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Abstract. Broadly neutralizing antibodies are promising agents to prevent HIV infection and achieve HIV 16 
remission without antiretroviral therapy (ART). As learned from effective ART, HIV viral diversity 17 
necessitates combination antibody cocktails. Here, we demonstrate how to optimally choose the ratio 18 
within combinations based on the constraint of a total dose size. Optimization in terms of prevention 19 
efficacy outcome requires a model that synthesizes 1) antibody pharmacokinetics (PK), 2) a mapping 20 
between concentration and neutralization against a genetically diverse pathogen (e.g., distributions of 21 
viral IC50 or IC80), 3) a protection correlate to translate in vitro potency to clinical protection, and 4) an 22 
in vivo interaction model for how drugs work together. We find that there is not a general solution, and 23 
the optimal dose ratio likely will be different if antibodies cooperate versus if both products must be 24 
simultaneously present. Optimization requires trade-offs between potency and longevity; using an in silico 25 
case-study, we show a cocktail can outperform a bi-specific antibody (a single drug with 2 merged 26 
antibodies) with superior potency but worse longevity. In another practical case study, we perform a triple 27 
antibody optimization of VRC07, 3BNC117, and 10-1074 bNAb variants using empirical PK and a pre-28 
clinical correlate of protection derived from animal challenge studies. Here, a 2:1:1 dose emphasizing 29 
VRC07 would optimally balance protection while achieving practical dosing and given conservative 30 
judgements about prior data. Our approach can be immediately applied to optimize the next generation 31 
of combination antibody prevention and cure studies. 32 

Introduction 33 
 34 
Broadly neutralizing antibodies (bNAbs) are powerful agents that may become crucial for next generation 35 
HIV prevention1. Their utility is strengthened by their generally long half-lives compared to small molecule 36 
drugs, as well as the eventual promise of inducing bNAb production by vaccination2,3.  37 
The recent antibody mediated prevention (AMP) studies directly tested the hypothesis that the VRC01 38 
bNAb could prevent HIV acquisition4,5. While the study found no significant overall prevention efficacy, 39 
once HIV-1 Envelope pseudoviruses were made based on viral sequences from trial participants who 40 
acquired HIV-1 infection, it emerged that viruses acquired by placebo recipients were more sensitive to 41 
neutralization by VRC01 than viruses acquired by VRC01 recipients. The prevention efficacy against 42 
sensitive viruses (sensitive was defined as IC80 < 1 µg/ml) was estimated at 75.4% (95% confidence 43 
interval 45.5 to 88.9%). Less sensitive variants comparatively infected placebo and control recipients5. 44 
Indeed, the diversity of globally circulating strains6 remains beyond the breadth of any current bNAb. As 45 
with antiretroviral treatment (ART) and pre-exposure prophylaxis (PreP), combinations of products are 46 
likely needed7–9.  47 
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In vitro combination bNAb potency has been studied and modeled previously10,11. Here, we extend these 48 
pharmacodynamic (PD) models to incorporate in vivo concentrations over time (pharmacokinetics, PK) 49 
with multiple bNAb administrations to establish a PKPD framework for clinical design focusing on how to 50 
ration the dose of each bNAb.  A particularly important component of our modeling is that we allow bNAb 51 
concentrations to vary and distinguish in vitro and in vivo potency12. As neutralization markers that best 52 
predict prevention efficacy (PE) are still under investigation, we consider flexible choices of the PKPD 53 
outcomes to be optimized, and also show that many outcomes are co-optimized. We apply our framework 54 
to 2 realistic in silico case studies. The first is a comparison of two antibodies against a bi-specific 55 
antibody13,14, a synthesized combination of the two “parental” antibodies. We assume the bi-specific gains 56 
potency through the combination, but loses longevity, clearing with the faster of the two parental 57 
antibody half-lives. The second study models a three-drug combination of clinical candidate bNAbs 58 
(VRC07-523-LS15, 10-1074 & 3BNC11716) and applies a protection correlate—protection predicted by 59 
neutralization titer—derived from non-human primate challenge studies17.  60 
Our framework is designed to answer a crucial design consideration for these future studies: what is the 61 
optimal ratio of multiple antibodies to deliver in a single dose of a fixed size? We show the optimal ratio 62 
can depend on any and all inputs and assumptions -- precluding a one-size-fits-all solution. Instead, we 63 
provide a framework and a publicly available tool to determine the best dose plan given the specific 64 
antibodies, existing information about their interaction in vivo, and the PKPD outcome marker of interest 65 
for a proposed study. As more is known about each of these components, the model framework will rely 66 
on less uncertainty and become more predictive. 67 

