The D614G virus mutation enhances anosmia in COVID-19 patients: Evidence from a systematic review and meta-analysis of studies from South Asia ============================================================================================================================================== * Christopher S. von Bartheld * Molly M. Hagen * Rafal Butowt ## Abstract The prevalence of chemosensory dysfunction in patients with COVID-19 varies greatly between populations. It is unclear whether such differences are due to factors at the level of the human host, or at the level of the coronavirus, or both. At the host level, the entry proteins which allow virus binding and entry have variants with distinct properties, and the frequency of such variants differs between ethnicities. At the level of the virus, the D614G mutation enhances virus entry to the host cell. Since the two virus strains (D614 and G614) co-existed in the first six months of the pandemic in most populations, it has been difficult to distinguish between contributions of the virus and contributions of the host for anosmia. To answer this question, we conducted a systematic review and meta-analysis of studies in South Asian populations when either the D614 or the G614 virus was dominant. We show that populations infected predominantly with the G614 virus had a much higher prevalence of anosmia (pooled prevalence of 31.8%) compared with the same ethnic populations infected mostly with the D614 virus strain (pooled anosmia prevalence of 5.3%). We conclude that the D614G mutation is a major contributing factor that increases the prevalence of anosmia in COVID-19, and that this enhanced effect on olfaction constitutes a previously unrecognized phenotype of the D614G mutation. The new virus strains that have additional mutations on the background of the D614G mutation can be expected to cause a similarly increased prevalence of chemosensory dysfunctions. ![Figure1](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F1.medium.gif) [Figure1](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F1) Key words * COVID-19 * anosmia prevalence * olfactory dysfunction * SARS-CoV-2 * D614G virus mutation * South Asia ## Introduction Chemosensory dysfunction has been identified as one of the most frequent symptoms of COVID-19.1–4 However, the prevalence of smell loss in COVID-19 varies greatly between populations. Some studies reported the prevalence of anosmia or hyposmia to be lower than 1%, while others reported a prevalence of over 70%.1, 2, 4–7 Such differences may be due to multiple factors, but two reasons are currently considered to be most relevant: differences at the level of the human host (variants in the virus entry proteins, angiotensin-converting enzyme 2, ACE2, and/or in the protease TMPRSS2), and differences at the level of the virus (mutations of the spike protein resulting in an altered efficiency of entry to the host cell, and therefore higher infectivity), or a combination of these host and virus factors. 1, 2, 4, 5, 8–13 For historical reasons of how the pandemic unfolded, it has been difficult to define the relative contributions of host and virus factors for anosmia. The pandemic started in East Asia with the less infectious D614 virus strain, but when COVID-19 reached Europe and North America and the rest of the world, the virus with a D614G mutation in the spike protein rapidly replaced the original D614 virus. 14 Since the pandemic was largely controlled in East Asia in the second half of 2020, there are very few studies from East Asia on prevalence of anosmia after the initial D614 virus infestation. Studies reporting anosmia prevalence from the rest of the world typically collected data from regions where the two virus strains co-existed or when the G614 virus was dominant. 1, 4, 11, 14 This made it impossible to discern whether the virus mutation or host protein variants are primarily responsible for the differences in anosmia prevalence between populations in East Asia and the rest of the world. Here, we took advantage of the fact that early studies from South Asia collected data on anosmia prevalence in regions with 50% or more D614 virus infections, while more recent studies collected data in South Asia when the G614 strain was dominant. Our systematic review and meta-analysis of the same ethnicity (South Asians) shows a strong association between the D614 virus and low prevalence of anosmia, and a strong association between the G614 virus and high anosmia prevalence. The most parsimonious interpretation of these data is that the D614G mutation plays a significant, and apparently the most important, role in causing an increased prevalence of anosmia in COVID-19 patients. We here present our evidence and we discuss the presumed underlying molecular mechanisms of how SARS-CoV-2, and especially the G614 virus, causes olfactory dysfunction. ### The spread and increasing dominance of the G614 virus over the D614 virus In the beginning of the pandemic, the D614 virus emerged in China and spread to the rest of Asia, Europe, the Middle East, Australia, and North and South America. The spread beyond East Asia was accompanied by the appearance of the more infectious G614 virus mutation, and over the next weeks and months this strain became dominant over the original D614 strain in most parts of the world. 11, 14, 15 The D614 virus remained dominant beyond May of 2020 in only few regions: most of China, Singapore, Malaysia, the South of India and the Delhi region ([https://www.gisaid.org/](https://www.gisaid.org/); [https://cov.lanl.gov/apps/covid-19/map/](https://cov.lanl.gov/apps/covid-19/map/)) 14, 16–25 The co-existence of the D614 and G614 viruses made it impossible, in most regions, to discern whether differences in the prevalence of anosmia were due to differences among the host populations (frequency of variants of the entry proteins ACE2 or TMPRSS2 and thus ethnic differences), or were due to differences in the infectivity and cell entry efficiencies of the coronavirus. In East Asia, nearly all studies were conducted when the D614 virus was dominant. In Europe, the Americas, the Middle East and Africa, there was either a co-existence of D614 and G614 viruses, or a dominance of the G614 virus during the periods of data collection for anosmia prevalence. To clarify the suspected role of the virus type for anosmia, it was necessary to find an ethnicity which was infected either at different times or in different regions when either the D614 or G614 virus was dominant, and to compare the prevalence of anosmia between studies reporting on such cohorts. There are no suitable and unambiguous (unequivocal) pairings of appropriate studies from Europe, the Middle East, the Americas or East Asia that allow comparison of the same ethnicity for the two types of virus strains. Fortunately, we found that one ethnicity does meet these criteria – South Asians. ### Spatiotemporal mapping of D614 or G614 virus dominance in South Asians The spread of the SARS-CoV-2 virus into the Indian subcontinent began at the end of January 2020, with waves from several regions: One from South East Asia (and the Middle East), carrying the D614 virus, and another wave primarily from Europe and the USA, carrying the G614 virus. Overall in India, the D614 virus dominated until late April or May, while the G614 virus became dominant in most Indian states mid to late May or June 2020. 16, 17, 19–21, 27, 28 However, there were significant regional differences. For example, the D614 virus persisted for a longer time in the Delhi region, 17, 19 and also in the South of India, 17, 20, 21, 24, 27–30 while the G614 virus dominated early in the West of India (Gujarat, Maharashtra), 17, 19, 25, 31 and also in the Eastern and Central Indian states 28 as well as in Bangladesh. 14, 26, 32, 33 Pakistan and Sri Lanka had different waves of virus spread, with an early D614 dominance, but becoming all G614 in June and July 2020. 34–36 Importantly, the predominance of the G614 virus was delayed in South India until mid May to June of 2020. 17, 18, 20–22, 25, 30 Such regional differences were caused by travel routes as well as regional spreader events, e.g., in Delhi. 17 Indians and Bangladeshis were exposed primarily to the D614 virus in March through June or July of 2020 in some regions outside the Indian subcontinent, e.g., Kuwait, 37 Malaysia, 38, 39 and Singapore, 14, 23 while South Asians in Oman were mostly exposed to the G614 virus in March and April of 2020. 37, 40 The temporospatial distribution of the D614 virus vs G614 virus in South Asia is summarized in Fig. 1A-F. ![Fig. 1A-F.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F2.medium.gif) [Fig. 1A-F.](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F2) Fig. 1A-F. Map of South Asia showing contributions of D614 and G614 virus to COVID-19 in February to July of the year 2020. Virus strain dominance according to relevant references. 14, 16–22, 24–29, 31–36 The large circle in the center of India shows the overall contributions of D614 and G614, regardless of region; the small circles represent regional contributions of D614 and G614 during the indicated month of 2020. ### Systematic review and meta-analysis of South Asian studies We here explore the hypothesis that there was a lower anosmia prevalence when the D614 virus was the prevailing strain, while a higher anosmia prevalence was induced by the G614 virus. Therefore, we searched the literature and conducted a systematic review and meta-analysis on studies reporting olfactory dysfunction in South Asian patients with COVID-19, sorted by dominance of the two virus strains. Dominance of D614 vs G614 virus was determined by reviewing studies that mapped the temporospatial changes within different regions of the Indian subcontinent. 17, 19, 25, 28, 33–35 For our systematic review and search strategy, we adhered to the PRISMA guidelines 41 (Fig. 2). ![Fig. 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F3.medium.gif) [Fig. 2:](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F3) Fig. 2: Flow chart of literature search and systematic review of studies reporting on COVID-19 related olfactory dysfunction in South Asians through July 22, 2021. Our search retrieved 598 studies that examined South Asians for COVID-related loss of smell, of which 40 met the inclusion criteria (see Methods). These 40 studies (reporting on 43 cohorts) were subjected to a meta-analysis (Table 1). Fifteen studies reported anosmia prevalence in eighteen cohorts with a total of 7,247 COVID-19 patients from regions where the D614 virus was dominant: three studies from Kuwait and Singapore 42–44 and twelve from India or Pakistan. 45–56 We compared such data with the results obtained in 25 studies reporting on 25 cohorts with a total of 9,626 South Asian patients from the Indian subcontinent (India and Bangladesh) and Oman, when the G614 virus had become dominant (Table 1, illustrated in Fig. 3A, B). 6, 57–80 The differences in results between the two types of cohorts are shown in the forest plots (Fig. 4A). The pooled prevalence of olfactory dysfunction in the same ethnicity (South Asians) in regions with D614 predominance was 5.33% (95% confidence interval, CI, = 3.52-8.00%), while in regions with G614 predominance, it was 31.79% (95% CI = 23.26-41.76%) (Fig. 4A, C). The subgroup test from the random effects meta-analysis showed that this was a statistically significant difference with p < 0.0001 (Fig. 4C). ![Fig. 3A, B.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F4.medium.gif) [Fig. 3A, B.](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F4) Fig. 3A, B. Location of studies reporting the prevalence of olfactory dysfunction among South Asians with D614 virus predominance (A), and G614 virus predominance (B). The cohort size is indicated by the size of the blue dots, the prevalence of olfactory dysfunction is indicated by the heat map, increasing from yellow to red. Note that mostly D614 infections lead rarely to a more than 10% anosmia prevalence, while almost all of the mostly G614 infections lead to a prevalence of 10-90%, in the same ethnicity (South Asians). ![Fig. 4A-D.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F5.medium.gif) [Fig. 4A-D.](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F5) Fig. 4A-D. Comparison of the prevalence of olfactory dysfunction in populations infected with D614 or G614 virus predominance. **A.** Forest plots of olfactory dysfunction prevalence in South Asians infected mostly with D614 vs G614 virus. **B.** Forest plots of olfactory dysfunction prevalence in Caucasians vs. South Asians infected mostly with the G614 virus. **C.** Bar graph comparing the pooled anosmia prevalence with 95% confidence intervals and p-value between D614 and G614 cohorts. **D.