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ABSTRACT:

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting one in 40 children

in the United States and is associated with impaired social interactions, restricted interests, and

repetitive behaviors. Previous studies have demonstrated the promise of applying mobile systems

with real-time emotion recognition to autism therapy, but existing platforms have shown limited

performance on videos of children with ASD. We propose the development of a new emotion

classifier designed specifically for pediatric populations, trained with images crowdsourced from

an educational mobile charades-style game: Guess What?. We crowdsourced the acquisition of

videos of children portraying emotions during remote game sessions of Guess What? that yielded

6,344 frames from fifteen subjects. Two raters manually labeled the frames with four of the

Ekman universal emotions (happy, scared, angry, sad), a “neutral” class, and “n/a” for frames

with an indeterminable label. The data were pre-processed, and a model was trained with a

transfer-learning and neural-architecture-search approach using the Google Cloud AutoML

Vision API. The resulting classifier was evaluated against existing approaches (Microsoft’s

Azure Face API and Amazon Web Service’s Rekognition) using the standard metrics of F1 score.

The resulting classifier demonstrated superior performance across all evaluated emotions,

supporting our hypothesis that a model trained with a pediatric dataset would outperform

existing emotion-recognition approaches for the population of interest. These results suggest a

new strategy to develop precision therapy for autism at home by integrating the model trained

with a personalized dataset to the mobile game.
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INTRODUCTION:

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting one in 40

children in the United States and is associated with impaired social interactions, restricted

interests, and repetitive behaviors [1-2]. While there is no cure, studies have shown the efficacy

of Applied Behavioral Analysis (ABA) therapy, if administered at a young age and customized

to address the child’s unique deficits [3-4]. However, caring for a child with ASD can generate a

financial burden on the family [5]. Additionally, the increasing prevalence of the condition is

resulting in a short supply of certified specialists, further hindering treatment options [6].

We developed Guess What? [7-9], a charades-style mobile game that delivers social

training to children with ASD at home, to mitigate the high costs and shortage of traditional

interventions. To play the game, the child interprets and acts out prompts that are displayed on

the screen while the caregiver is tasked with guessing the prompt. Multiple decks and prizes

tailor to the child’s preferences and help increase engagement.

Guess What? incorporates two teaching methods based on ABA principles: Discrete Trial

Training (DTT) and Pivotal Response Treatment (PRT). DTT breaks down the skill into discrete

trials that build up the skill step by step [10]. Each trial follows a specific set of steps consisting

of an antecedent, prompt, response, reinforcement, and brief pause [10]. PRT is less structured

and initiated by the child, emphasizing natural reinforcement and targeting pivotal areas of a

child’s development instead of specific behaviors [11]. Multiple studies suggest that DTT helps

improve emotion recognition and expression [10] and PRT enhances communication skills in

children with ASD [11].

Previous studies have demonstrated the promise of applying mobile systems with

real-time emotion recognition to ABA therapy [12-18]. Integrating an automatic emotion
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classifier into Guess What? will provide supplemental reinforcement to the caregiver and allow

for the development of additional features integral to ABA therapy: adapting prompts and

difficulty to target the child’s specific deficits and offering appropriate visual cues to assist the

child [3].

However, existing emotion recognition platforms are not optimized for research on

children [19-20] as a result of being trained on datasets in which pediatric populations are highly

underrepresented such as the CIFAR-100, ImageNet [21], Cohn-Kanade Database [22] and

Belfast-Induced Natural Emotion Databases [23]. Guess What? can serve as a data acquisition

tool and aggregate emotive videos for autism research that can be used to train a more effective

automatic emotion recognition platform. The use of data collected from mobile devices, such as

the built-in camera, allow for continuous phenotyping and repeat diagnoses in home settings

[24-39]. This motivates the development of a new emotion classifier designed specifically for

pediatric populations, trained with images crowdsourced from Guess What?.
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METHODS:

Figure 1. Crowdsourced videos taken during game sessions are stored in an Amazon S3 bucket

(with participant’s consent).

Game Design

Guess What? is available for both Android and iOS platforms [7-9]. The child begins by

selecting one of the following themed decks to play: animals, emoji, faces, gestures, jobs,

objects, sports, chores, and a special deck created for toddlers. The caregiver will hold the device

outwards with the screen facing the child. During the 90-second game session, the child acts out

the prompt displayed on the screen while the caregiver guesses. If the caregiver’s guess is

correct, the child prompts the caregiver, who tilts the phone. The game then rewards the child

with a point, resulting in another image appearing on the screen. This process repeats for a fixed

amount of time. The entire game session is recorded using the front-facing camera on the device,

focusing on the child’s actions. If the user grants permission to share this footage, the video is

uploaded to a secure and encrypted Amazon Web Services S3 bucket. This data upload and
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storage process is fully compliant with the Stanford University’s High-Risk Application security

standards. Additional metadata included with the video includes the prompts used in the session,

timing logs, and the number of points awarded.