Results 68 

 69 
Fig 1. PKPD model schematic for optimizing combination treatment against a genetically diverse 70 
pathogen. The model incorporates: pharmacokinetics (PK), pharmacodynamics (PD), and interactions 71 
between antibodies. The PK describes antibody concentrations over time after administration. The PD 72 
model describes the distribution of neutralization potencies for each antibody against a variety of viral 73 
strains (quantified here by IC50ij, the level of the i-th drug needed to achieve 50% neutralization of the j-th 74 
viral strain). We also allow some fraction 𝜔 of strains to be completely resistant. Then, from titer, or the 75 
ratio of concentration to IC50 of each antibody against a certain strain, we define neutralization using a 76 
logistic function, which defines the proportion (0-1 scale) of viruses that are neutralized. There are four 77 
functional PD interaction scenarios. The first two are heuristic taking either the worst (minimum) the best 78 
(maximum) titer or neutralization between two products. The other two are mechanistic combinations 79 
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described by independently combining titers (additivity) or neutralization (Bliss Hill). Then, depending on 80 
the PKPD outcome measure of interest (for example titer, neutralization, coverage defined below) and 81 
when that measure should be evaluated (throughout the study = AUC, at the low point = trough), we 82 
identify the optimal ratio of the antibodies to be included in the initial dose. 83 

We previously integrated pharmacokinetic (PK) and multi-strain pharmacodynamic (PD) models to 84 
determine longitudinally varying potency of VRC01, a broadly neutralizing antibody (bNAb), to simulate  85 
prevention trials and predict strain coverage18,19. Because of HIV genetic diversity, it is essential to 86 
consider the distribution of potencies against the diverse population of viral strains. We now extend this 87 
framework to model multiple bNAbs, where integrating the combination PD models with PK adds several 88 
layers of complexity (Fig 1). 89 
 90 
Pharmacokinetics (PK) for bNAb levels. The first component of the PKPD framework is the PK, describing 91 
concentrations of each antibody 𝑖 over time, t: 𝐶!(𝛉! , 𝑡, 𝑑!)	where 𝛉!  are the bNAb specific PK parameters 92 
and 𝑑!  is the initial dose (PK model in Fig 1). Individual initial dosing for each bNAb is then constrained by 93 
a total dose (𝐷 = ∑ 𝑑!! ). For simplicity, we assume a population-level fixed total dose and independent 94 
models of PK for multiple bNAbs (denoted 𝐶!(𝑡) from here on). The model could be extended to 95 
implement individual-specific total dosing (e.g., bodyweight-adjusted) and joint, dependent models. 96 
 97 
Pharmacodynamics (PD) for bNAb potency. Two pharmacodynamic (PD) quantities are often used to 98 
discuss neutralization given concentration: 50% inhibitory dose or dilution neutralization titer (ID50 Titer) 99 
and percent neutralization. Both quantities incorporate concentration and 50% inhibitory concentration 100 
(IC50) measurements across a panel of viruses (PD model in Fig 1).  101 
 Experimental neutralization titer (ID50), 𝜏!"(𝑡), is a common measurement arising from titrated 102 
neutralization experiments. In practice, experimental ID50 represents a dilution factor applied to sera 103 
containing antibodies that reduces in vitro neutralization to 50%. Titer, and the similarly derived ID80, are 104 
important immunological endpoints that are proven correlates of protection4,17. Experimental titer can be 105 
theoretically predicted from the ratio of 𝑖-th drug concentration to 𝑗-th virus IC50 as 106 
 107 
 𝜏!"(𝑡) =

#!(%)
'()*!"