** Bar graph showing the pooled prevalence of anosmia in Caucasians vs. mostly G614 virus-infected South Asians (Caucasian cohorts from von Bartheld et al., 2020). 1 Numbers of cohorts are indicated in white on the bars. View this table: [TABLE 1.](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/T1) TABLE 1. Smell Dysfunction in COVID-19: Chronology of Studies on South Asians with either D614 virus dominance or G614 virus dominance. The main novel finding of our meta-analysis is that, when the same ethnicity is compared for anosmia prevalence under two different conditions, with either the D614 or G614 virus strain being dominant, there is a large difference in anosmia prevalence between the two conditions. This means that the more infectious virus type, G614, is a significant factor for anosmia prevalence, apparently more important than ethnic differences in variants of the host proteins, ACE2 and TMPRSS2. This is presumably due to a higher efficiency of G614 virus entry to the host cell, 11, 13, 81 as discussed at the end of this review. ### Effects of response bias, age, disease severity, gender, and methodology Are there alternative interpretations of our data that could explain, entirely or partially, the differences in anosmia prevalence among South Asian populations? Three types of parameters need to be considered: response bias, demographics, and methodology. If the demographics of the two cohort types (D614 vs G614 virus dominance) differed, they could have influenced or biased the comparisons. Demographics that have been shown or suspected in previous reviews to have an association with anosmia prevalence include age, gender, and COVID-19 disease severity. Age was associated in some analyses. 1, 82 Gender was found to show trends in the largest meta-analysis, 1 but not in two earlier analyses that considered fewer studies. 82, 83 Multiple studies and reviews agree that disease severity is negatively associated with anosmia prevalence. 1, 83–85 Finally, objective methodology to assess olfactory dysfunction may be more sensitive than subjective recall, resulting in an increased prevalence, although studies are controversial. 7 Response bias may occur if early studies did not inquire about olfactory dysfunction as much as later studies. Response bias. Early in the pandemic, there was no publicity about COVID-19 causing loss of smell. Patients, caregivers and investigators may not have asked about this symptom or regarded it as irrelevant, resulting in response bias compared with later studies. This issue has been widely discussed. 1, 2, 4, 5, 10, 83, 87, 88 Could this bias explain why early studies in Asia did not report olfactory dysfunction as often as subsequent studies on Caucasians? This is unlikely to be a decisive factor for two reasons. Careful analyses of East Asians for chemosensory dysfunction revealed low prevalence, 5, 89, 90 even with objective olfactory testing, 91 and when the olfactory dysfunction was re-examined in Chinese populations at a later date, the anosmia prevalence still was significantly lower in Chinese patients than in Caucasian patients. 92 Second, we show here for South Asians that even studies conducted later in the pandemic, when the media had widely publicized and revealed anosmia/hyposmia as a cardinal symptom of COVID-19, reported a low prevalence when they examined cohorts in a region (e.g. Delhi and Karnataka) and at a time when the D614 virus strain was dominant. Therefore, we can exclude response bias as the main explanation for prevalence differences in South Asians. Age. When we tested the parameter of age in our pooled analysis, we found no significant difference between the two groups (one group infected predominantly with the D614 virus, the other with the G614 virus). Mean age was 38.83 years +/- 1.23 standard error (SE) for the D614 group, and 34.32 years +/- 1.53 SE for the G614 group, with p= 0.3288 (β= 0.037 +/- 0.038 SE), which is no significant difference. Disease severity. As a measure of COVID disease severity, we calculated the percentage of hospitalizations or percentage of cases with “severe” disease, when disclosed, and we found in our pooled analysis that the D614 group had a mean 5.85% severe cases +/- 3.82 SE, while the G614 group had 1.64% +/- 1.05 SE. The subgroup test showed no significant difference in anosmia based on disease severity with p= 0.5294 (β = −0.0173 +/- 0.027 SE). We conclude that disease severity does not explain the prevalence differences between the cohorts with D614 or G614 virus dominance. Gender. It is unclear whether gender is associated with anosmia in COVID. 1, 10, 82, 83 We tested the parameter of gender using percent male in each cohort as a continuous variable in a meta-regression. In both groups, there were more males than females. Specifically, among the D614 group, there was a mean of 75.08 +/- 3.57% males, while there was a mean 61.35 +/- 2.45% males in the G614 group (mean +/- SE). The subgroup test was significant (p< 0.0001) with a negative linear relationship between percent of cohorts that were male and the prevalence of anosmia (β = −0.0586 +/- 0.0144 SE; Supplemental Fig. 1). Accordingly, a contributing effect of gender cannot be ruled out. However, the possible gender effect on anosmia prevalence is small: we calculated that the difference in the male/female ratio between the two cohort groups (Table 1) would account for less than 1/10th of the observed difference in anosmia prevalence between the two groups (5.3% vs. 31.8%, Fig. 3A). Multivariable meta-regression. When we modeled age, gender, and group (D614 or G614 virus dominance cohorts) together, cohort remained highly significant at p<0.0001 (β= 1.95 +/- 0.363, D614= reference), while gender and age showed marginal significance at p=0.0549 and p=0.0484, respectively (βgender= −0.0235 +/- 0.0122, βage= 0.0477 +/- 0.0242). We did not include disease severity in our multivariable meta-regression due to missing data: 76.7% (n/N=33/43) of the studies provided data on all four variables whereas modeling only age, gender, and group allowed us to use 90.70% of the studies (n/N= 39/43) in our multivariable regression. Methodology. Chemosensory dysfunction in COVID-19 can be assessed by questionnaires and history taking (subjective tests), or by testing the sense of smell objectively. 1, 7, 93 Some studies using objective tests showed an increase in the prevalence of olfactory dysfunction, 1, 2, 82, 93–95 while other studies reported the opposite (reviewed in Boscutti et al., 2021). 7 In the studies on South Asian COVID-19 patients, objective tests were used in only three of the cohorts with G614 virus dominance. To avoid methodology as a confounding variable, we considered only studies with subjective questioning. We can therefore rule out methodological parameters as an explanation for the difference in anosmia prevalence between D614 and G614 cohorts. Taken together, we conclude that response bias, age, disease severity, and methodology cannot sufficiently explain the difference in prevalence between the two types of cohorts, and that after adjusting for the effects of age and cohort virus type, the effect of gender is relatively small compared to that of the cohort virus effect. Accordingly, given that we controlled for ethnicity by including only cohorts with South Asian populations, the virus type (G614 vs. D614) appears to be the most relevant parameter that is responsible for the vast majority of the observed prevalence differences. ### Limitations Sampling of virus genomics differs between regions in South Asia, some regions have low sample numbers, and results may not be representative for all of these regions. Some studies reported only approximate dates for the beginning and end dates of study periods; furthermore, when data on anosmia were collected over a longer period of months, it is possible that the majority of patients were enrolled early or late during that period, making the correlation with the virus strain less precise. We cannot entirely rule out a small contribution of response bias – earlier studies may have insisted less on information about olfactory dysfunction than later studies. Finally, there is some heterogeneity, possibly due to yet unknown parameters and lack of information about disease severity among patients within cohorts. ### Supporting evidence for a role of G614 in anosmia prevalence Our meta-analysis of studies on South Asians provides a strong case for a role of the D614G virus mutation in anosmia prevalence. Is there additional evidence from studies on other ethnicities to support this notion? The study by Eyre et al. (2020) 96 examined anosmia prevalence in the UK separately for Caucasians, Asians, and Chinese subjects residing in the UK, and found no significant difference in prevalence between ethnicities at a time when the G614 virus was predominant. This supports the idea that ethnicity plays no or only a minor role in anosmia prevalence, although the data on “Chinese” was based on a very small cohort (n=10). The prevalence of anosmia was also examined by three studies in Hong Kong, 97–99 at a time when the G614 virus began to dominate over the D614 virus (March-April 2020). 14,100 Apparently, the G614 virus was dominant in Hong Kong because of the extensive travel to Hong Kong from the UK and USA 99 where the G614 virus had taken over. This region is the one exception to the predominance of the D614 virus throughout the rest of mainland China in 2020. 14 All three of the studies in Hong Kong found the prevalence of anosmia to be much higher (66.7%, 47.0%, and 22.1%, – weighted mean = 37.44%) than from other regions in East Asia (pooled mean of 16.7%), 1 although one of the studies from Hong Kong reported on a very small cohort (n=18). 97 The studies from Hong Kong again point to the G614 virus as the reason for the increased anosmia prevalence. When anosmia prevalence was determined early during the pandemic in Malaysia (in April 2020), while the D614 virus was still dominant, with only a minor contribution of the G614 virus, the anosmia prevalence was 21.4%. 37 Just 3-5 months later, when the G614 virus dominated, 14, 38 the anosmia prevalence had increased to 36.6%, 101 consistent with our hypothesis. There are some other indications, from regions in Europe, that a larger fraction of the D614 virus early in the pandemic may have contributed to a relatively low anosmia prevalence, e.g., in Iceland 102 and in Spain. 103 However, while suggestive, the period of data collection in these studies was at a time when the two virus strains co-existed, making it impossible to know whether the patients with low anosmia prevalence were indeed mostly those infected with the D614 virus. Furthermore, the study from Spain 103 primarily examined hospitalized patients, and disease severity associates negatively with anosmia prevalence, as mentioned above. Taken together, the Hong Kong studies 97–99 provide the most convincing supporting evidence outside of South Asia for a contribution of the G614 virus to anosmia. ### Is there also a contribution of human host variants – true ethnic differences? There are several variant proteins in the human host which could cause ethnic differences in anosmia prevalence. The one that has been most discussed is ACE2, which has variants that are known to differ in their binding affinities to the virus, or their methylation status, 104 and the frequency of such variants differs between ethnicities. 104–, 108 Another protein is the protease TMPRSS2 which cleaves the spike protein, allowing fusion and cell entry, and there are variants of TMPRSS2 that differ between ethnicities. 109, 110 Virus properties affected by the D614G mutation may further have downstream effects on virus entry because of ethnically distinct differences (e.g., in the frequency of the alpha anti-trypsin protease inhibitor). 111 Recently, a third category of genes has been found to differ between ethnicities. 112 The odorant metabolizing enzyme UGT2A1 which is expressed primarily in sustentacular cells and olfactory cilia 113 was associated with COVID-related anosmia in a trans-ethnic analysis. 112 Such studies support the idea that host protein variants may contribute to the extent of anosmia and could explain, at least in part, ethnic differences in anosmia prevalence in COVID-19 (reviewed in Butowt et al., 2020). 