
1 
 

Title Page 

 

Title: Development of a High-Performance Multiparametric MRI Oropharyngeal Primary Tumor 

Auto-Segmentation Deep Learning Model and Investigation of Input Channel Effects: Results 

from a Prospective Imaging Registry 

 

Author names and affiliations: Kareem A. Wahid1, Sara Ahmed1, Renjie He1, Lisanne V. van 

Dijk1, Jonas Teuwen2, Brigid A. McDonald1, Vivian Salama1, Abdallah S.R. Mohamed1, Travis 

Salzillo1, Cem Dede1, Nicolette Taku1, Stephen Y. Lai3, Clifton D. Fuller1*, Mohamed A. Naser1* 

1Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 
2Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands 
3Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 
* co-corresponding authors.  

 

Contact information: Kareem A. Wahid, kawahid@mdanderson.org.  

 

Present/permanent address: MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 

TX 77030. 

 

Funding Statement: This work was supported by the National Institutes of Health (NIH) 

through a Cancer Center Support Grant (P30-CA016672-44). K.A. Wahid and T. Salzillo are 

supported by training fellowships from The University of Texas Health Science Center at 

Houston Center for Clinical and Translational Sciences TL1 Program (TL1TR003169). S. 

Ahmed and M.A. Naser are supported by an NIH National Institute of Dental and Craniofacial 

Research (NIDCR) Award (R01 DE028290-01). R. He, A.S.R. Mohamed, and S.Y. Lai are 

supported by a NIH NIDCR Award (R01 DE025248). L.V. van Dijk receives funding and salary 

support from the Dutch organization NWO ZonMw during the period of study execution via the 

Rubicon Individual career development grant. B.A. McDonald receives research support from an 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.27.21261114doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.07.27.21261114
http://creativecommons.org/licenses/by/4.0/


2 
 

NIH NIDCR Award (F31DE029093) and the Dr. John J. Kopchick Fellowship through The 

University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences. C.D. 

Fuller received funding from an NIH NIDCR Award (1R01 DE025248-01/R56 DE025248) and 

Academic-Industrial Partnership Award (R01 DE028290); the National Science Foundation 

(NSF), Division of Mathematical Sciences, Joint NIH/NSF Initiative on Quantitative Approaches 

to Biomedical Big Data (QuBBD) Grant (NSF 1557679); the NIH Big Data to Knowledge (BD2K) 

Program of the National Cancer Institute (NCI) Early Stage Development of Technologies in 

Biomedical Computing, Informatics, and Big Data Science Award (1R01 CA214825); the NCI 

Early Phase Clinical Trials in Imaging and Image-Guided Interventions Program (1R01 

CA218148); the NIH/NCI Cancer Center Support Grant (CCSG) Pilot Research Program Award 

from the UT MD Anderson CCSG Radiation Oncology and Cancer Imaging Program (P30 

CA016672); the NIH/NCI Head and Neck Specialized Programs of Research Excellence 

(SPORE) Developmental Research Program Award (P50 CA097007); and the National Institute 

of Biomedical Imaging and Bioengineering (NIBIB) Research Education Program (R25 

EB025787). He has received direct industry grant support, speaking honoraria, and travel 

funding from Elekta AB.  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.27.21261114doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.27.21261114
http://creativecommons.org/licenses/by/4.0/


3 
 

Main Text 

 

Abstract 

 

Background and Purpose: Oropharyngeal cancer (OPC) primary gross tumor volume (GTVp) 

segmentation is crucial for radiotherapy. Multiparametric MRI (mpMRI) is increasingly used for 

OPC adaptive radiotherapy but relies on manual segmentation. Therefore, we constructed 

mpMRI deep learning (DL) OPC GTVp auto-segmentation models and determined the impact of 

input channels on segmentation performance.   

 

Materials and Methods: GTVp ground truth segmentations were manually generated for 30 OPC 

patients from a clinical trial. We evaluated five mpMRI input channels (T2, T1, ADC, Ktrans, Ve). 