,           Eq 1 108 
 109 
a relationship that has been empirically confirmed for single bNAbs19,20. As a potency measure, titer 110 
expresses the fold-relationship between concentration and viral IC50 as a measure of ‘protection’ against 111 
that virus.  112 
 Experimental in vitro neutralization for a single bNAb against a virus is also theoretically related 113 
to the titer (Fig 1). Neutralization, on a 0-100% scale, has the mechanistic interpretation of the fraction of 114 
blocked cellular infection events by the 𝑗-th virus, or “% neutralization”. Titer and neutralization, 𝜈, can 115 
be related through the logistic Hill function (or median-effect equation) as follows 116 

𝜈!"(𝑡) = 11 + 𝜏!"(𝑡)+,!"4
+-

.         Eq 2 117 

Neutralization requires an additional parameter, the `Hill coefficient’ ℎ!", that describes the steepness of 118 
the neutralization curve. Through Eq 2, any generalized titer (e.g., ID80, ID99) can be predicted from the 119 
ID50 titer and a given Hill slope, where the Hill slope can be estimated from IC50 and IC80 measurements 120 
(see Supplementary Information). Using the CATNAP database21 of IC50 and IC80 neutralization estimates 121 
for HIV virus/antibody combinations, we estimated the distribution of Hill slopes and generally found 122 
values near 1 (See Methods and Supplementary Figure 1). Henceforth in our analysis, and consistent with 123 
previous measurements18,  we set ℎ!" = 1 and it is dropped from equations. Under this assumption, the 124 
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IC80 is theoretically predicted to be 4-fold higher than the IC50, and, subsequently, the ID80 is predicted 125 
to be 4-fold lower than the ID50 for single bNAb and virus combinations (see Supplementary Information 126 
for more details).  127 
 128 
bNAb interaction models. For bNAb combinations, we considered 4 PD interaction models. The first, Bliss-129 
Hill independence (BH), is the best-case multiplicative interaction where bNAbs cover missing breadth of 130 
one another and co-neutralize strains, i.e., virions must escape independent binding events from each 131 
antibody. BH is encouragingly observed from in vitro studies10,22. We also consider weaker cooperation 132 
with the additivity interaction model, where antibody effects are combined via mass action10; i.e., the 133 
total titer is sum of individual titers. Finally, maximum and minimum models assume that the more or less 134 
potent antibody for each strain operates as a single product. The maximum interaction potentially 135 
represents a scenario where only the most potent bNAb neutralizes a given virus; however, outcome 136 
deviations between the maximum and the BH or additivity model also highlight where interactions 137 
improve neutralization due to combined coverage. On the other hand, the minimum model is 138 
mechanistically unrealistic but provides a boundary for the worst-case scenario where the combination 139 
regimen is only as strong as its weakest link, specifically penalizing poor combined coverage of viruses.  140 
 The interaction models are mathematically summarized in Table 1 and all derivations of 141 
combinations titers are included in the Supplementary Information. We extend interactions to include 142 
synergy in the bi-specific antibody case study, but do not consider antagonism among clinically viable 143 
bNAb combinations here. 144 

Table 1. Summary of equations for PD interaction models relating bNAb (𝑖) to virus (𝑗). Formula for Bliss-145 
Hill ID50 illustrated for 2-bNAb combinations only.  146 

PD Outcome Bliss Hill (BH) Additivity Maximum Minimum 

Titer (ID50) 
𝜏!"(𝑡), Eq 1 

2𝜏!"𝜏#"
−1𝜏!" + 𝜏#"3 + 4(𝜏!" + 𝜏#")# + 4𝜏!"𝜏#"

 %𝜏!"(𝑡)
!

 max![𝜏!"(𝑡)] min![𝜏!"(𝑡)] 

Neutralization 
𝜈!"(𝑡),	Eq 2  

1 −2 [1 − 𝜈!"(𝑡)]
!

 1 − 31 +% 𝜏!"(𝑡)
!

