t)β dt389

Mortality and years of life lost. Formulations for mortality and390

years of life lost in Lusaka were determined by available data.391

Despite the challenges that the number of deaths in Lusaka at392

large is difficult to determine and the catchment of the Lusaka393

morgue study is unknown, the randomly sampled morgue394

data made it possible to create formulations for age-adjusted395

mortality and YLL that use only available information.396

By definition, where pop(age) is population by age bin; Pop397

is total population; deaths(age) is deaths by age bin; Deaths398

is total deaths; and e(age) is life expectancy by age:399

Age-adjusted mortality = deaths(age)
pop(age)400

401

Y LL(age) = deaths(age) ∗ e(age)402

Where morgue(age) indicates the number of deaths by403

age bin from the morgue sample, MorgueAC indicates the404

total all-cause deaths in the morgue sample, and DeathsAC405

indicates the total all-cause deaths in Lusaka, we approximated406
deaths(age)
DeathsAC

as morgue(age)
MorgueAC

. We used the crude death rate for407

Lusaka from (32): DeathsAC
Pop

= 12.2
1000 . For pop(age)

Pop
, we used408

the urban population distribution from (37). Age-adjusted409

mortality then becomes:410

deaths(age)
pop(age) = deaths(age)

DeathsAC
∗ DeathsAC

Pop
∗ Pop

pop(age)411

YLL is calculated per capita:412

Y LL

Pop
=

∑
age

deaths(age)
DeathsAC

∗ DeathsAC
Pop

∗ e(age)413

See Figure S6 for a breakdown of the frequencies of COVID414

and HIV within age-binned deaths. The methodology for the415

calculations of the increase of mortality rates with age are416

based on Goldstein & Lee (45).417

Population attributable fraction. For deaths that are both418

COVID+ and HIV+, we attributed some to COVID and419

some to HIV based on the population attributable fraction420

method (46). Where deaths(COV+) denotes all COVID+421

deaths, deaths(COV+|HIV+) denotes COVID+ deaths that were422

also HIV+, deaths(COV+|HIV-) denotes COVID+ deaths with a423

negative or undetermined HIV status, and HIV indicates HIV424

prevalence, the population attributable fraction, calculated by425

age bin, is formulated as follows:426

PAF =
deaths(COV+|HIV+)

deaths(COV+)
−(

deaths(COV+|HIV-)

deaths(COV+)
∗ HIV

1 −HIV
)427

And deaths attributed to COVID by age bin are as follows:428

deathsCOV attr = deaths(COV+)(1 − PAF )429

Cost modeling. Cost per percent mortality reduction for COVID 430

was formulated as follows: 431

cost(COV) = (deliveryvax + costvax) ∗ 0.01
efficacyvax

432

Existing literature informed vaccine delivery cost estimates 433

(38). Vaccine cost and efficacy was calculated for the United 434

States based on mRNA vaccines against wild type COVID 435

(39, 40). For Zambia, vaccine cost and efficacy was calculated 436

based on AstraZeneca against variant B1.351 (39, 41). Cost 437

per percent mortality reduction for HIV came directly from 438

the literature (42). 439
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