3D Residual U-net models were developed and assessed using leave-one-out cross-validation. 

A baseline T2 model was compared to mpMRI models (T2+T1, T2+ADC, T2+Ktrans, T2+Ve, all 

5 channels [ALL]) primarily using the Dice similarity coefficient (DSC). Sensitivity, positive 

predictive value, Hausdorff distance (HD), false-negative DSC (FND), false-positive DSC, 

surface DSC, 95% HD, and mean surface distance were also assessed. For the best model, 

ground truth and DL-generated segmentations were compared through a Turing test using 

physician observers.  

 

Results: Models yielded mean DSCs from 0.71 (ALL) to 0.73 (T2+T1). Compared to the T2 

model, performance was significantly improved for HD, FND, sensitivity, surface DSC, and 95% 

HD for the T2+T1 model (p<0.05) and for FND for the T2+Ve and ALL models (p<0.05). There 

were no differences between ground truth and DL-generated segmentations for all observers 

(p>0.05).  
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Conclusion: DL using mpMRI provides high-quality segmentations of OPC GTVp. Incorporating 

additional mpMRI channels may increase the performance of certain evaluation metrics. This 

pilot study is a promising step towards fully automated MR-guided OPC radiotherapy.  
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1. Introduction  

 

Oropharyngeal cancer (OPC), a type of head and neck squamous cell carcinoma (HNSCC), is 

among the most common malignancies globally [1]. Treatment for OPC often includes 

radiotherapy because of its high cure rate [2]. Segmentation (also termed contouring) of the 

primary gross tumor volume (GTVp) on radiologic imaging is necessary for the OPC 

radiotherapy workflow. The GTVp, with a clinical and planning safety margin, acts as a target 

volume to deliver the radiotherapy dose. Therefore, inadequate GTVp definition may cause 

under-dosage of the tumor or over-dosage of surrounding normal tissues [3,4]. However, the 

current clinical standard is manual segmentation by physician experts, which is labor-intensive 

and subject to high inter-observer variation [5–7]. Therefore, an auto-segmentation tool would 

be a promising alternative to the current manual standard in OPC radiotherapy workflows. 

 

Deep learning (DL) has found wide success in auto-segmentation [8,9], with many HNSCC 

auto-segmentation studies applying DL to CT imaging [10–12]. Although CT is the most 

commonly used imaging modality in OPC radiotherapy planning, MRI has been increasingly 

recognized as essential for tumor segmentation because of its exceptional soft-tissue contrast 

[13,14]. Additionally, the emergence of MR-Linac technology, an image-guided adaptive 

radiotherapy approach, has further incentivized the incorporation of MRI in OPC radiotherapy 

planning. Importantly, we recently demonstrated the utility of DL for HNSCC organ-at-risk auto-

segmentation using MRI, with improvements in performance, execution time, and dosimetric 

differences compared to other auto-segmentation methods [15]. While several DL tumor auto-

segmentation studies for nasopharyngeal cancer using MRI have been published [16–25], to 

our knowledge, only one study has been published for OPC [26]. Since HNSCC tumors at 

different anatomical sites have distinct anatomic boundaries and characteristics [27,28], it is 
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crucial that tumor segmentation models are developed for each site accordingly. Consequently, 

there exists an unmet need for OPC DL tumor segmentation tools using MRI. 

 

Multiparametric MRI (mpMRI) incorporates multiple sequence acquisitions that highlight 

anatomical and functional information in tumors. For example, dynamic contrast-enhanced 

(DCE) MRI and diffusion-weighted imaging (DWI) can quantify tumor perfusion and diffusion 

patterns, respectively, and may affect OPC treatment guidance [29,30]. Recent studies of 

PET/CT OPC DL auto-segmentation [11,20,31–35] have demonstrated increased segmentation 

performance when combining functional and anatomical modalities. However, investigations 

that combine anatomical with functional MRI in HNSCC to achieve acceptable DL auto-

segmentation performance are lacking [36,37].  