5
#$

 
max![𝜈!"(𝑡)] min![𝜈!"(𝑡)] 

 147 
Other options exist to quantify antibody potency, including instantaneous inhibitory potential (IIP23), the 148 
log-fold reduction in virus infectivity at a given concentration, which linearizes high neutralization on the 149 
log-scale (e.g., 99% neutralization -> IIP of 2, 99.9% -> 3) in the important range for ART efficacy23. 150 
 151 
IIP!"(𝑡) = − log-*<1 − 𝜈!"(𝑡)= = 	 log-*<1 + 𝜏!"(𝑡)=.      Eq 3 152 
 153 
A generalized version of IIP when ℎ!" ≠ 1  is described in the Supplementary Information.  154 
 Alternatively, the potency of an antibody combination can be quantified by its “viral coverage”: 155 
what fraction of viral strains are above a specified threshold value. Fundamentally, the neutralization 156 
measurement is dichotomized for a given bNAb/virus combination, i.e., the virus is neutralized or not 157 
based on some measurement threshold. For example, for 𝑛 strains and a neutralization threshold 𝜈∗, we 158 
define the neutralization coverage fraction 𝑓(𝑡, 𝜈∗) = -

7
∑ ℐ(7
"8- 𝜈!"(𝑡) > 𝜈∗) where ℐ is the indicator 159 

function equal to 1 if the inequality holds and 0 otherwise.  160 
 161 
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Mathematical model for optimizing antibody combination doses. Finally, we summarize these 162 
measurements of potency over time, which we collectively term PKPD outcomes. We consider PKPD 163 
outcomes at trough (pre-specified final time) or throughout time (area under the curve, AUC) (Fig 1).  164 
 In practice, for a specified antibody combination, we obtain their PK parameters and the best 165 
estimate of their distribution of IC50s to a relevant panel of circulating viruses. We can then choose an 166 
interaction model and specify an outcome that we want to optimize. From this we uniquely determine 167 
the optimal ratio of the antibodies. Potential combinations of bNAbs—varying by their input PK and PD 168 
profiles—can then also be evaluated and compared via mathematical PKPD simulations at the optimal 169 
dosing ratios, which may be combination-dependent, as illustrated in the in silico studies below. 170 

Global sensitivity analysis. Across a range of theoretical 2-bNAb combination studies, we performed a 171 
global sensitivity analysis varying all input PKPD model parameters (Fig 1) to assess correlation between 172 
all PKPD outcomes and optimized dosing ratios (see Methods). Briefly, we varied one-compartment 173 
exponential PK models for each antibody summarized by their half-life ℎ𝑙!. One bNAb was simulated to 174 
always have equivalent or better half-life than the other to avoid redundancy. We chose a log-normal 175 
distribution for IC50s for each bNAb parameterized by its mean 𝜇!  and standard deviation 𝜎!  on the log10 176 
scale, also allowing for a fraction 𝜔!  that are completely resistant (infinite IC50). We also varied the ratio 177 
of doses 𝑟	and the total dose 𝐷. The ranges explored for each sensitivity analysis parameter are collected 178 
in Table 2.  179 
 180 
Table 2. Parameter settings for PKPD sensitivity analysis for combining 2 bNAbs.  181 

Parameter Sensitivity analysis values 

Initial dose (mg) {150, 300, 600, 1200, 2400} 

Half-life (days) {7, 28, 42, 84} 

Total simulated viruses 500 

% viral resistance {67, 33, 0} 

Mean log10 IC50 (µg/mL) {-3, -2, -1} 

SD log10 IC50 (µg/mL) {0.25, 0.5, 1} 

 182 
Publicly available tool for ratio optimization. Any individual simulation from the results can be generated 183 
using the following R shiny app: https://bnabpkpd.fredhutch.org.  184 