8 When using the same meta-analytic methods to compare cohorts primarily infected with the same virus strain (thus controlling for the virus type at a coarse level), the prevalence of olfactory dysfunction in the South Asian population was significantly lower than the prevalence reported for Caucasians (p= 0.0054, Fig. 4B, D). The weighted random prevalence of anosmia among Caucasian COVID patients was 49.02% (95% CI= 42.25-55.84%, N=77) and 31.79% (95%CI= 23.26-41.76%, N=25) among South Asian COVID patients. This suggests a relatively small, but measurable contribution of the host (ethnic difference in frequency of ACE2 or proteins such as UGT2A1). ### Why does SARS-CoV-2 cause much more anosmia than SARS-CoV-1? The mechanism by which SARS-CoV-2 causes anosmia is beginning to come into view. Several different scenarios were initially considered: nasal obstruction (possibly due to inflammation), olfactory receptor neuron damage, olfactory support cell damage, and damage to central olfactory pathways. 3, 4, 10, 114, 115 An emerging consensus favors a crucial role of the sustentacular support cells in the olfactory epithelium as the primary mechanism of COVID-induced anosmia. 5, 8, 114, 116–120 Since the SARS-CoV-2 entry protein (ACE2) is not or only minimally expressed in olfactory receptor neurons, the virus rarely infects the neurons, 121 but rather enters the olfactory epithelium through sustentacular support cells and secretory cells in Bowman glands and primarily damages these cell types (Fig. 5A). When sustentacular cells become infected, they rapidly die, which appears to cause retraction of the adjacent neurons’ ciliary processes, 116, 122 and may down-regulate expression of odorant receptors necessary for olfactory transduction. 123 In addition, infection and damage of Bowman gland cells may alter the composition of the mucus that is required for efficient access of odorants to the odorant receptors on the neuron’s cilia. 119, 120 This prevents or alters binding of odorants to the olfactory neurons and thereby impacts olfactory transduction. After the degeneration of the sustentacular cells, stem cells in the olfactory epithelium divide (within a few days after death of sustentacular cells) and rapidly regenerate the lost sustentacular support cells, 114 allowing the olfactory epithelium to be repaired. The neurons then recover, restore their cilia, resume odorant receptor expression, and the sense of smell returns in most cases within 1-2 weeks. 1 One study has proposed that the SARS-CoV-2 virus resembles olfactory receptors, and that IgA produced against the virus may thereby compromise olfaction as “collateral damage.” 124 However, the early timing of loss of smell vs. the delayed production of IgA makes this model an unlikely mechanism, although antigen exposure via the olfactory epithelium may indeed boost the immune response and could lead to a more successful viral clearance and milder COVID-19 at the cost of a (temporary) loss of smell. 120 ![Fig. 5A. B.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F6.medium.gif) [Fig. 5A. B.](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F6) Fig. 5A. B. Illustration of the cell types infected in the olfactory epithelium (OE) (panel A) and the concept that the cell entry efficiency of the coronavirus determines the extent of damage that causes hyposmia or anosmia (panel B). This would explain the varying prevalence of olfactory dysfunction in patients with COVID-19 between populations and dominance of human coronaviruses NL63, SARS-1, SARS-2, and its strains D614, G614 or the G614 Alpha variant. Efficiency of cell entry includes differences in binding affinities, fusion efficiency via the novel furin cleavage site, and neuropilin-1 binding as a co-host. For details, see Butowt et al., 2020. 8 ACE2, angiotensin converting enzyme 2; BG, Bowman gland; SUS, sustentacular cell. While the SARS-CoV-2 virus readily induces anosmia, the SARS-CoV-1 virus does not, even though the two virus types bind to the same entry receptor, ACE2. 8 So what is different? The SARS-CoV-2 virus has a significantly higher binding affinity to the ACE2 receptor than the SARS-CoV-1 virus (Fig. 5B). In addition, the SARS-CoV-2 virus has a furin cleavage site that SARS-CoV-1 does not have. 125 By enhancing fusion efficiency, this site is thought to make SARS-CoV-2 more pathogenic. 126 The furin cleavage site may increase tropism (widening of the range of susceptible host cells) and cause higher pathogenicity. 109, 127 The higher binding affinity and the new furin cleavage site may both be responsible for the higher infectivity and higher anosmia prevalence of SARS-CoV-2 compared with SARS-CoV-1. Cleavage of the S1 spike protein generates a neuropilin-1 binding site, and therefore neuropilin-1 can act as a host factor for SARS-CoV-2. 128, 129 Neuropilin is enriched in the olfactory epithelium, 128 indicating that the increased anosmia may involve binding to neuropilin-1. ### The role of the D614G mutation for anosmia – presumed molecular mechanisms A key finding to understand how SARS-CoV-2 causes anosmia is that the mutated G614 virus is much more detrimental to olfaction than the original D614 virus. Why is the D614G mutation so much more effective in targeting the olfactory epithelium? What are the molecular mechanisms of this mutation? A number of studies have explored consequences of the D614G mutation, both for the clinical phenotype and for the pathophysiology at the molecular level. Clinically, despite the higher viral load, studies failed to detect an effect of the D614G mutation on the severity of COVID-19, hospitalization rate, or mortality. 14, 130, 131 Regarding the molecular mechanism of how the D614G mutation increases infectivity, transmission and possible disease severity, four different mechanisms are currently discussed, as recently reviewed. 132–134 These are (1) modulation of the spike protein (by adding an elastase cleavage site and/or making furin cleavage more efficient); 135, 136 (2) promoting an open conformation of the receptor binding domain that favors ACE2 interaction; 13, 81, 137 (3) increasing spike density and therefore facilitating cell entry; 81 and (4) enhancing the stability of the spike protein (stronger retention of S1, less shedding of S1). 138 All four mechanisms may contribute to enhanced cell entry and infectivity of the G614 virus. But does this explain why the G614 virus is so much more effective at attacking the olfactory system? The G614 virus infects the upper respiratory tract, including nasal epithelium, more than lung epithelial cells, resulting in higher viral loads in the olfactory epithelium than in the lower respiratory tract. 117, 139 The enhanced cleavage at the furin cleavage site is of potential interest, because the support cells and Bowman gland cells in the olfactory epithelium co-express not only ACE2 and TMPRSS2, but also furin. 140 Accordingly, the cells in the olfactory epithelium may be more efficiently infected with the G614 virus, and this may explain the higher viral load in the nasal epithelium than in the lungs. 111 If the replicating virions are already cleaved by intracellular furin, as they exit the host cell, then they are ready to fuse with the next host cell, resulting in a more fulminant spread. 141 On the other hand, the G614 mutation exposes the virus spike protein more than the D614 virus does, making the G614 virus more immunogenic, and possibly eliciting a stronger host immune response. 11, 120, 137, 141 Such differences in immunogenicity may indicate that the G614 virus, when it infects the nasal epithelium with a higher viral load, may trigger a more robust host immune defense. Although the virus may move to a new host too quickly to be affected by a neutralizing antibody response, 134 it cannot be ruled out a scenario where the virus in the olfactory epithelium (often preceding any other symptoms) elicits an immune host response that gives the host enough time to accelerate virus clearance and to prevent a subsequent more deadly infection of the lungs. 120 This may explain why SARS-CoV-2 infection leading to anosmia is associated with an overall milder COVID-19 disease, possibly because the nasal cavity-elicited immune defense leads to faster virus clearance 143 and thus reduces severe COVID-19 lung disease and death after G614 virus infection. 144, 145 Such a scenario may explain the puzzling finding that the G614 virus, despite being more infectious and leading to higher nasopharyngeal viral loads than the D614 virus, does not – overall – cause more severe and deadly COVID-19. The presumed mechanisms of increasing efficiencies of binding and cell entry are summarized in Fig. 5A, B. Regardless of the precise mechanism, our analysis shows an increased prevalence of olfactory dysfunction in cohorts infected with the G614 virus. Apparently, the G614 virus is more efficient than the D614 virus in entering and damaging the olfactory epithelium and impairing olfactory function. Importantly, our review identifies a “missing link” by revealing increased prevalence of chemosensory dysfunction as a novel, previously unrecognized phenotype of the now dominant G614 virus. ### How will current and future novel virus variants affect olfactory function? Since the spread of the G614 virus throughout most of the world, several new SARS-CoV-2 virus variants have emerged – Alpha (B.1.1.7), Beta (B.1.351), Gamma (B1.1.28), and Delta (B.1.617.2). All of these new variants also harbor the D614G mutation, 4 and therefore can be expected to cause similarly increased olfactory dysfunction as the G614 virus. These variants have additional spike protein mutations, besides the G614 mutation, resulting in already proven or suspected differences in their receptor binding properties, transmissibility, viral loads, and, in some cases, increased mortality. 146 For example, the virus with the N501Y mutation has similar binding to ACE2, while the K417N and the E484K mutants may have slightly increased binding to ACE2. 147 Multiple mutations can have interdependent and complex effects on binding and subsequent steps such as membrane fusion and host cell entry. For example, the Alpha variant that often also has N501Y, N439K and Y453F mutations appears to require a deletion (Δ H69/V70) in the spike protein to maintain optimal cleavage and infectivity. 148 How these mutations generally affect infectivity in vivo, and specifically for cells in the olfactory epithelium, is not yet known. The prevalence of olfactory dysfunction has been reported so far in only one of these variants (Alpha); it did not cause a significant change in anosmia prevalence. 149 An additional commentary that was based on apparently less reliable data reported an anosmia prevalence for the Alpha variant that differed by less than 4% from that of the G614 virus. 150, 151 Future studies will be needed for reliable and conclusive data on the phenotypes of these new variants in terms of ACE2 binding affinity, membrane fusion, spike protein shedding, efficiency of host cell entry, viral load in different tissues, transmissibility, infectivity, mortality, and chemosensory dysfunction. Such phenotypes cannot be reliably predicted based on atomic modeling of the receptor binding domain of the spike protein, due to the assumptions and restrictions of the modeling parameters. 152 The cell entry properties of the new virus variants likely will continue to cause chemosensory dysfunction, and otorhinolaryngologists should expect to see such symptoms in COVID-19 patients when the new variants take over, as long as they maintain the D614G mutation, and assuming that the additional mutations do not neutralize their apparent effect on olfaction. ## Data Availability All data referred to in the manuscript are publicly available. ## Supplemental Figures Supplemental Fig. 1: Bubble plot showing details of the subgroup comparison with a gender effect on anosmia prevalence (Suppl Fig. 1 - Bubble plot of correlation of gender and anosmia.pdf). Supplemental Fig. 2: Funnel plot for prevalence of anosmia in D614 and G614 cohorts of South Asians with COVID (Suppl Fig. 2 - Funnel Plot South Asian Studies.pdf). Supplemental Fig. 3: Funnel plot for prevalence of anosmia in G614 cohorts of Caucasians with COVID (Suppl Fig. 3 - Funnel Plot of Caucasian and South Asian Studies.pdf). ## Methods For mapping and quantification of the contributions of D614 and G614 viruses in countries, we relied on the tracking website ([https://cov.lanl.gov/apps/covid-19/map/](https://cov.lanl.gov/apps/covid-19/map/)) 14 and for the regional geographical resolution within and outside of India we consulted multiple sources 14, 16–22, 24–29, 31–36, 100, 153 Our study followed the PRISMA guidelines for systematic reviews and meta-analyses. 