 

In this pilot study, we evaluated the effects of anatomical and functional mpMRI inputs on OPC 

GTVp segmentation performance. Using open-source DL frameworks with standardized clinical 

trial data, we trained and evaluated DL models based on variable mpMRI input channels. We 

then compared the models qualitatively and quantitatively to determine which channel 

combinations led to the best segmentation results. Finally, we characterized the clinical 

acceptability of the best-performing model using physician experts. 

 

2. Methods 

 

2.1. Imaging Data: We acquired pre-radiotherapy T2-weighted (T2), contrast-enhanced T1-

weighted Dixon fat-suppressed (T1), DCE, and DWI MRI sequences in Digital Imaging and 

Communications in Medicine (DICOM) format for 124 HNSCC patients from a prospective 

clinical trial investigating longitudinal mpMRI (NCT03145077). Images were collected from 

August 2018-August 2019 under a HIPAA-compliant protocol approved by The University of 
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Texas MD Anderson Cancer Center’s IRB (RCR03-0800). The protocol included a waiver of 

informed consent. We curated 30 OPC patients with a visible GTVp based on the complete 

availability of T2, T1, DCE, and DWI image sets (Fig. S1). Demographic characteristics of the 

patients are shown in Table S1. Imaging was performed on a Siemens Aera scanner with a 

magnetic field strength of 1.5 T and standardized acquisition parameters (Table S2). All patients 

were immobilized with a thermoplastic mask. Apparent diffusion coefficient (ADC) parametric 

maps were derived from DWI sequences through a proprietary Siemens algorithm (Munich, 

Germany) using a monoexponential model. The Tofts model was used to generate parametric 

maps from DCE sequences for the volume transfer constant (Ktrans) and the extravascular 

extracellular volume fraction (Ve) [38]. Additional details regarding DCE parametric map 

generation can be found in our previous publication [39]. GTVp structures were manually 

segmented in the DICOM-RT Structure format by a physician (radiologist with >5 years of 

expertise in HNSCC) in Velocity AI v.3.0.1 (Atlanta, GA, USA). GTVp structures were 

segmented on the T2 MRI, but the physician could consult the other images. An example of the 

mpMRI images used in this study and overlying GTVp segmentation for one patient is shown in 

Figure 1A.  

 

2.2. Image Processing: To ensure adequate MRI comparability between patients [40], we 

performed intensity standardization for all images. Anatomical sequences (T2, T1) were 

standardized using a Z-score (mean=0, standard deviation=1), while functional parametric maps 

(ADC, Ktrans, Ve) were truncated to the 10th and 90th percentile for all patients and rescaled to 

[-1, 1] as per a previous study [36]. All images were cropped to the smallest field of view 

(Ktrans, Ve) and resampled to the T2 resolution. An example of the image processing workflow 

is shown in Figure 1B.  
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2.3. Segmentation Model Architecture and Implementation: A DL convolutional neural network 

based on the 3D Residual U-net architecture [41,42] was implemented in the Medical Open 

Network for Artificial Intelligence (MONAI) software package [43] (Fig. 1C). The GTVp mask 

was used as the ground truth target to train the segmentation model. The MRI images acted as 

variable-channel inputs to the models. We investigated the following channel combinations as 

separate models: T2, T2+T1, T2+ADC, T2+Ktrans, T2+Ve, and all five input channels (ALL). 

The T2 model acted as a baseline of comparison for all other models. We implemented an 

Adam optimizer with a Sørensen-Dice similarity coefficient (DSC) loss function. The models 

were trained for 700 iterations with a learning rate of 2 x 10-4 for the first 550 iterations and 1 x 

10-4 for the remaining 150 iterations. Data augmentation was used to mitigate overfitting. 

Additional details on the DL architecture and implementation are found in Supplementary 

Methods.  