PKPD outcomes cluster into categories. Using global sensitivity analysis output, we calculated Spearman 185 
correlations among all endpoints at trough (Fig 2A). By hierarchical clustering, we determined six main 186 
categories of outcomes (Fig 2A): All models with the minimum interaction (i.e., worst-case bNAb 187 
penalizing lack of combination viral coverage) and raw titer (ID50) endpoints for the non-minimum 188 
interaction were quite distinct. The remaining outcomes were correlated but further categorized as 189 
neutralization, log10-transformed titer, coverage metrics (% of viruses neutralized > 99%), and IIP. Results 190 
were similar for AUC and trough, see Supplementary Fig 2, which indicates for a simple monotonic PK 191 
curve, the final value is representative of the entire time-course. 192 
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 193 
Fig 2. Correlations among PKPD outcomes and between model parameters and outcomes. We 194 
performed a global sensitivity analysis to simulate a two-drug combination therapy against a genetically 195 
diverse pathogen where the drug 1 had equivalent or worse half-life than drug 2. We simulated 24 196 
outcomes at trough (results for AUC are similar), including ID50, log10 ID50, neutralization, instantaneous 197 
inhibitory potential (IIP), as well as the coverage fraction of pathogen strains having ID50>100 and IIP>2. 198 
A) Many of these outcomes are strongly correlated (yellow in heatmap). Moreover, these 24 outcomes 199 
cluster into approximately 6 distinct categories: see labels along dendrogram. Of the interaction models, 200 
only the minimum interaction separated into its own category while the others clustered together within 201 
a given outcome. B) Overall, we varied 10 model parameters (Table 2). By correlating (Spearman, green~1, 202 
pink~-1) to the 6 categories from panel A against all model parameters, we found that the categories were 203 
similarly sensitive to PK, while titer and minimum categories were less sensitive to resistance fractions. The 204 
ratio does not strongly predict any outcomes when all other parameters are varied, highlighting that there 205 
is no general solution to optimizing the ratio and it must be adjusted on a case-by-case basis. 206 
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Correlations among PKPD outcomes and antibody features. We next explored the associations between 207 
a representative member of each outcome category and model parameters (Fig 2B). All categories were 208 
sensitive to PK (half-life), and generally more to the half-life of the shorter-lived bNAb (hl2). Increased 209 
resistance negatively correlated with the outcomes, particularly with neutralization, log10-transformed 210 
titer, coverage metrics, and IIP. Additionally, a stronger negative correlation was found with the resistant 211 
fraction for the bNAb with longer half-life – this pattern was weaker for mean IC50. Total dose correlated 212 
positively with all outcomes but was generally less influential than other model parameters. The ratio of 213 
antibodies did not strongly predict any outcome after accounting for variation in all other parameters, 214 
highlighting that there was no generally optimal ratio; optimization is determined on a case-by-case basis 215 
based on many antibody features. 216 
 217 
Sensitivity of the optimal ratio for each outcome. Next, for each parameter set, we determined the 218 
optimal ratio 𝑟 for each outcome. Fig 3A shows an analogous clustering analysis to Fig 2 but with 219 
correlations of the optimal ratio of each outcome across the inputs. Importantly, the same categories 220 
emerged such that correlations among all outcomes agreed generally with correlations among optimal 221 
ratios. In particular, the optimal ratio for minimum not only appears distinct from the other categories 222 
but is often negatively correlated to the others. This suggests that optimizing for minimum interaction 223 
(i.e., maintaining consistent combination coverage) may require a very different ratio. For the other 224 
interactions, once an outcome is selected, the optimal ratios generally agree among maximum, additive, 225 
and Bliss-Hill interaction models. 226 
 Fig 3B shows correlations among optimal ratios for each outcome and model parameters. Here 227 
directionality of correlation has additional meaning: positive and negative correlations imply less or more 228 
of the antibody with worse half-life, respectively. The sensitivity to PK and PD (resistance and mean IC50) 229 
followed the same pattern as in Fig 2A: all the outcomes showed some sensitivity to PK, titer and minimum 230 
interaction outcomes were sensitive to mean IC50, and the remaining were sensitive to resistance 231 
fractions. For ratio optimization, the PK sensitivity was specifically driven by the half-life of the shorter-232 
lived bNAb.  233 
 We next sought to understand what is gained by using the optimal ratio as opposed to a more 234 
practical solution near the optimum. Therefore, we measured how many parameter combinations 235 
admitted an outcome within 95% of the outcome value achieved by the optimal ratio (Fig 3C). That is, if 236 