41 We searched the COVID-19 portfolio of the National Institutes of Health ([https://icite.od.nih.gov/covid19/search/](https://icite.od.nih.gov/covid19/search/)) with the key words „anosmia” or „smell” and “India” or “Bangladesh” or “Pakistan” on and before July 22, 2021, resulting in 598 records. In addition, PubMed was searched (“anosmia”, “COVID”, “India,” or “Bangladesh” or “Pakistan”), resulting in 104 records. After removal of duplicates, 351 full-length texts were screened for the inclusion criteria: South Asian ethnicity (Indian, Pakistani or Bangladeshi); a confirmed COVID-19 diagnosis; majority of subjects adults or teenagers; information about the weeks or months of the study period(s); subjective (not objective) testing for olfactory dysfunction; we accepted no case reports, and included only reports of primary data, but no reviews. Studies were excluded because of lack of subjective testing, 154 consideration of only severe COVID cases, 155 mostly East Asian rather than South Asian ethnicity, 156 or lack of necessary information about study periods despite repeated requests. 157 The studies that met our inclusion criteria typically were cross-sectional, retrospective, observational studies that could be affected by recollection bias. However, such bias would be expected to be of a similar magnitude in studies examining patients infected with the D614 virus and studies examining patients infected with the G614 virus. We found 40 studies reporting on 43 cohorts that met our inclusion criteria. We compiled olfactory dysfunction regardless whether taste was also affected or not. The included studies are listed chronologically and sorted by D614 or G614 dominance in Table 1. A pooled analysis was performed for prevalence, and significance and confidence intervals were calculated in the software R, version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria). To calculate estimates of pooled prevalence and 95% confidence intervals, we used the R-meta package, version 4.9-5, and the metaprop function. We used random effects models with the inverse variance method for pooling and the logit transformation for proportions. 158 For ease of interpretation, we back transformed and rescaled proportions to events per 100 observations. Subgroup analyses were conducted for binary group variables (D614 vs G614 and Caucasian vs South Asian) using the byvar statement of the metaprop function. All other subgroup tests used continuous variables and the metareg function, including the multivariable meta-regression. The subgroup age was a created variable that used the center of the sample, either the mean or the median, to mark the center of the age distribution, with the majority of studies reporting mean age (75.4%, N=32/43). Analysis of the heterogeneity across studies was done using the Maximum-likelihood estimator, Higgins’ I2 and Cochran’s Q method. 158, 159 Publication bias was assessed by visual inspection of funnel plots 160 (Supplemental Figs. 2 and 3). In all cases, significance was defined at α = 0.05. ## Funding Supported by grant GM103554 from the National Institutes of Health (C.S.v.B.), and the “Excellence Initiative-Research University” programme at the Nicolaus Copernicus University (R.B.). ## Conflict of interest The authors have no conflicts of interest to declare. ## Author contributions All authors contributed to the conception and design of the manuscript. ## Supplemental Figures ![Supplemental Fig. 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F7.medium.gif) [Supplemental Fig. 1:](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F7) Supplemental Fig. 1: Bubble Plot showing negative correlation of male gender and prevalence of anosmia in south Asians. ![Supplemental Fig. 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F8.medium.gif) [Supplemental Fig. 2:](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F8) Supplemental Fig. 2: Funnel Plot of South Asian Studies (3 outliers removed) ![Supplemental Fig. 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/08/12/2021.08.11.21261934/F9.medium.gif) [Supplemental Fig. 3:](http://medrxiv.org/content/early/2021/08/12/2021.08.11.21261934/F9) Supplemental Fig. 3: Funnel Plot of Caucasian and South Asian Studies ## Acknowledgments The authors thank the following colleagues for insightful discussions: Bing Chen and Sandeep Datta (Harvard, USA), Thomas Hummel (University of Dresden, Germany); Bette Korber (Los Alamos National Laboratory), Gannon Mak (Dept. of Health, Hong Kong, China), Dennis Mathew (University of Nevada, Reno), Nicolas Meunier (University Paris-Saclae, France), and Mauricio Ponga (University of British Columbia, Canada). We also thank the following colleagues for providing additional information: Nitesh Gupta (Safdarjung Hospital, Delhi), Ankit Khurana (Hospital Rohini, Delhi), Vinod Kumar (All India Institute of Medical Science, Delhi), Nikitha Pillai (Kims Hospital, Bangalore), and Vishav Yadav (Patiala, Punjab). Grant support: GM103554 from the National Institutes of Health (C.S.v.B.), and the “Excellence Initiative-Research University” programme at the Nicolaus Copernicus University (R.B.). * Received August 11, 2021. * Revision received August 11, 2021. * Accepted August 12, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) ## References 1. 1.von Bartheld CS, Hagen MM, Butowt R. Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences. ACS Chem Neurosci. 2020 Oct 7;11(19):2944–2961. doi: 10.1021/acschemneuro.0c00460. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acschemneuro.0c00460&link_type=DOI) 2. 2.Kim JW, Han SC, Jo HD, Cho SW, Kim JY. Regional and Chronological Variation of Chemosensory Dysfunction in COVID-19: a Meta-Analysis. J Korean Med Sci. 2021 Jan 25;36(4):e40. doi: 10.3346/jkms.2021.36.e40. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3346/jkms.2021.36.e40&link_type=DOI) 3. 3.Mutiawati E, Fahriani M, Mamada SS, Fajar JK, Frediansyah A, Maliga HA, Ilmawan M, Emran TB, Ophinni Y, Ichsan I, Musadir N, Rabaan AA, Dhama K, Syahrul S, Nainu F, Harapan H. Anosmia and dysgeusia in SARS-CoV-2 infection: incidence and effects on COVID-19 severity and mortality, and the possible pathobiology mechanisms - a systematic review and meta-analysis. F1000Res. 2021 Jan 21;10:40. doi: 10.12688/f1000research.28393.1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12688/f1000research.28393.1&link_type=DOI) 4. 4.Zeng M, Wang DY, Mullol J, Liu Z. Chemosensory Dysfunction in Patients with COVID-19: What Do We Learn from the Global Outbreak? Curr Allergy Asthma Rep. 2021 Feb 3;21(2):6. doi: 10.1007/s11882-020-00987-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11882-020-00987-5&link_type=DOI) 5. 5.Kumar AA, Lee SWY, Lock C, Keong NC. Geographical Variations in Host Predisposition to COVID-19 Related Anosmia, Ageusia, and Neurological Syndromes. Front Med (Lausanne). 2021 Apr 29;8:661359. doi: 10.3389/fmed.2021.661359. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmed.2021.661359&link_type=DOI) 6. 6.Thakur K, Sagayaraj A, Prasad KC, Gupta A. Olfactory Dysfunction in COVID-19 Patients: Findings from a Tertiary Rural Centre. Indian J Otolaryngol Head Neck Surg. 2021 Jan 18:1–7. doi: 10.1007/s12070-021-02364-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02364-8&link_type=DOI) 7. 7.Boscutti A, Delvecchio G, Pigoni A, Cereda G, Ciappolino V, Bellani M, Fusar-Poli P, Brambilla P. Olfactory and gustatory dysfunctions in SARS-CoV-2 infection: A systematic review. Brain Behav Immun Health. 2021 Aug;15:100268. doi: 10.1016/j.bbih.2021.100268. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbih.2021.100268&link_type=DOI) 8. 8.Butowt R, Bilinska K, von Bartheld CS. Chemosensory Dysfunction in COVID-19: Integration of Genetic and Epidemiological Data Points to D614G Spike Protein Variant as a Contributing Factor. ACS Chem Neurosci. 2020 Oct 21;11(20):3180–3184. doi: 10.1021/acschemneuro.0c00596. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acschemneuro.0c00596&link_type=DOI) 9. 9.Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, Chekkoury-Idrissi Y, Hans S, Delgado IL, Calvo-Henriquez C, Lavigne P, Falanga C, Barillari MR, Cammaroto G, Khalife M, Leich P, Souchay C, Rossi C, Journe F, Hsieh J, Edjlali M, Carlier R, Ris L, Lovato A, De Filippis C, Coppee F, Fakhry N, Ayad T, Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–2261. doi: 10.1007/s00405-020-05965-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-020-05965-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32253535&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 10. 10.Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am J Otolaryngol. 2020;41(5):102581. doi: 10.1016/j.amjoto.2020.102581. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjoto.2020.102581&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 11. 11.Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban J. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. 2020 Oct 29;183(3):739–751.e8. doi: 10.1016/j.cell.2020.09.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2020.09.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32991842&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 12. 12.von Bartheld CS, Mathew D, Butowt R. New study on prevalence of anosmia in COVID-19 implicates the D614G virus mutation as a major contributing factor to chemosensory dysfunction. Eur Arch Otorhinolaryngol. 2021 Mar 31; 278(9):3593–3594. doi: 10.1007/s00405-021-06759-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-021-06759-9&link_type=DOI) 13. 13.Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM Jr., Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 2021 Mar 16:eabf2303. doi: 10.1126/science.abf2303. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzIvNjU0MS81MjUiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOC8xMi8yMDIxLjA4LjExLjIxMjYxOTM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. 14.Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TI; Sheffield COVID-19 Genomics Group, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020 Aug 20;182(4):812–827.e19. doi: 10.1016/j.cell.2020.06.043. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2020.06.043&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32697968&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 15. 15.Jacob CO. On the genetics and immunopathogenesis of COVID-19. Clin Immunol. 2020 Nov;220:108591. doi: 10.1016/j.clim.2020.108591. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.clim.2020.108591&link_type=DOI) 16. 16.Bassa BV, Uppu RM. The Frequency of G614 SARS-CoV-2 Variant in India. 2020; Preprints, posted Aug 6, doi: 202010.20944/preprints202008.0148.v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=202010.20944/preprints202008.0148.v1&link_type=DOI) 17. 17.Kumar BK, Venkatraja B, Prithvisagar KS, Rai P, Rohit A, Hegde MN, Karunasagar I, Karunasagar I. Mutational analysis unveils the temporal and spatial distribution of G614 genotype of SARS-CoV-2 in different Indian states and its association with case fatality rate of COVID-19. bioRxiv [Preprint] July 31, 2020. doi: 10.1101/2020.07.27.222562. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNy4yNy4yMjI1NjJ2MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 18. 18.Kumar P, Pandey R, Sharma P, Dhar MS, A V, Uppili B, Vashisht H, Wadhwa S, Tyagi N, Fatihi S, Sharma U, Singh P, Lall H, Datta M, Gupta P, Saini N, Tewari A, Nandi B, Kumar D, Bag S, Gahlot D, Rathore S, Jatana N, Jaiswal V, Gogia H, Madan P, Singh S, Singh P, Dash D, Bala M, Kabra S, Singh S, Mukerji M, Thukral L, Faruq M, Agrawal A, Rakshit P. Integrated genomic view of SARS-CoV-2 in India. Wellcome Open Res. 2020 Aug 3;5:184. doi: 10.12688/wellcomeopenres.16119.1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12688/wellcomeopenres.16119.1&link_type=DOI) 19. 19.Maitra A, Raghav S, Dalal A, Ali F, Paynter VM, Paul D, Biswas NK, Ghosh A, Jani K, Chinnaswamy S, Pati S, Sahu A, Mitra D, Bhat MK, Mayor S, Sarin A, The PANINDIA 1000 SARS-CoV-2 RNA Genome Sequencing Consortium, Sauche YS, Seshasayee ASN, Palakodeti D, Bashyam MD, Parida A, Das S. PAN-INDIA 1000 SARS-CoV-2 RNA genome sequencing reveals important insights into the outbreak. bioRxiv [Preprint] August 3, 2020. doi: 10.1101/2020.08.03.233718. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wOC4wMy4yMzM3MTh2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 20. 20.Raghav S, Ghosh A, Turuk J, Kumar S, Jha A, Madhulika S, Priyadarshini M, Biswas VK, Shyamli PS, Singh B, Singh N, Singh D, Datey A, Avula K, Smita S, Sabat J, Bhattacharya D, Kshatri JS, Vasudevan D, Suryawanshi A, Dash R, Senapati S, Beuria TK, Swain R, Chattopadhyay S, Syed GH, Dixit A, Prasad P; Odisha COVID-19 Study Group; ILS COVID-19 Team, Pati S, Parida A. Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction with TMPRSS2 and Virus Infectivity. Front Microbiol. 2020 Nov 23;11:594928. doi: 10.3389/fmicb.2020.594928. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmicb.2020.594928&link_type=DOI) 21. 