 

2.4. Model Evaluation: Model performance was primarily assessed using DSC. We also 

implemented additional spatial similarity metrics, including Hausdorff distance (HD), false-

negative DSC (FND), false-positive DSC (FPD), sensitivity, positive predictive value (PPV), 

surface DSC, 95% HD, and mean surface distance (MSD). For surface DSC, a tolerance of 3.0 

mm was selected as suitable from previous inter-observer variability studies on T2 MRI of OPC 

GTVp [44]. Surface distance metrics were calculated using the surface-distance Python 

package [45], while all other metrics were calculated in Elekta ADMIRE v.2.9 (Stockholm, 

Sweden). Each model was trained and evaluated using leave-one-out cross-validation (LOOCV) 

(Fig. 1D).  

 

2.5. Clinical Evaluation: For our best-performing model, we assigned three physician expert 

observers (radiologist from 2.1 >1-year post-segmenting, two radiation oncologists) to evaluate 

the ground truth and corresponding DL-generated segmentations using subjective scoring 
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criteria based on a 4-point Likert scale. The score categories were: 1 = requires corrections, 

large errors; 2 = requires corrections, minor errors; 3 = clinically acceptable, errors not clinically 

significant; 4 = clinically acceptable, highly accurate. Additionally, we asked observers to predict 

the source of the segmentations as either human (ground truth) or DL-generated through a 

modified Turing test [46]. Ground truth and DL-generated segmentations for all 30 patients were 

anonymized and randomly presented to experts for clinical evaluation. Experts were blinded to 

the segmentation source.  

 

2.6. Statistical Analysis: After performing a Shapiro-Wilk test, we found that our data were not 

normally distributed (p<0.05); therefore, we utilized nonparametric statistical tests. We used 

one-sided Wilcoxon signed-rank tests (alternative hypothesis of greater than for DSC, 

sensitivity, surface DSC, and PPV; alternative hypothesis of less than for HD, FND, FPD, 95% 

HD, and MSD) to evaluate differences between our baseline T2 model and models with 

additional channels. We used Mann-Whitney U tests to detect differences in model performance 

based on tumor subsite (base of tongue vs. tonsil). Additionally, to assess correlations of tumor 

size with model performance, we calculated Pearson correlation coefficients with corresponding 

p-values of ground truth volume against DSC, HD, and surface DSC for every model. Finally, to 

assess the clinical evaluation of ground truth against DL-generated segmentations, for each 

observer we implemented a two-sided Wilcoxon signed-rank test for scores and a McNemar test 

for source predictions. For all statistical analyses, p-values less than 0.05 were considered 

significant. Analyses were performed in Python v.3.7.9. Code notebooks can be found at GitHub 

(https://github.com/kwahid/mpMRI_OPC_GTVp_segmentation).  

 

3. Results 
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3.1. Model Performance: Figure 2 shows boxplots of model performance for all tested input 

channel combinations with respect to different evaluation metrics. T2+T1 was the best 

performing model overall with the best mean scores in DSC, HD, sensitivity, surface DSC, and 

95% HD. ALL was the worst performing model overall with the worst mean scores in in DSC, 

FPD, and PPV. T2 performed best in FPD and PPV, but worst in sensitivity and 95% HD. 

T2+Ve performed best in FND and MSD but worst in HD. T2+Ktrans performed worst in MSD. 

T2+T1 had significantly better performance (p<0.05) than the baseline T2 model for HD, FND, 

sensitivity, surface DSC, and 95% HD. T2+Ve and ALL had significantly better performance 

(p<0.05) than the baseline T2 model for FND. Figure S2 shows a heatmap of p-values 

comparing channel combinations to the baseline T2 model. A subgroup analysis revealed no 

significant differences in model performance for any combination of models and metrics based 

on OPC subsite, as all p-values were > 0.05 (Table S3).  

 

Figure 3 shows examples of model segmentations compared to ground truth segmentations for 

high-, medium-, and low-performance cases, based on DSC scores across all models. For the 

high-performance case, the T2 model demonstrates a DSC of 0.88, with the incorporation of 

additional channels leading to DSC scores of 0.87-0.90. For the medium-performance case, the 

T2 model demonstrates a DSC of 0.71, with the incorporation of additional channels leading to 

DSC scores of 0.72-0.78. For the low-performance case, the T2 model demonstrated a DSC of 

0.37 and many spuriously predicted voxels in the posterior region of the head, with the 

incorporation of additional channels reducing the number of spurious voxels and leading to DSC 

scores of 0.52-0.61. 