Data Collection

Figure 1 illustrates the data aggregation process. The two decks that are the most closely

associated with emotion recognition and expression are the emoji and faces decks. These decks

contain emoticons (cartoon representations of facial emotions) and real images of children

expressing various emotions, respectively. Using crowdsourced videos from fifteen subjects

remotely playing these two decks subsampled at 5 frames per second (FPS), a dataset consisting

of 6,344 frames was built.

Data Processing

To establish ground truth, two raters manually labeled each of the 6,344 frames with

either one of four Ekman universal emotions (happy, sad, scared, angry) [40] or a neutral label.

In cases where there were no faces in the frame or the face was too blurry to discern, the raters

labeled the frame with “n/a.” To filter the data, all frames with rater disagreement or labeled as

“n/a” were discarded. Faces were then extracted from the remaining frames using the OpenCV

library [41], yielding 757 frames. Figure 2 is a confusion matrix illustrating the distribution of

the raters’ labels. The Cohen’s Kappa statistic for inter-rater reliability [42], a metric which

accounts for agreements due to chance, was 0.8, indicating a high level of reliability between the

two raters.
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Figure 2. Confusion matrix of the two raters’ emotion labels.

Classifier Training

The proposed emotion classifier was trained using Google Cloud’s AutoML pipeline,

which leverages Google’s transfer learning and neural architecture search technologies to

automate the determination of the strongest network architecture and optimal hyperparameter

configurations to minimize the loss functions [43-44]. Due to an uneven distribution of emotions,

data augmentation methods from the Imgaug library [45] were performed to increase the number

of viable frames to 989, with roughly 200 corresponding to each of the five emotions. The

specific methods performed included horizontally flipping the image, cropping the image,

blurring the image, improving or worsening contrast, adding Gaussian noise to the image,

brightening or darkening the image, and applying affine transformations to the image, all

performed in random order and of varied magnitudes [45]. 861 frames were used for training and
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validation, and the remaining 128 frames were used for testing. Figure 3 illustrates the data

processing and classifier training procedure.

Figure 3. The classifier’s training procedure.

Data Analysis

To evaluate the performance of the models, the F1 score was calculated as follows:

P stands for precision, R stands for recall, F1 stands for F1 score, tp stands for true positive, fp

stands for false positive, and fn stands for false negative.
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RESULTS AND DISCUSSION:

a. b.

c.

Figure 4. Confusion matrices of the proposed classifier, Azure, and Rekognition.

The proposed classifier was compared to two existing emotion recognition platforms:

Microsoft’s Azure Face API [46] and Amazon Web Services’ Rekognition [47]. The same 128

frames that were tested on the proposed classifier were tested on these two classifiers. Figure 4b

and 4c show that these classifiers can recognize happy and neutral but perform poorly on angry,
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sad, and scared classes. These results suggest the need for a new classifier that demonstrates

stronger performance across all emotions for pediatric populations.

The performance of the proposed classifier is illustrated in Figure 4a. Figure 4a shows

that the most discrepancies occurred between differentiating neutral from happy, which contrasts

with the performance of the other classifiers. However, this proposed classifier generally showed

a very strong performance for all five emotions, especially when compared to the other two

existing classifiers.

Figure 5. F1 score by emotion by classifier

Figure 5 shows the F1 scores [48] of each classifier separated by emotion. The proposed

classifier displayed the highest F1 scores across all but one emotion in comparison to the existing

commercial emotion recognition platforms. The one deviation occurred when the Azure

classifier had an F1 score of 0.82 for happy, while the proposed classifier had an F1 score of

0.81. However, the Azure classifier had the lowest F1 scores for all of the other classes.
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CONCLUSION AND FUTURE DIRECTIONS:

Both the Azure and Rekognition classifiers performed relatively well on happy and

neutral frames but failed with other emotions. In addition, the proposed classifier performed

better on scared, angry, and sad frames, while the two existing classifiers demonstrated stronger

performance on happy and neutral frames. Because heavy data augmentation procedures had to

be performed on the scared, angry, and sad classes to evenly distribute the training set, these

results suggest that overfitting may have occurred with the proposed classifier. Generating a

more diverse dataset of frames to begin with may alleviate this issue and will be addressed in

future work. However, due to the personalized nature of classifiers, perhaps the overfitting is

useful in this case. As a result of the limited training set and contrasting performance of the

classifiers, in future work, a transfer learning approach will be taken to improve the performance

of the proposed classifier across all emotions: the five emotions addressed in this study as well as

disgust and surprise which are two other Ekman emotions. Additionally, this emotion classifier

generalized to children with ASD will be integrated into Guess What? to provide supplemental

reinforcement and allow for the development of new features including adapting the game to

target specific deficits and providing appropriate guiding feedback.
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