21.Samyuktha, V.; Naveen Kumar, V. Emergence of RBD and D614G Mutations in Spike Protein: An Insight from Indian SARS-CoV-2 Genome Analysis. Preprints, posted June 4, 2020, 2020060032 doi: 10.20944/preprints202006.0032.v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.20944/preprints202006.0032.v1&link_type=DOI) 22. 22.Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon. 2021 Mar;7(3):e06564. doi: 10.1016/j.heliyon.2021.e06564. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.heliyon.2021.e06564&link_type=DOI) 23. 23.See A, Ko KKK, Toh ST. Epidemiological analysis in support of hypothesis that D614G virus mutation is a major contributing factor to chemosensory dysfunction in COVID-19 patients. Eur Arch Otorhinolaryngol. 2021 Jun 29:1–2. doi: 10.1007/s00405-021-06941-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-021-06941-z&link_type=DOI) 24. 24.Srivastava S, Banu S, Singh P, Sowpati DT, Mishra RK. SARS-CoV-2 genomics: An Indian perspective on sequencing viral variants. J Biosci. 2021;46(1):22. doi: 10.1007/s12038-021-00145-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12038-021-00145-7&link_type=DOI) 25. 25.Yadav PD, Nyayanit DA, Majumdar T, Patil S, Kaur H, Gupta N, Shete AM, Pandit P, Kumar A, Aggarwal N, Narayan J, Vijay N, Kalawat U, Sugunan AP, Munivenkatappa A, Sharma T, Devi S, Majumdar T, Jaryal S, Bakshi R, Joshi Y, Sahay R, Shastri J, Singh M, Kumar M, Rawat V, Dutta S, Yadav S, Krishnasamy K, Raut S, Biswas D, Borkakoty B, Verma S, Rani S, Deval H, Patel D, Turuk J, Malhotra B, Fomda B, Nag V, Jain A, Bhargava A, Potdar V, Cherian S, Abraham P, Gopal A, Panda S, Bhargava B. An Epidemiological Analysis of SARS-CoV-2 Genomic Sequences from Different Regions of India. Viruses. 2021 May 17;13(5):925. doi: 10.3390/v13050925. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/v13050925&link_type=DOI) 26. 26.Islam OK, Al-Emran HM, Hasan MS, Anwar A, Jahid MIK, Hossain MA. Emergence of European and North American mutant variants of SARS-CoV-2 in South-East Asia. Transbound Emerg Dis. 2021 Mar;68(2):824–832. doi: 10.1111/tbed.13748. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/tbed.13748&link_type=DOI) 27. 27.Mondal M, Lawarde A, Somasundaram K. Genomics of Indian SARS-CoV-2: Implications in genetic diversity, possible origin and spread of virus. medRxiv [Preprint] 2020, April 29, 2020. doi: 10.1101/2020.04.25.20079475 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNC4yNS4yMDA3OTQ3NXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 28. 28.Pattabiraman C, Habib F, P K H, Rasheed R, Prasad P, Reddy V, Dinesh P, Damodar T, Hosallimath K, George AK, Kiran Reddy NV, John B, Pattanaik A, Kumar N, Mani RS, Venkataswamy MM, Shahul Hameed SK, Kumar BGP, Desai A, Vasanthapuram R. Genomic epidemiology reveals multiple introductions and spread of SARS-CoV-2 in the Indian state of Karnataka. PLoS One. 2020 Dec 17;15(12):e0243412. doi: 10.1371/journal.pone.0243412. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0243412&link_type=DOI) 29. 29.Sarkar R, Mitra S, Chandra P, Saha P, Banerjee A, Dutta S, Chawla-Sarkar M. Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations. Arch Virol. 2021 Mar;166(3):801–812. doi: 10.1007/s00705-020-04911-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00705-020-04911-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33464421&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 30. 30.Gupta A, Sabarinathan R, Bala P, Donipadi V, Vashisht D, Katika MR, Kandakatla M, Mitra D, Dalal A, Bashyam MD. A comprehensive profile of genomic variations in the SARS-CoV-2 isolates from the state of Telangana, India. J Gen Virol. 2021 Mar;102(3). doi: 10.1099/jgv.0.001562. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1099/jgv.0.001562&link_type=DOI) 31. 31.Paul D, Jani K, Kumar J, Chauhan R, et al. Phylogenomic analysis of SARS-CoV-2 genomes from Western India reveals unique linked mutations. bioRxiv 2020 Aug 4, 2020. doi: 10.1101/2020.07.30.228460. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNy4zMC4yMjg0NjB2MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 32. 32.Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, Rumi MH, Mahbubur Rashid SM, Siddiki AZ, Mannan A. Global and local mutations in Bangladeshi SARS-CoV-2 genomes. Virus Res. 2021 May;297:198390. doi: 10.1016/j.virusres.2021.198390. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.virusres.2021.198390&link_type=DOI) 33. 33.Shishir TA, Naser IB, Faruque SM. In silico comparative genomics of SARS-CoV-2 to determine the source and diversity of the pathogen in Bangladesh. PLoS One. 2021 Jan 20;16(1):e0245584. doi: 10.1371/journal.pone.0245584. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0245584&link_type=DOI) 34. 34.Ghanchi NK Masood KI, Nasir A, Khan W, Abidi SH, Shahid S, Mahmood SF, Kanji A, Razzak S, Ansar Z, Islam N, Dharejo MB, Hasan Z, Hasan R. SARS-CoV-2 genome analysis of strains in Pakistan reveals GH, S and L clade strains at the start of the pandemic. bioRxiv [Preprint] posted August 4, 2020. doi: 10.1101/2020.08.04.234153. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wOC4wNC4yMzQxNTN2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 35. 35.Jeewandara C, Jayathilaka D, Ranasinghe D, Hsu NS, Ariyaratne D, Jayadas TT, Madushanka D, Lindsey BB, Gomes L, Parker MD, Wijewickrama A, Karunaratne M, Ogg GS, de Silva TI, Malavige GN. Genomic and epidemiological analysis of SARS-CoV-2 viruses in Sri Lanka. medRxiv [Preprint] posted on June 2, 2021. doi: 10.1101/2021.05.05.21256384. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNS4wNS4yMTI1NjM4NHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 36. 36.Umair M, Ikram A, Salman M, Khurshid A, Alam M, Badar N, Suleman R, Tahir F, Sharif S, Montgomery J, Whitmer S, Klena J. Whole-genome sequencing of SARS-CoV-2 reveals the detection of G614 variant in Pakistan. PLoS One. 2021 Mar 23;16(3):e0248371. doi: 10.1371/journal.pone.0248371. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0248371&link_type=DOI) 37. 37.Sallam M, Ababneh NA, Dababseh D, Bakri FG, Mahafzah A. Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa. Heliyon. 2021 Jan;7(1):e06035. doi: 10.1016/j.heliyon.2021.e06035. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.heliyon.2021.e06035&link_type=DOI) 38. 38.Ramasamy K, Saniasiaya J, Abdul Gani N. Olfactory and Gustatory Dysfunctions as a Clinical Manifestation of Coronavirus Disease 2019 in a Malaysian Tertiary Center. Ann Otol Rhinol Laryngol. 2021 May;130(5):513–519. doi: 10.1177/0003489420963165. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0003489420963165&link_type=DOI) 39. 39.Syahida Mat Yassim A, Fazli Farida Asras M, Mahfuz Gazali A, Marcial-Coba MS, Afeera Zainulabid U, Fauzan Bin Ahmad H. COVID-19 Outbreak in Malaysia: Decoding D614G Mutation of SARS-CoV-2 Virus Isolated from an Asymptomatic Case in Pahang. Mater Today Proc. 2021 Feb 27. doi: 10.1016/j.matpr.2021.02.387. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.matpr.2021.02.387&link_type=DOI) 40. 40.Al-Mahruqi S, Al-Wahaibi A, Khan AL, Al-Jardani A, Asaf S, Alkindi H, Al-Kharusi S, Al-Rawahi AN, Al-Rawahi A, Al-Salmani M, Al-Shukri I, Al-Busaidi A, Al-Abri SS, Al-Harrasi A. Molecular epidemiology of COVID-19 in Oman: A molecular and surveillance study for the early transmission of COVID-19 in the country. Int J Infect Dis. 2021 Mar;104:139–149. doi: 10.1016/j.ijid.2020.12.049. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.12.049&link_type=DOI) 41. 41.Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1000097&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19621072&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 42. 42.Almazeedi S, Al-Youha S, Jamal MH, Al-Haddad M, Al-Muhaini A, Al-Ghimlas F, Al-Sabah S. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EClinicalMedicine. 2020 Jul 4;24:100448. doi: 10.1016/j.eclinm.2020.100448. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eclinm.2020.100448&link_type=DOI) 43. 43.Tham AC, Thein TL, Lee CS, Tan GSE, Manauis CM, Siow JK, Leo YS, Lim MY. Olfactory taste disorder as a presenting symptom of COVID-19: a large single-center Singapore study. Eur Arch Otorhinolaryngol. 2021 Jun;278(6):1853–1862. doi: 10.1007/s00405-020-06455-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-020-06455-0&link_type=DOI) 44. 44.Soh SHL, See A, Teo NWY, Tan HK, Palaniappan G, Lim MLA, Kadir HBA, Toh ST. Prevalence of olfactory and taste dysfunction in COVID-19 patients: a community care facility study. Eur Arch Otorhinolaryngol. 2021 Feb 17:1–6. doi: 10.1007/s00405-021-06647-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-021-06647-2&link_type=DOI) 45. 45.Varghese B, Shajahan S, Anilkumar H, Haridasan RK, Rahul A, Hariprasad Thazhathedath H, Surendran Nair AT. Symptomatology and Epidemiologic Characteristics of COVID 19 Patients in Kerala, India. J Evolution Med Dent Sci 2020; 9(46):3411–341. doi: 10.14260/jemds/2020/749. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14260/jemds/2020/749&link_type=DOI) 46. 46.Ish P, Sen MK, Gupta N. In Reference to Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020 Sep;130(9):E502. doi: 10.1002/lary.28832. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/lary.28832&link_type=DOI) 47. 47.Sharma AK, Ahmed A, Baig VN, Dhakar P, Dalela G, Kacker S, Panwar VR, Panwar RB, Gupta R. Characteristics and Outcomes of Hospitalized Young Adults with Mild Covid-19. J Assoc Physicians India. 2020 Aug;68(8):62–65. doi: 10.1101/2020.06.02.20106310. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2020.06.02.20106310&link_type=DOI) 48. 48.Herath M, Thusharika JMMP Kumari, PLPMM, Acharige TAWW, Gunananthan K, June BPD, Hettiarachchi NM, Dona TDK, Mudiyanselage PLRSP, Senevirathne NB, Bhishman S, Jayawardhana AGJKA, Arachchige HPSW, Balasooriya P, Thushanthy P, Senarathna G, Jayasekera K, Ponnuthurai S, Manilgama SR, Jayasinghe IK, Jayalath TWAA, Selladurai P. Clinical and Epidemiological Characteristics and Outcome of Patients With Covid-19 in Sri Lanka; An Observational Study. Research Square preprint, 2020. doi 10.21203/rs.3.rs-42505/v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.21203/rs.3.rs-42505/v1&link_type=DOI) 49. 49. Iltaf S Sr, Fatima M, Salman S Sr, Salam JU, Abbas S. Frequency of Neurological Presentations of Coronavirus Disease in Patients Presenting to a Tertiary Care Hospital During the 2019 Coronavirus Disease Pandemic. Cureus. 2020 Aug 18;12(8):e9846. doi: 10.7759/cureus.9846. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7759/cureus.9846&link_type=DOI) 50. 50.Lal P, Chamoli P, Tuli IP, Jaitly S, Sneha SN, Sharma S, Trehan S. Olfactory and Gustatory Dysfunctions in Patients With Laboratory-Confirmed COVID-19 Infection: A Change in the Trend. Indian J Otolaryngol Head Neck Surg. 2021 Jul 18:1–7. doi: 10.1007/s12070-021-02752-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02752-0&link_type=DOI) 51. 51.Yadav V, Bhagat S, Sharma DK, Sibia RPS, Pandav R, Sandhu VP. Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Tertiary Care Institute Experience in India. Indian J Otolaryngol Head Neck Surg. 2021 Jan 3:1–8. doi: 10.1007/s12070-020-02295-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-02295-w&link_type=DOI) 52. 52.Khurana, A., Kaushal, G., Gupta, R., Verma, V., Sharma, K. & Kohli, P. (2021). Prevalence and Clinical Correlates of COVID-19 Outbreak Among Health Care Workers in a Tertiary Level Hospital in Delhi. American Journal of Infectious Diseases, 2021; 17(2), 107–119. doi: 10.3844/ajidsp.2021.107.119. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3844/ajidsp.2021.107.119&link_type=DOI) 53. 53.Lanjiwar M, Narayan A, Garg R, Srivastava P, Vibha D. Neurological manifestations in mild SARS-Cov2 infected patients at a tertiary health center in India: A prospective cohort study. SSRN [Preprint] posted June 20, 2020. [https://ssrn.com/abstract=3605278](https://ssrn.com/abstract=3605278) 54. 54.Krishnasamy N, Natarajan M, Ramachandran A, Vivian Thangaraj JW, Etherajan T, Rengarajan J, Shanmugasundaram M, Kandasamy A, Ramamoorthy R, Velusamy A, Obla Lakshmanamoorthy NB, Kanagaraman P, Rahamathula MI, Devadas G, Sathyanathan BP, Rajaji P, Rajendran K, Panneerselvam P, Rajaram M, Panjacharam M. Clinical Outcomes among Asymptomatic or Mildly Symptomatic COVID-19 Patients in an Isolation Facility in Chennai, India. Am J Trop Med Hyg. 2021 Jan;104(1):85–90. doi: 10.4269/ajtmh.20-1096. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4269/ajtmh.20-1096&link_type=DOI) 55. 55.Smitha SG, Pillai N, Nayak B, Raveendran J. A Study on Otorhinolaryngological Presentations in Covid 19 Patients in a Tertiary Health Care Center. Indian J Otolaryngol Head Neck Surg. 2021 Apr 27:1–6. doi: 10.1007/s12070-021-02564-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02564-2&link_type=DOI) 56. 56.Makda A, Kumar S, Kumar A, Kumar V, Rizwan A. The Frequency of Neurological Symptoms in COVID-19 Patients at a Tertiary Care Hospital in Pakistan. Cureus. 