 

3.2. Size Dependence of Models: Figure 4 shows correlation graphs of the various models 

comparing tumor size to DSC, HD, and surface DSC. The range of values for tumor size were 

1.74-45.19cc. Every model showed non-significant positive correlations for DSC (p>0.05) and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.27.21261114doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.27.21261114
http://creativecommons.org/licenses/by/4.0/


11 
 

significant positive correlations for HD (p<0.005), except for T2+Ve (r=0.33, p=0.079) and ALL 

(r=0.06, p=0.76). Every model also showed significant negative correlations for surface DSC 

(p<0.05), except for T2+ADC (r=-0.34, p=0.07), T2+Ve (r=-0.30, p=0.11), and ALL (r=-0.30, 

p=0.1).  

 

3.3. Clinical Evaluation: Table 1 shows the categorical scores and predicted sources for ground 

truth and DL-generated (T2+T1 model) segmentations for each observer. The mean scores for 

ground truth vs. DL-generated segmentations were 3.0 vs. 2.5, 2.5 vs. 2.7, and 3.0 vs. 3.0 for 

observers 1, 2, and 3, respectively. Significance testing revealed no observer could differentiate 

between the scores (p>0.05) or source (p>0.05) of the ground truth segmentations compared to 

the DL-generated segmentations.  

 

4. Discussion 

 

In this pilot study, we determined the impact of mpMRI input channel combinations (T2, T2+T1, 

T2+ADC, T2+Ktrans, T2+Ve, ALL) on DL model segmentation performance. Recent work has 

suggested that the average agreement between physicians measured in DSC for OPC tumor 

segmentation is exceptionally low [44]. Notably, compared to previous fully-automated primary 

tumor segmentation studies of HNSCC patients, we achieved promising average DSC 

performance (Table 2). While it is difficult to directly compare DSCs between studies due to 

different datasets and model training, our models seemingly improve upon the only other fully-

automated OPC tumor segmentation study to our knowledge (DSC=0.55), which exclusively 

investigated anatomical MRI [26].  

 

The best average DSC performance was achieved by the T2+T1 model (DSC=0.73), which was 

higher than the baseline T2 model (DSC=0.72) but not statistically significant. Moreover, 
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average DSC decreased when combining all input channels (DSC=0.71), though non-

significantly. However, a previous similar study by Bielak et al. investigating HNSCC tumors with 

segmentations derived from T2 MRI demonstrated an increased DSC after the inclusion of all 

available mpMRI channels [36], which is in direct opposition to our results. Importantly, the 

authors used a smaller number of patients (n=18) than our study and implemented repeat 

imaging at different time-points, which could confound their results. Additionally, their results 

may be more relevant for a specific HNSCC tumor site, but no analysis was performed to verify 

this. Furthermore, it should be noted that the average DSC for their best model was ~0.30, 

which was substantially lower than all our models. Notably, auto-segmentation studies in 

prostate cancer have also reported conflicting results on the additive effects of additional 

mpMRI input channels for DSC when using ground truth annotations derived from T2 MRI [47–

49]. Therefore, further investigations are likely needed to verify if a significant positive DSC 

effect exists for mpMRI input channel combinations in OPC tumor auto-segmentation.  

 

While most auto-segmentation studies have focused on DSC as an evaluation metric, it has 

been argued that other metrics should also be taken into consideration, depending on the use-

case of the auto-segmentation tool [50,51]. Therefore, to increase the robustness of our 

analysis, we have included complimentary metrics (HD, FND, FPD, sensitivity, PPV, surface 

DSC, 95% HD, and MSD) to evaluate our models. Like DSC, most metrics show high 

performance across various models, with some models demonstrating significantly better values 

than the baseline T2 model. Interestingly, we demonstrated that in certain edge cases (low-

performance example), the inclusion of additional channels could circumvent spurious voxel 

predictions derived from the baseline T2 model (a possible byproduct of model overfitting), 

which may increase model robustness. These results indicate that the additional channels may 

contain underlying additive information to improve performance for aspects other than traditional 

DSC-based evaluation. Notably, the specific anatomic subsite of the tumor (base of tongue or 
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tonsil) had no significant effect on performance for any models for any evaluation metric, 

indicating that the models were robust to the spatial location of the OPC.  