most simulations were within 95% of the optimum, it means the optimum is not substantially better. 237 
Indeed, for the parameter ranges we considered, some outcomes were not particularly sensitive to the 238 
choice of the optimal ratio such that other practical considerations could be promoted in a trial design. 239 
However, some outcomes were much more strongly affected by optimization (with fewer than 1/104 runs 240 
being in the 95% optimal scenario) including IIP. So, although there are cases of insensitive systems (e.g., 241 
two poor products, two highly effective products), this reinforces that optimization should be case-242 
specific. 243 
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 244 
Fig 3. Sensitivity of the optimal ratio to PKPD outcome choices and antibody features. From the global 245 
sensitivity analysis, we calculated the optimal ratio for each parameter set and each outcome. (A) We 246 
repeated the clustering analysis to determine how the optimal ratio clusters by outcome. In this setting 247 
coverage and IIP cluster together leading to 5 (rather than 6) categories, but the others remain the same 248 
from the prior analysis in Fig 2.  B) Certain variables drive optimization for different outcomes. For example, 249 
the mean IC50 are most influential on optimizing ratios using minimum neutralization and titer outcomes, 250 
while the fraction resistant is most influential for the remaining outcomes. C) Across all simulations, we 251 
quantified the sensitivity of the optimal ratio of each outcome by calculating the fraction of parameter 252 
sets in which the outcome was within 95% of its optimal value. For the parameter ranges considered, some 253 
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of these outcomes were not enhanced greatly by perfect optimization, but outcomes clustered in the 254 
correlation showed similar sensitivity and some outcomes were particularly sensitive. 255 
 256 
Dual parental antibodies outperformed bispecific product without synergy enhancement. Bi-specific 257 
antibodies, synthesized combinations of two antibodies into one product, appear in vitro to exhibit 258 
superior neutralization compared to their parental components13,14. However, these experiments are not 259 
inclusive of in vivo pharmacokinetics. Bi-specific antibody clearance may be determined based on the 260 
clearance kinetics of either parental component. If clearance characteristics are comparable to the slower 261 
of the two parental antibodies, then the bi-specific combination is clearly advantageous. Because bi-262 
specific PK is not well studied, we tested the non-trivial scenario in which a bi-specific inherits the worse 263 
(faster) parental half-life. We investigated a realistic design administering 300 or 1200 mg of antibodies 264 
and 3-month administration window.  We assumed one parental antibody had a 3-month half-life 265 
equivalent to the trough time but with worse PD than a superiorly potent bNAb. However, the more 266 
potent bNAb was given a poorer half-life of 1 week (i.e., equivalent to 1/12 of trough window). We 267 
evaluated the theoretical study efficacies using the following PKPD outcomes: a continuous outcome 268 
(mean IIP) and a coverage outcome (% viruses IIP>2). 269 
 Compared to the combination therapy, the superior potency of the bi-specific antibody is not 270 
necessarily sufficient to account for a poor PK profile. Across doses and interaction models, we 271 
consistently found that the optimal combination therapy was more efficacious than the bi-specific for 272 
both AUC and trough (Fig 4). At trough, where half-life had higher influence, the parental with better half-273 
life but worse PD alone outperforms the bi-specific particularly at lower doses.  274 
 Given this finding, we tested how much additional synergy (as a factor multiplying the bi-specific 275 
potency through reduced IC50, see Methods) could rescue the bi-specific performance and make it 276 
comparable to the parental combination. Synergy has been observed for bi-specifics because binding of 277 
one antibody arm can facilitate the second to bind24. Using synergy models, the bi-specific outperformed 278 
the optimized combined administration when the synergy factor exceeded 10-fold under common 279 
interaction models (Fig 4).  280 
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 281 
Fig 4. Optimizing 2 bNAb combination therapy in comparison to bi-specific therapy with the same 282 
bNAbs. Combination antibody results for AUC (top) and trough (bottom) suggest that trough is slightly 283 
more sensitive to ratio (see curvature of outcome surface and change from optimal ratio denoted by open 284 
dot). In general, a single bi-specific bNAb will perform worse than combination therapy if it has the best 285 
neutralization potential of both parental lineages under a common interaction model but inherits the 286 
faster clearance kinetics. However, if synergetic binding occurs, enhancing the bi-specific potency by 10-287 
fold (see Methods), it is similar or outperforms the optimal combination for all outcomes and doses. “All 288 
bNAb1” and “All bNAb2” on the x-axis correspond to 100% dosing of the second bNAb product. 289 