2020 Sep 10;12(9):e10360. doi: 10.7759/cureus.10360. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7759/cureus.10360&link_type=DOI) 57. 57.Al Harthi S, Magdi A, Al Ruwaida I, Al Sultan L, Bina K, Al Mustafa S, Al Nasser K, Al Salim Q, Al Mohamed H, Al Hamad H, Al Thamra G (2020) Clinical characteristics of confirmed cases of COVID-19 admitted at Al-Nahdha hospital, Oman: a cross-sectional descriptive study. Research Square 2020, Preprint at doi:10.21203/rs.3.rs-39988/v. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.21203/rs.3.rs-39988/v&link_type=DOI) 58. 58.Kuchhal V, Ahmad S, Chaurasia P, Rawat P. ENT manifestations in COVID-19 positive patients. Research Square [Preprint] Oct 15 2020, doi: 10.21203/rs.3.rs-90203/v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.21203/rs.3.rs-90203/v1&link_type=DOI) 59. 59.Mishra P, Gowda V, Dixit S, Kaushik M. Prevalence of New Onset Anosmia in COVID-19 Patients: Is the Trend Different Between European and Indian Population? Indian J Otolaryngol Head Neck Surg. 2020 Jul 21;72(4):1–4. doi: 10.1007/s12070-020-01986-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-01986-8&link_type=DOI) 60. 60.Bhatta S, Gandhi S, Saindani SJ, Ganesuni D, Ghanpur AD. Otorhinolaryngological manifestations of coronavirus disease 2019: a prospective review of 600 patients. J Laryngol Otol. 2021 Jan 18:1–6. doi: 10.1017/S0022215121000220. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0022215121000220&link_type=DOI) 61. 61.Panda S, Mohamed A, Sikka K, Kanodia A, Sakthivel P, Thakar A, Bhatnagar S, Mohan A, Meena VP, Tiwari P, Sahoo B, Dar L, Vig S, Garg R, Kumar C. Otolaryngologic Manifestation and Long-Term Outcome in Mild COVID-19: Experience from a Tertiary Care Centre in India. Indian J Otolaryngol Head Neck Surg. 2020 Oct 14;73(1):1–6. doi: 10.1007/s12070-020-02217-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-02217-w&link_type=DOI) 62. 62.Chaurasia, P., Kuchhal, V., Ahmad, S., Rawat, P. ENT manifestations in Covid-19 positive patients. Int J Hlth Clin Res, 2020; 3(10), 187–191. [https://www.ijhcr.com/index.php/ijhcr/article/view/391](https://www.ijhcr.com/index.php/ijhcr/article/view/391) 63. 63.Malik FT, Ishraquzzaman M, Kalimuddin M, Choudhury S, Ahmed N, Badiuzzaman M, Ahmed MN, Banik D, Huq TS, Al Mamun MA. Clinical Presentation, Management and In-Hospital Outcome of Healthcare Personnel With COVID-19 Disease. Cureus. 2020 Aug 24;12(8):e10004. doi: 10.7759/cureus.10004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7759/cureus.10004&link_type=DOI) 64. 64.Shah NN, Hussain RT, Mustafa H, Mushtaq M, Ali M. Evaluation of Olfactory Acuity in Patients with Coronavirus Disease 2019 (COVID-19). Indian J Otolaryngol Head Neck Surg. 2020 Oct 27:1–8. doi: 10.1007/s12070-020-02241-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-02241-w&link_type=DOI) 65. 65.Bhattacharjee AS, Joshi SV, Naik S, Sangle S, Abraham NM. Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers. EClinicalMedicine. 2020 Nov;28:100575. doi: 10.1016/j.eclinm.2020.100575. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eclinm.2020.100575&link_type=DOI) 66. 66.Jain A, Kumar L, Kaur J, Baisla T, Goyal P, Pandey AK, Das A, Parashar L. Olfactory and taste dysfunction in coronavirus disease 2019 patients: its prevalence and outcomes. J Laryngol Otol. 2020 Nov 16:1–5. doi: 10.1017/S0022215120002467. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0022215120002467&link_type=DOI) 67. 67.Dev N, Sankar J, Gupta N, Meena RC, Singh C, Gupta DK, Sen MK. COVID-19 with and without anosmia or dysgeusia: A case-control study. J Med Virol. 2021 Apr;93(4):2499–2504. doi: 10.1002/jmv.26784. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26784&link_type=DOI) 68. 68.Kumar L, Kahlon N, Jain A, Kaur J, Singh M, Pandey AK. Loss of smell and taste in COVID-19 infection in adolescents. Int J Pediatr Otorhinolaryngol. 2021 Mar;142:110626. doi: 10.1016/j.ijporl.2021.110626. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijporl.2021.110626&link_type=DOI) 69. 69.Koul D, Begh RA, Kalsotra P. Olfactory and Gustatory Alterations in Covid-19 Patients: A Tertiary Care Covid-19 Centre Inpatient Experience. Indian J Otolaryngol Head Neck Surg. 2021 Jan 28:1–5 doi: 10.1007/s12070-021-02397-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02397-z&link_type=DOI) 70. 70.Sahoo PR, Sahu M, Surapaneni PS, Maiti A, Vankamamidi R, Panda N, Biswal RN. Evolution of olfactory and gustatory dysfunctions in COVID-19 patients in India. Eur Arch Otorhinolaryngol. 2021 Jan 3:1–7. doi: 10.1007/s00405-020-06563-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-020-06563-x&link_type=DOI) 71. 71.Rajkumar I, Anand KH, Revathishree K, Shoba K, Srinivasan K. Contemporary Analysis of Olfactory Dysfunction in Mild to Moderate Covid 19 Patients in A Tertiary Health Care Centre. Indian J Otolaryngol Head Neck Surg. 2020 Sep 30:1–5. doi: 10.1007/s12070-020-02175-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-02175-3&link_type=DOI) 72. 72.Kumar V, Singla S, Gupta N, Bharati SJ, Garg R, Pandit A, Vig S, Mishra S, Bhatnagar S. The incidence of anosmia in patients with laboratory-confirmed COVID 19 infection in India: An observational study. J Anaesthesiol Clin Pharmacol. 2021 Jan-Mar;37(1):51–56. doi: 10.4103/joacp.JOACP\_653\_20. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/joacp.JOACP_653_20&link_type=DOI) 73. 73.Kandakure VT, Valvi HR, Khokle P, More MS, Chouhan R. Prevalence and Recovery from Newly Onset Anosmia and Ageusia in Covid 19 Patients at our Tertiary Care Centre. Indian J Otolaryngol Head Neck Surg. 2021 Apr 10:1–8. doi: 10.1007/s12070-021-02540-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02540-w&link_type=DOI) 74. 74.Hasan M, Tamanna NA, Jamal MN, Uddin J. The prevalence of olfactory dysfunction and its associated factors in patients with COVID-19 infection. medRxiv [Preprint] Jan 29, 2021. doi: 10.1101/2021.01.27.21250153. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yNy4yMTI1MDE1M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 75. 75.Hajare PS, Harugop AS, Goswami L, Padmavathy O, Aggarwal U, Reddy YL. Prevalence of Olfactory and Gustatory Dysfunction in Coronavirus Disease (COVID-19): A Cross Sectional Study in Our Tertiary Care Hospital. Indian J Otolaryngol Head Neck Surg. 2021 Jul 6:1–4. doi: 10.1007/s12070-021-02702-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02702-w&link_type=DOI) 76. 76.Savtale S, Hippargekar P, Bhise S, Kothule S. Prevalence of Otorhinolaryngological Symptoms in Covid 19 Patients. Indian J Otolaryngol Head Neck Surg. 2021 Feb 8:1–7. doi: 10.1007/s12070-021-02410-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02410-5&link_type=DOI) 77. 77.Gupta S, Kumbhat P, Seervi M. Olfactory and Gustatory Dysfunction in Covid-19: An Observational Study in a Tertiary Care Institute of Western Rajasthan. Indian J Otolaryngol Head Neck Surg. 2021 Apr 27:1–5. doi: 10.1007/s12070-021-02563-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02563-3&link_type=DOI) 78. 78.Mangal V, Murari T, Vashisht R, Iqbal SM, Meghana K, Gujrathi S, Ambade V, Tilak T, Aggarwal V, Manrai M, Verma V, Srinath R, Goel N, Yadav NK, Menon A. Olfactory Dysfunction Among Asymptomatic Patients with SARS CoV2 Infection: A Case-Control Study. Indian J Otolaryngol Head Neck Surg. 2021 Feb 10:1–6. doi: 10.1007/s12070-021-02366-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02366-6&link_type=DOI) 79. 79.Karthikeyan P, Sivanand N, Vijayan N, Latheef MN. A Clinical Study of Smell Disorders in COVID-19 Patients in a Tertiary Care Hospital in Pondicherry: A Cross Sectional Study. Indian J Otolaryngol Head Neck Surg. 2021 Mar 13:1–6. doi: 10.1007/s12070-021-02499-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02499-8&link_type=DOI) 80. 80.Silu M, Mathur NP, Kumari R, Chaudhary P. Correlation Between Anosmia and Severity Along with Requirement of Tocilizumab in COVID-19 Patients. Indian J Otolaryngol Head Neck Surg. 2021 Jun 17:1–5. doi: 10.1007/s12070-021-02679-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02679-6&link_type=DOI) 81. 81.Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, Rangarajan ES, Pan A, Vanderheiden A, Suthar MS, Li W, Izard T, Rader C, Farzan M, Choe H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun. 2020 Nov 26;11(1):6013. doi: 10.1038/s41467-020-19808-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-020-19808-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33243994&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 82. 82.Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell and Taste Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2020;95(8):1621–1631. doi: 10.1016/j.mayocp.2020.05.030. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mayocp.2020.05.030&link_type=DOI) 83. 83.Fuccillo E, Saibene AM, Canevini MP, Felisati G. Olfactory disorders in coronavirus disease 2019 patients: a systematic literature review. J Laryngol Otol. 2020 Sep 15:1–10. doi: 10.1017/S0022215120002005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0022215120002005&link_type=DOI) 84. 84.Printza A, Constantinidis J. The role of self-reported smell and taste disorders in suspected COVID-19. Eur Arch Otorhinolaryngol. 2020;277(9):2625–2630. doi: 10.1007/s00405-020-06069-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-020-06069-6&link_type=DOI) 85. 85.Purja S, Shin H, Lee JY, Kim E. Is loss of smell an early predictor of COVID-19 severity: a systematic review and meta-analysis. Arch Pharm Res. 2021 Jul 24. doi: 10.1007/s12272-021-01344-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12272-021-01344-4&link_type=DOI) 86. 86.Aziz M, Goyal H, Haghbin H, Lee-Smith WM, Gajendran M, Perisetti A. The Association of “Loss of Smell” to COVID-19: A Systematic Review and Meta-Analysis. Am J Med Sci. 2021 Feb;361(2):216–225. doi: 10.1016/j.amjms.2020.09.017. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjms.2020.09.017&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 87. 87.Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg. 2020;163(1):3–11. doi: 10.1177/0194599820926473. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0194599820926473&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32369429&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 88. 88.Wong DKC, Gendeh HS, Thong HK, Lum SG, Gendeh BS, Saim A, Salina H. A review of smell and taste dysfunction in COVID-19 patients. Med J Malaysia. 2020 Sep;75(5):574–581. [http://www.e-mjm.org/2020/v75n5/COVID-19.pdf](http://www.e-mjm.org/2020/v75n5/COVID-19.pdf). 89. 89.Lee Y, Min P, Lee S, Kim SW. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J Korean Med Sci. 2020 May 11;35(18):e174. doi: 10.3346/jkms.2020.35.e174. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3346/jkms.2020.35.e174&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 90. 90.Wee LE, Chan YFZ, Teo NWY, Cherng BPZ, Thien SY, Wong HM, Wijaya L, Toh ST, Tan TT. The role of self-reported olfactory and gustatory dysfunction as a screening criterion for suspected COVID-19. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2389–2390. doi: 10.1007/s00405-020-05999-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00405-020-05999-5&link_type=DOI) 91. 91.Qiu C, Cui C, Hautefort C, Haehner A, Zhao J, Yao Q, Zeng H, Nisenbaum EJ, Liu L, Zhao Y, Zhang D, Levine CG, Cejas I, Dai Q, Zeng M, Herman P, Jourdaine C, de With K, Draf J, Chen B, Jayaweera DT, Denneny JC 3rd., Casiano R, Yu H, Eshraghi AA, Hummel T, Liu X, Shu Y, Lu H. Olfactory and Gustatory Dysfunction as an Early Identifier of COVID-19 in Adults and Children: An International Multicenter Study. Otolaryngol Head Neck Surg. 2020 Oct;163(4):714–721. doi: 10.1177/0194599820934376. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0194599820934376&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32539586&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 92. 92.Song J, Deng YK, Wang H, Wang ZC, Liao B, Ma J, He C, Pan L, Liu Y, Alobid I, Wang DY, Zeng M, Mullol J, Liu Z. Self-reported Taste and Smell Disorders in Patients with COVID-19: Distinct Features in China. Curr Med Sci. 2021 Feb;41(1):14–23. doi: 10.1007/s11596-021-2312-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11596-021-2312-7&link_type=DOI) 93. 93.Hannum ME, Ramirez VA, Lipson SJ, Herriman RD, Toskala AK, Lin C, Joseph PV, Reed DR. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19-Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem Senses. 2020 Dec 5;45(9):865–874. doi: 10.1093/chemse/bjaa064. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/chemse/bjaa064&link_type=DOI) 94. 