 

Previous studies [16,36] have suggested small tumors may be more difficult for DL models to 

segment, which would hinder the incorporation of models into radiotherapy workflows. 

Importantly, there were no significant correlations between tumor size and DSC for any of our 

models. However, it should be noted that surface distance metrics, such as the HD and surface 

DSC, demonstrate some size dependence, with larger and smaller tumors being easier for our 

models to segment, respectively. Interestingly, the surface distance metrics do not demonstrate 

a significant size dependence for some models that utilize additional channels, particularly those 

that correspond to functional parametric maps. Therefore, the inclusion of additional channels 

may strengthen the robustness of models to tumor size for surface distance metric performance, 

but further confirmatory work is needed.  

 

The acceptability of segmentations used in a radiotherapy workflow is ultimately determined by 

physician judgment, with physician rating scales considered the gold standard for clinically 

relevant segmentation quality [51]. While subjective evaluation through rating scales is common 

in auto-segmentation studies, the established variability of OPC tumor segmentation between 

observers [44] highlights the difficulty in the interpretation of multi-observer segmentation quality 

analysis. Therefore, we implemented a comparative approach for each observer to determine if 

significant clinical differences were present between the ground truth segmentations and the 

corresponding segmentations of the best DL model (T2+T1). We demonstrated that experts 

were unable to determine differences between the ground truth and the DL-generated 

segmentations or identify the source of the segmentations. Therefore, our model “passed” the 

Turing test, which highlights its potential clinical utility. Of note, the radiologist who provided the 

original ground truth segmentations was the closest among the observers to correctly 
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discriminating the segmentation sources but was still unable to achieve statistical significance. 

Moreover, for the radiation oncologist observers the mean clinical acceptability score of the DL-

generated segmentations was equal to or higher than the ground truth segmentations, which 

may indicate a slight preference towards DL-generated OPC tumor segmentations for 

radiotherapy end users.  

 

One limitation of our study is the use of a small cohort with standardized acquisition parameters. 

However, we have taken steps to optimally utilize our data by implementing a LOOCV approach 

and investigating various evaluation metrics. Moreover, we plan to include additional 

prospectively acquired data for model training and use external heterogenous validation sets in 

future studies to increase model generalizability. Another limitation of our study is that we have 

constrained our analysis of input image channels based on those that were investigated in 

previous literature [36]. However, mpMRI input channels can be further investigated through 

additional quantitative parametric maps (e.g., extended Tofts model [52], advanced DWI fitting 

models [53], etc.). Therefore, we plan to include additional input channels in future analyses. A 

final limitation of our study is the lack of overt image registration. Our images were acquired 

from a standardized clinical trial with patient immobilization; therefore, implicit co-registration 

was deemed adequate for tumor overlap. However, small amounts of motion artifacts may 

cause the segmentation mask to overlap improperly on mpMRI image channels, impacting auto-

segmentation quality. Furthermore, though no geometric distortion was observed on any 

parametric maps, distortions were not explicitly quantified. Future studies should investigate the 

role of additional OPC-specific registration algorithms and geometric distortion correction in 

combination with mpMRI DL auto-segmentation algorithms. 

 

5. Conclusions 
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In summary, using mpMRI inputs, we built OPC primary tumor DL auto-segmentation models 

that demonstrated excellent performance across multiple evaluation metrics, with average DSC 

scores as high as 0.73. Compared to our baseline model trained on T2 MRI only, we find that 

adding T1 MRI significantly improved HD, FND, sensitivity, surface DSC, and 95% HD. 

Moreover, adding Ve or using all input channels simultaneously significantly improved FND. 

Additionally, certain favorable aspects of model construction, including decreased spurious 

voxel predictions and robustness to tumor size when considering surface distance metric 

performance, are apparent for models that leverage additional input channels. Finally, physician 

experts could not differentiate ground truth from DL-generated segmentations, demonstrating 

our model “passed” the Turing test. These promising results should be further verified in large 

independent datasets. Overall, our pilot study is an important step towards fully automated MR-

guided OPC radiotherapy workflows.  
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Figure Captions 

 

Figure 1. Annotation, processing, and analysis of data used in this study. (A) Multiparametric 

MRI input channels for oropharyngeal tumor segmentation. The white dotted line depicts the 

primary gross tumor volume segmentation. Anatomical sequence images are outlined in grey 

boxes, while functional sequence parametric map images are outlined in red boxes. (B) Image 

processing steps which included image cropping, resampling, and rescaling. (C) An illustration 

of the 3D Residual U-net model architecture. For illustrative purposes, only one input channel 

(T2-weighted image) is shown, but multiple input channel combinations were used throughout 

the analysis as separate models. (D) Overall study design which incorporated multi-channel 

input combinations coupled to a leave-one-out cross-validation (LOOCV) evaluation approach. 

T2=T2-weighted MRI, T1=T1-weighted MRI, ADC=apparent diffusion coefficient, Ktrans=volume 

transfer constant, Ve=extravascular extracellular volume fraction, ALL=all 5 input channels. 

BN=Batch normalization, PReLU=parametric rectified linear unit activation function. 

Figure 2. Boxplots comparing evaluation metrics of models built with different input channels. 

Evaluation metrics correspond to Dice similarity coefficient (DSC) (A), Hausdorff distance (HD) 

(B), false-negative DSC (FND) (C), false-positive DSC (FPD) (D), sensitivity (E), positive 

predictive value (PPV) (F), surface DSC (G), 95% HD (H), and mean surface distance (MSD) 

(I). Boxes show quartiles and median lines, while whiskers extend to the remaining distribution. 

Mean ± standard deviation is shown inside or adjacent to the corresponding box. The single and 

double stars above the boxplots correspond to significantly lower or higher values, respectively, 

compared to the baseline model for that metric. T2=T2-weighted MRI, T1=T1-weighted MRI, 

ADC=apparent diffusion coefficient, Ktrans=volume transfer constant, Ve= extravascular 

extracellular volume fraction, ALL=all 5 input channels. 

Figure 3. 2D axial slice representations of ground truth segmentations (red dotted outline) and 

predicted segmentations (yellow dotted outline) for high- (green), medium- (blue), and low- 
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(orange) performance cases. Slices for each case are shown in rows superiorly to inferiorly (top, 

middle, and bottom). Models are shown in columns. The DSC scores for corresponding models 

are shown in the top left corners. The high-performance case corresponds to a left tonsillar T4 

tumor. The medium-performance case corresponds to a left base of tongue T4 tumor. The low-

performance case corresponds to a right base of tongue T4 tumor. T2=T2-weighted MRI, 

T1=T1-weighted MRI, ADC=apparent diffusion coefficient, Ktrans=volume transfer constant, 

Ve=extravascular extracellular volume fraction, ALL=all 5 input channels. 

Figure 4. Dependence of tumor size on the Dice Similarity Coefficient (DSC) (A), Hausdorff 

Distance (HD) (B), and surface DSC (C), for various input channel models. T2=T2-weighted 

MRI, T1=T1-weighted MRI, ADC=apparent diffusion coefficient, Ktrans=volume transfer 

constant, Ve=extravascular extracellular volume fraction, ALL=all 5 input channels. 
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Table 1. Clinical evaluation and Turing test results for three physician expert observers. Each 
observer was asked to score blinded ground truth (GT) or deep learning (DL)-generated 
segmentations on a 4-point Likert scale (1 = requires corrections, large errors; 2 = requires 
corrections, minor errors; 3 = clinically acceptable, errors not clinically significant; 4 = clinically 
acceptable, highly accurate) and asked to identify the source of the segmentation (GT or DL). 
DL-generated segmentations corresponded to the best DL model tested (T2-weighted + T1-
weighted).  
 