94.Pang KW, Chee J, Subramaniam S, Ng CL. Frequency and Clinical Utility of Olfactory Dysfunction in COVID-19: a Systematic Review and Meta-analysis. Curr Allergy Asthma Rep. 2020 Oct 13;20(12):76. doi: 10.1007/s11882-020-00972-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11882-020-00972-y&link_type=DOI) 95. 95.Aanand P, Angral S, Varshney S, Raj R. Incidence of Anosmia among Covid 19 patients in India. Indian J Otolaryngol Head Neck Surg. 2021 Jun 3:1–10. Epub ahead of print. doi: 10.1007/s12070-021-02641-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02641-6&link_type=DOI) 96. 96.Eyre DW, Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Cornall RJ, Stuart DI, Screaton G, Ebner D, Crook DW, Conlon CP, Jeffery K, Walker TM, Peto TEA. Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infect Dis. 2021 Feb 18;21(1):187. doi: 10.1186/s12879-021-05878-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-021-05878-2&link_type=DOI) 97. 97.Chung TW, Sridhar S, Zhang AJ, Chan KH, Li HL, Wong FK, Ng MY, Tsang RK, Lee AC, Fan Z, Ho RS, Luk SY, Kan WK, Lam SH, Wu AK, Leung SM, Chan WM, Ng PY, To KK, Cheng VC, Lung KC, Hung IF, Yuen KY. Olfactory Dysfunction in Coronavirus Disease 2019 Patients: Observational Cohort Study and Systematic Review. Open Forum Infect Dis. 2020 Jun 5;7(6):ofaa199. doi: 10.1093/ofid/ofaa199. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ofid/ofaa199&link_type=DOI) 98. 98.Cho RHW, To ZWH, Yeung ZWC, Tso EYK, Fung KSC, Chau SKY, Leung EYL, Hui TSC, Tsang SWC, Kung KN, Chow EYD, Abdullah V, van Hasselt A, Tong MCF, Ku PKM. COVID-19 Viral Load in the Severity of and Recovery from Olfactory and Gustatory Dysfunction. Laryngoscope. 2020 Nov;130(11):2680–2685. doi: 10.1002/lary.29056. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/lary.29056&link_type=DOI) 99. 99.Leung WLH, Yu ELM, Wong SC, Leung M, Lee LLY, Chung KL, Cheng VCC. Findings from the first public COVID-19 temporary test centre in Hong Kong. Hong Kong Med J. 2021 Apr;27(2):99–105. doi: 10.12809/hkmj208909. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12809/hkmj208909&link_type=DOI) 100.100.Mak GCK, Lau AWL, Chan AMY, Chan DYW, Tsang DNC. The D614G substitution in the S gene and clinical information for patients with COVID-19 detected in Hong Kong. J Clin Virol. 2020 Sep;130:104550. doi: 10.1016/j.jcv.2020.104550. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104550&link_type=DOI) 101.101.Lee SH, Yeoh ZX, Sachlin IS, Gazali N, Soelar SA, Foo CY, Low LL, Alwi SBS, Kamalden TMIT, Shanmuganathan J, Zaid M, Wong CY, Chua HH, Yusuf S, Muhamad D, Devesahayam PR, Ker HB, Salahuddin Z, Mustafa M, Sawali H, Lee HG, Din S, Misnan NA, Amran A, Ismail MN, Periasamy C, Chow TS, Krishnan EK, Leong CL, Lim LPF, Zaidan NZ, Ibrahim Z, Wahab SA, Hashim SSM, Malaysian COVID-19 Anosmia Research Group. Self-reported symptom study of COVID-19 chemosensory dysfunction in Malaysia. Research Square [Preprint] posted 12 July, 2021. [https://www.researchsquare.com/article/rs-696505/v1](https://www.researchsquare.com/article/rs-696505/v1). 102.102.Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, Saemundsdottir J, Sigurdsson A, Sulem P, Agustsdottir AB, Eiriksdottir B, Fridriksdottir R, Gardarsdottir EE, Georgsson G, Gretarsdottir OS, Gudmundsson KR, Gunnarsdottir TR, Gylfason A, Holm H, Jensson BO, Jonasdottir A, Jonsson F, Josefsdottir KS, Kristjansson T, Magnusdottir DN, le Roux L, Sigmundsdottir G, Sveinbjornsson G, Sveinsdottir KE, Sveinsdottir M, Thorarensen EA, Thorbjornsson B, Löve A, Masson G, Jonsdottir I, Möller AD, Gudnason T, Kristinsson KG, Thorsteinsdottir U, Stefansson K. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302–2315. doi: 10.1056/NEJMoa2006100. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2006100&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32289214&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 103.103.Borobia AM, Carcas AJ, Arnalich F, Álvarez-Sala R, Monserrat-Villatoro J, Quintana M, Figueira JC, Torres Santos-Olmo RM, García-Rodríguez J, Martín-Vega A, Buño A, Ramírez E, Martínez-Alés G, García-Arenzana N, Núñez MC, Martí-de-Gracia M, Moreno Ramos F, Reinoso-Barbero F, Martin-Quiros A, Rivera Núñez A, Mingorance J, Carpio Segura CJ, Prieto Arribas D, Rey Cuevas E, Prados Sánchez C, Rios JJ, Hernán MA, Frías J, Arribas JR, on Behalf of the COVIDd@HULP Working Group. A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe. J Clin Med. 2020;9(6):1733. doi: 10.3390/jcm9061733. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm9061733&link_type=DOI) 104.104.Cardenas A, Rifas-Shiman SL, Sordillo JE, DeMeo DL, Baccarelli AA, Hivert MF, Gold DR, Oken E. DNA methylation architecture of the ACE2 gene in nasal cells of children. Sci Rep. 2021 Mar 29;11(1):7107. doi: 10.1038/s41598-021-86494-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-86494-7&link_type=DOI) 105.105.Asselta R, Paraboschi EM, Mantovani A, Duga S. *ACE2* and *TMPRSS2* variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020 Jun 5;12(11):10087–10098. doi: 10.18632/aging.103415. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/aging.103415&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32501810&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 106.106.Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6, 11. doi: 10.1038/s41421-020-0147-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41421-020-0147-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32133153&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 107.107.Strafella C, Caputo V, Termine A, Barati S, Gambardella S, Borgiani P, Caltagirone C, Novelli G, Giardina E, Cascella R. Analysis of *ACE2* Genetic Variability among Populations Highlights a Possible Link with COVID-19-Related Neurological Complications. Genes (Basel). 2020 Jul 3;11(7):741. doi: 10.3390/genes11070741. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/genes11070741&link_type=DOI) 108.108.Williams FMK, Freidin MB, Mangino M, Couvreur S, Visconti A, Bowyer RCE, Le Roy CI, Falchi M, Mompeó O, Sudre C, Davies R, Hammond C, Menni C, Steves CJ, Spector TD. Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable. Twin Res Hum Genet. 2020 Dec;23(6):316-321. doi: 10.1017/thg.2020.85. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/thg.2020.85&link_type=DOI) 109.109.Bhattacharyya C., Das C., Ghosh A., Singh A.K., Mukherjee S., Majumder P.P., Basu A., Biswas N.K. 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv. Preprint May 5, 2020. doi: 10.1101/2020.05.04.075911. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNS4wNC4wNzU5MTF2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 110.110.dos Santos NPC, Khayat AS, Rodrigues JCG, Pinto P, de Araújo GS, Pastana LF, Medeiros JAG, Fernandes MR, Ribeiro-dos-Santos A, Khayat BCM, Cordeiro Moreira FC, Ribeiro-dos-Santos AM, de Assumpção PB, Ribeiro-dos-Santos A, de Assumpção PP, Santos S. *TMPRSS2* variants and their susceptibility to COVID-19: focus in East Asian and European populations. MedRxiv [Preprint] June 11, 2020. doi: 10.1101/2020.06.09.20126680. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNi4wOS4yMDEyNjY4MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 111.111.Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, Basu A, Biswas NK. SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol. 2021 Jun;90:104760. doi: 10.1016/j.meegid.2021.104760. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.meegid.2021.104760&link_type=DOI) 112.112.Shelton JF, Shastri AJ, The 23andMe COVID-19 Team, Aslibekyan S, Auton A. The UGT2A1/UGT2A2 locus is associated with COVID-19-related anosmia. MedRxiv [Preprint] May 31, 2021. doi: 10.1101/2021.05.28.21257993. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNS4yOC4yMTI1Nzk5M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 113.113.Neiers F, Jarriault D, Menetrier F, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS One. 2021 Mar 25;16(3):e0249029. doi: 10.1371/journal.pone.0249029. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0249029&link_type=DOI) 114.114.Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. 2020 Sep 11:1073858420956905. doi: 10.1177/1073858420956905. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1073858420956905&link_type=DOI) 115.115.Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, Bayat AH, Fathi M, Vakili K, Alizadeh R, Rezaeimirghaed O, Hajiesmaeili M, Ramezani M, Simani L, Aliaghaei A. Proinflammatory Cytokines in the Olfactory Mucosa Result in COVID-19 Induced Anosmia. ACS Chem Neurosci. 2020 Jul 1;11(13):1909–1913. doi: 10.1021/acschemneuro.0c00249. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acschemneuro.0c00249&link_type=DOI) 116.116.Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, Ar Gouilh M, Lesellier S, Servat A, Wasniewski M, Picard-Meyer E, Monchatre-Leroy E, Volmer R, Rampin O, Le Goffic R, Marianneau P, Meunier N. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020 Oct;89:579–586. doi: 10.1016/j.bbi.2020.06.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2020.06.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32629042&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 117.117.Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M Jr., Lane AP. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020 Sep 24;56(3):2001948. doi: 10.1183/13993003.01948-2020. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjEyOiI1Ni8zLzIwMDE5NDgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOC8xMi8yMDIxLjA4LjExLjIxMjYxOTM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 118.118. A. Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, Weinreb C, Joseph PV, Larson ED, Parma V, Albers MW, Barlow LA, Datta SR, Di Pizio A. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020 Jul 22;107(2):219–233. doi: 10.1016/j.neuron.2020.06.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuron.2020.06.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32640192&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 119.119.Klingenstein M, Klingenstein S, Neckel PH, Mack AF, Wagner AP, Kleger A, Liebau S, Milazzo A. Evidence of SARS-CoV2 Entry Protein ACE2 in the Human Nose and Olfactory Bulb. Cells Tissues Organs. 2020;209(4-6):155–164. doi: 10.1159/000513040. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000513040&link_type=DOI) 120.120.Zugaj M, van Ditzhuijzen NS, Golebski K, Fokkens WJ. The effect of coronaviruses on olfaction: systematic review. Rhinology. 2021 Jun 1;59(3):226–235. doi: 10.4193/Rhin20.610. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4193/Rhin20.610&link_type=DOI) 121.121.Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol. 2021 Jun;141(6):809–822. doi: 10.1007/s00401-021-02314-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00401-021-02314-2&link_type=DOI) 122.122.de Melo GD, Lazarini F, Levallois S, Hautefort C, Michel V, Larrous F, Verillaud B, Aparicio C, Wagner S, Gheusi G, Kergoat L, Kornobis E, Donati F, Cokelaer T, Hervochon R, Madec Y, Roze E, Salmon D, Bourhy H, Lecuit M, Lledo PM. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021 Jun 2;13(596):eabf8396. doi: 10.1126/scitranslmed.abf8396. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjE1OiIxMy81OTYvZWFiZjgzOTYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOC8xMi8yMDIxLjA4LjExLjIxMjYxOTM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 123.123.Rodriguez S, Cao L, Rickenbacher GT, Benz EG, Magdamo C, Ramirez Gomez LA, Holbrook E, Dhilla Albers A, Gallagher R, Westover MB, Evans KE, Tatar D, Mukerji S, Zafonte R, Boyer EW, Yu CR, Albers MW. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: modeling transient smell loss in COVID-19 patients. medRxiv [Preprint]. June 16, 2020. doi: 10.1101/2020.06.14.20131128. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNi4xNC4yMDEzMTEyOHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 124.124.Root-Bernstein R. Anosmia-hyposmia and dysgeusia in COVID-19 may be due to SARS-CoV-2 protein mimicry of olfactory receptors. Rhinology online 3:148–151. 125.125.Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Dec 10;183(6):1735. doi: 10.1016/j.cell.2020.11.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2020.11.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33306958&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 126.126.Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, Zhang L, Bopp N, Schindewolf C, Vu M, Vanderheiden A, Winkler ES, Swetnam D, Plante JA, Aguilar P, Plante KS, Popov V, Lee B, Weaver SC, Suthar MS, Routh AL, Ren P, Ku Z, An Z, Debbink K, Diamond MS, Shi PY, Freiberg AN, Menachery VD. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature. 2021 Mar;591(7849):293–299. doi: 10.1038/s41586-021-03237-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-021-03237-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33494095&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 127.127.Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Apr;176:104742. doi: 10.1016/j.antiviral.2020.104742. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.antiviral.2020.104742&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32057769&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 128.128.Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020 Nov 13;370(6518):856–860. doi: 10.1126/science.abd2985. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzAvNjUxOC84NTYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOC8xMi8yMDIxLjA4LjExLjIxMjYxOTM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 129.129.Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, Greber UF, Horvath P, Sessions RB, Helenius A, Hiscox JA, Teesalu T, Matthews DA, Davidson AD, Collins BM, Cullen PJ, Yamauchi Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020 Nov 13;370(6518):861–865. doi: 10.1126/science.abd3072. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzAvNjUxOC84NjEiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOC8xMi8yMDIxLjA4LjExLjIxMjYxOTM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 130.130.Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, Southgate J, Johnson R, Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, da Silva Filipe A, Shepherd J, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I; COG-UK Consortium, Goodfellow I, Loman NJ, Pybus OG, Robertson DL, Thomson EC, Rambaut A, Connor TR. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell. 2021 Jan 7;184(1):64–75.e11. doi: 10.1016/j.cell.2020.11.020. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2020.11.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33275900&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 131.131.Dao TL, Hoang VT, Colson P, Lagier JC, Million M, Raoult D, Levasseur A, Gautret P. SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence. J Clin Med. 2021 Jun 15;10(12):2635. doi: 10.3390/jcm10122635. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm10122635&link_type=DOI) 132.132.Omotuyi IO, Nash O, Ajiboye OB, Iwegbulam CG, Oyinloye EB, Oyedeji OA, Kashim ZA, Okaiyeto K. Atomistic simulation reveals structural mechanisms underlying D614G spike glycoprotein-enhanced fitness in SARS-COV-2. J Comput Chem. 2020 Sep 15;41(24):2158–2161. doi: 10.1002/jcc.26383. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcc.26383&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32779780&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 133.133.Saha P, Majumder R, Chakraborty S, Kumar Srivastava A, Mandal M, Sarkar S. Mutations in Spike Protein of SARS-CoV-2 Modulate Receptor Binding, Membrane Fusion and Immunogenicity: An Insight into Viral Tropism and Pathogenesis of COVID-19. ChemRxiv. Preprint. 2020. doi: 10.26434/chemrxiv.12320567.v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.26434/chemrxiv.12320567.v1&link_type=DOI) 134.134.Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun. 2021 Jan 29;538:108–115. doi: 10.1016/j.bbrc.2020.11.026. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2020.11.026&link_type=DOI) 135.135.Hu J., He C.-L., Gao Q.-Z., Zhang G.-J., Cao X.-X., Long Q.-X., Deng H.-J., Huang L.-Y., Chen J., Wang K., Tang N., Huang A.-L. D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. bioRxiv. [Preprint] 2020:2020. doi: 10.1101/2020.06.20.161323. 2006.2020.161323. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNi4yMC4xNjEzMjN2MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 136.136.Tang, L., Schulkins, A., Chen, C-N., Deshayes, H., Kenney, JS. (2020) The SARS-CoV-2 Spike Protein D614G Mutation shows Increasing Dominance and May Confer a Structural Advantage to the Furin Cleavage Domain. Preprints, posted on May, 24, 2020, doi: 10.20944/preprints202005.0407.v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.20944/preprints202005.0407.v1&link_type=DOI) 137.137.Mansbach RA, Chakraborty S, Nguyen K, Montefiori DC, Korber B, Gnanakaran S. The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci Adv. 2021 Apr 16;7(16):eabf3671. doi: 10.1126/sciadv.abf3671. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo4OiJhZHZhbmNlcyI7czo1OiJyZXNpZCI7czoxMzoiNy8xNi9lYWJmMzY3MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 138.138.Fernandez A. Structural Impact of Mutation D614G in SARS-CoV-2 Spike Protein: Enhanced Infectivity and Therapeutic Opportunity. ACS Med. Chem. Lett. 2020; 11 (9), 1667–70. doi: 10.1021/acsmedchemlett.0c00410. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acsmedchemlett.0c00410&link_type=DOI) 139.139.Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M,Dinnon KH 3rd., Leist SR, Schäfer A, Nakajima N, Takahashi K, Lee RE, Mascenik TM, Graham R, Edwards CE, Tse LV, Okuda K, Markmann AJ, Bartelt L, de Silva A, Margolis DM, Boucher RC, Randell SH, Suzuki T, Gralinski LE, Kawaoka Y, Baric RS. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020 Dec 18;370(6523):1464–1468. doi: 10.1126/science.abe8499. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNzAvNjUyMy8xNDY0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 140.140.Ueha R, Kondo K, Kagoya R, Shichino S, Shichino S, Yamasoba T. ACE2, TMPRSS2, and Furin expression in the nose and olfactory bulb in mice and humans. Rhinology. 2021 Feb 1;59(1):105–109. doi: 10.4193/Rhin20.324. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4193/Rhin20.324&link_type=DOI) 141.141.Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727–11734. doi: 10.1073/pnas.2003138117. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE3LzIxLzExNzI3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 142.142.Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, LaBranche CC, Edwards RJ, Sutherland L, Santra S, Mansouri K, Gobeil S, McDanal C, Pardi N, Hengartner N, Lin PJC, Tam Y, Shaw PA, Lewis MG, Boesler C, Şahin U, Acharya P, Haynes BF, Korber B, Montefiori DC. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host Microbe. 2021 Jan 13;29(1):23–31.e4. doi: 10.1016/j.chom.2020.11.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.chom.2020.11.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33306985&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 143.143.Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, Peiris M, Poon LLM, Zhang W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020 Jun;20(6):656–657. doi: 10.1016/S1473-3099(20)30232-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(20)30232-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32199493&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 144.144.Hopkins C, Surda P, Whitehead E, Kumar BN. Early recovery following new onset anosmia during the COVID-19 pandemic - an observational cohort study. J Otolaryngol Head Neck Surg. 2020 May 4;49(1):26. doi: 10.1186/s40463-020-00423-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s40463-020-00423-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32366299&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 145.145.Talavera B, García-Azorín D, Martínez-Pías E, Trigo J, Hernández-Pérez I, Valle-Peñacoba G, Simón-Campo P, de Lera M, Chavarría-Miranda A, López-Sanz C, Gutiérrez-Sánchez M, Martínez-Velasco E, Pedraza M, Sierra Á, Gómez-Vicente B, Guerrero Á, Arenillas JF. Anosmia is associated with lower in-hospital mortality in COVID-19. J Neurol Sci. 2020 Dec 15;419:117163. doi: 10.1016/j.jns.2020.117163. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jns.2020.117163&link_type=DOI) 146.146.Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 Viral Variants-Tackling a Moving Target. JAMA. 2021 Apr 6;325(13):1261–1262. doi: 10.1001/jama.2021.2088. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2021.2088&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33571363&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 147.147.Hendy M, Kaufman S, Ponga M. Molecular strategies for antibody binding and escape of SARS-CoV-2 and its mutations. BioRxiv [Preprint] posted March 5, 2021. doi: 10.1101/2021.03.04.433970. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4wMy4wNC40MzM5NzB2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 148.148.Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Papa G, Lytras S, Collier DA, Mohamed A, Gallo G, Thakur N, The COVID-19 Genomics UK (COG-UK) Consortium, Carabelli AM, Kenyon JC, Lever AM, De Marco A, Saliba C, Culap K, Cameroni E, Piccoli L, Corti D, James LC, Bailey D, Robertson DL, Gupta RK. Recurrent emergence and transmission of a sars-cov-2 spike deletion h69/v70. bioRxiv [Preprint] March 8, 2021. doi: [https://doi.org/10.1101/2020.12.14.422555](https://doi.org/10.1101/2020.12.14.422555) 149.149.Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T, Kläser K, Canas LS, Molteni E, Modat M, Drew DA, Nguyen LH, Polidori L, Selvachandran S, Hu C, Capdevila J; COVID-19 Genomics UK (COG-UK) Consortium, Hammers A, Chan AT, Wolf J, Spector TD, Steves CJ, Ourselin S. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 2021 May;6(5):e335–e345. doi: 10.1016/S2468-2667(21)00055-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2468-2667(21)00055-4&link_type=DOI) 150.150.Mahase E. Covid-19: Sore throat, fatigue, and myalgia are more common with new UK variant. Brit Med J. 2021 Jan 29;372:n288. doi: 10.1136/bmj.n288. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNzIvamFuMjlfMTEvbjI4OCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA4LzEyLzIwMjEuMDguMTEuMjEyNjE5MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 151.151.Office for National Statistics. (Covid-19) infection survey: characteristics of people testing positive for covid-19 in England. 27 Jan 2021. [https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristicsofpeopletestingpositiveforcovid19inengland27january2021](https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristicsofpeopletestingpositiveforcovid19inengland27january2021) 152.152.Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell. 2020 Sep 3;182(5):1295–1310.e20. doi: 10.1016/j.cell.2020.08.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2020.08.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32841599&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) 153.153.Mak GCK, Lau AWL, Chan AMY, Lam ETK, Chan RCW, Tsang DNC. The surveillance of spike protein for patients with COVID-19 detected in Hong Kong in 2020. J Med Virol. 2021 Sep;93(9):5644–5647. doi: 10.1002/jmv.27063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.27063&link_type=DOI) 154.154.Bidkar V, Mishra M, Selvaraj K, Joshi P, H SB, Dabhekar S, Prathipati KK, Rathod BS, Shendre P, Gondode P. Testing Olfactory and Gustatory Dysfunctions among Quarantine COVID-19 Suspects. Indian J Otolaryngol Head Neck Surg. 2020 Oct 14:1–6. doi: 10.1007/s12070-020-02210-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-020-02210-3&link_type=DOI) 155.155.Dravid AN, Mane DN, Khan ZA. Neurological issues during severe COVID-19 in a tertiary level hospital in Western India. Neurosci Lett. 2021 Apr 1;749:135692. doi: 10.1016/j.neulet.2021.135692. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2021.135692&link_type=DOI) 156.156.Bhatta S, Sharma D, Sharma S, Maharjan L, Bhattachan S, Shah MK, Singhal A, Ghanpur AD, Ganesuni D, Saindani SJ. Smell and Taste Disturbance in COVID-19 Patients: A Prospective Multicenteric Review. Indian J Otolaryngol Head Neck Surg. 2021 May 28:1–7. doi: 10.1007/s12070-021-02664-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12070-021-02664-z&link_type=DOI) 157.157.Patil KI, Prabhu RM, Jose P, Chandrashekarappa H, Viswanatha B. Anosmia and ageusia in Covid-19 patients. Sch J Otolaryngol 2020;5 (3):485–489. doi: 10.32474/SJO.2020.05.000211. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.32474/SJO.2020.05.000211&link_type=DOI) 158.158.DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. doi: 10.1016/0197-2456(86)90046-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0197-2456(86)90046-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3802833&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1986F013900001&link_type=ISI) 159.159.Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi: 10.1002/sim.1186. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/sim.1186&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12111919&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F08%2F12%2F2021.08.11.21261934.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000176016900005&link_type=ISI) 160.160.Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. Brit Med J. 1997;315(7121):1533-7. doi: 10.1136/bmj.315.7121.1533. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEzOiIzMTUvNzEyMS8xNTMzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDgvMTIvMjAyMS4wOC4xMS4yMTI2MTkzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=)