Observer Score GT (#) DL (#) p-value1 Source GT (#) DL (#) p-value2 

Observer 1 
(Radiologist)  

1 3 6 

0.13 

GT 16 10 
0.18 

2 7 11 DL 14 20 

3 7 4     
4 13 9     

Observer 2 
(Radiation- 
Oncologist) 

1 3 6 

0.44 

GT 14 14 
1.00 

2 10 4 DL 16 16 

3 16 13     
4 1 7     

Observer 3 
(Radiation- 
Oncologist) 

1 1 3 

0.98 

GT 9 12 
0.61 

2 8 6 DL 21 18 

3 11 10     
4 10 11      

1 Two-sided Wilcoxon signed rank tests were used for score comparisons. 2 McNemar tests 
were used for source prediction comparisons. 
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Table 2. Survey of relevant DL auto-segmentation literature for comparison with our study. Only studies ≤3 years old and with 
sample sizes ≥30 were selected for comparison. DL=deep learning, N=number of images sets used in study, GTVp=primary gross 
tumor volume, DSC=Dice similarity coefficient, OPC=oropharyngeal cancer, NPC=nasopharyngeal cancer, HNSCC=head and neck 
squamous cell carcinoma, T2=T2-weighted MRI, T1=T1-weighted MRI, DCE=dynamic contrast enhanced MRI, DWI=diffusion 
weighted imaging MRI, LOOCV=leave-one-out cross-validation, CV=cross-validation, CNN=convolutional neural network. 
 

Author, Year Site Modality DL Architecture N (Train, Test) GTVp DSC (average) 
This study, 2021 OPC MRI (T1, T2, DCE, DWI) 3D Residual Unet 30 (LOOCV) 0.73 (best model, T2+T1) 
Outeiral et al., 2021 [26] OPC MRI (T1, T2) 3D Unet 171 (151, 20) 0.55 
Andrearczyk et al., 2020 [31] OPC CT, PET 2D Unet 202 (LOOCV) 0.48 (CT), 0.58 (PET), 0.6 (PET/CT) 
Moe et al., 2019 [32] OPC CT, PET 2D Unet 197 (157, 40) 0.65 (CT), 0.71 (PET), 0.75 (PET/CT) 
Naser et al., 2020 [34] OPC CT, PET 3D Unet 201 (5-fold CV) 0.69 
Iantsen et al., 2020 [35] OPC CT, PET 3D Unet  201 (4-fold CV) 0.745 
Ma et al., 2018 [18] NPC MRI (T1) 3D CNN + graph-cut 30 (LOOCV) 0.85 
Ye et al., 2020 [17] NPC MRI (T1, T2) 3D Unet  44 (10-fold CV) 0.62 (T1), 0.64 (T2), 0.72 (T1+T2) 
Chen et al., 2020 [20] NPC MRI (T1, T2) 3D Encoder-decoder network  149 (5-fold CV) 0.72 
Huang et al., 2019 [25] NPC MRI (T1, T2) 2D CNN + recurrent attention  596 (430, 166) 0.78 
Lin et al., 2019 [16] NPC MRI (T1, T2) 3D CNN 1021 (818, 203) 0.79 
Ke et al., 2020 [22] NPC MRI (T1, T2) 3D DenseNet + multi-task learning 3142 (2792, 350) 0.77 
Li et al., 2018 [19] NPC MRI (T1) 2D CNN 87 (LOOCV) 0.89 
Ma et al., 2019 [24] NPC CT, MRI (T1) 2D CNN 90 (5-fold CV) 0.752 
Bielak et al., 2020 [36] HNSCC MRI (T1, T2, DCE, DWI) 3D CNN (DeepMedic) 36 (LOOCV) ~0.30* 

 
* Average DSC interpreted from manuscript figure. 
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