Incorporating empirical protection correlates in clinical design. To perform a realistic optimization of a 290 
clinical trial, we consider deviations from in vitro potency that may be relevant for in vivo protection. For 291 
example, non-human primate HIV challenge studies suggest that a bNAb titer of approximately 100 292 
achieved 50% protection: i.e., serum antibody concentrations need to be 100-fold higher than in vitro IC50 293 
to elicit 50% protection in vivo17. We define the fold-increase as a “potency reduction factor”18, 𝜌, and 294 
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henceforth translate in vitro potency to in vivo protection by scaling the titer input. We have in vivo 295 
neutralization and IIP then, 296 
𝜈!79!9:(𝑡) = 	 I1 + <𝜏!"!79!%;:(𝑡)/𝜌=

+-
K
+-
,       Eq 4 297 

𝐼𝐼𝑃!"!79!9:(𝑡) = 	 log-*<1 + 𝜏!"!79!%;:(𝑡)/𝜌=.       Eq 5 298 
 299 
such that no change from in vitro measured titer occurs when 𝜌 = 1 and a potency reduction of 100-fold 300 
means 𝜌 = 100. Mechanistically, this formulation suggests that the overestimated protection in vivo is 301 
due to either (or both) underestimation of the potency due to some biological factors (e.g. coagulation or 302 
anti-antibody elements) or overestimation of bNAb concentration at the site of exposure.  303 
 The reduction factor can be derived from assessing actual protection at the given experimental 304 
titers, either through NHP challenge or using protection efficacy (PE) estimated from clinical study. 305 
Alternatively, if multiple protection estimates for varying titers, the titer vs. protection dose-response 306 
relationships can also be structurally varied; for example, we employed a 5-parameter logistic model on 307 
the NHP protection data for the following case study (see Methods). 308 
 For combination bNAbs, the experimental titer will represent neutralization in sera with a 309 
combined concentration of antibody. Whether a potency reduction factor is applied to the combination 310 
titer or to the individual titers prior to the interaction is specifically consequential for the Bliss-Hill 311 
interaction model, but not the other interaction models. Briefly, applying the factor to the Bliss-Hill 312 
combination titer model may be overly conservative, underestimating the protection because 313 
experimental titer does not uniquely predict Bliss-Hill neutralization (Supplementary Figure 3; see 314 
Supplementary Information for further discussion). We suggest applying the potency factor or protection 315 
model to each bNAb individually, calculating their individual protection estimate, then applying the Bliss-316 
Hill interaction model (i.e., at the event-level) as described in the following case study.  317 
 318 
Using empirical protection correlates in a 3-bNAb optimization. We gathered several independent data 319 
sets to model a 12-week trial with a 600 mg subcutaneous dose of 3 state-of-the-art broadly neutralizing 320 
antibodies (3BNC117-T, 10-1074-T, VRC07-523-LS; -T denotes theoretical variant with extended half-life). 321 
For this example, we used an empirical protection estimates based on titer from the Pegu et al. NHP meta-322 
analysis17 with the primary PKPD outcome of viral coverage at 50% and 95% protection thresholds. For 323 
more details on the input PK and PD for these analytes, see Methods and Supplementary Figure 4.  In this 324 
illustrative example, we do not consider clade-specific profiles nor account for interference potentially 325 
due to 3BNC117 and VRC07-523-LS targeting the same epitope (CD4-bs). Next, we tested all double and 326 
triple combinations varying the dosing ratios. In a clinical setting, it is unlikely that complicated dosing 327 
ratios would be of practical consideration (e.g., 98:13:3). Thus, for the 3-bNAb combination, we 328 
considered simple ratio designs: an even dose split (denoted 1:1:1) or any 50%:25%:25% combination 329 
(denoted 2:1:1 or similar). We compared this to the theoretical optimum to ensure they were reasonably 330 
close to the optimal design.  331 
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 332 
Fig 5. Additional enhancement after optimization of 3-drug therapy. Using 3 well known anti-HIV broadly 333 
neutralizing antibodies, we performed an analysis comparing the percent of viruses at more than 50% and 334 
95% neutralization level for the bNAbs individually, in 1:1 combination, and in triplicate as 1:1:1, 1:1:2, 335 
1:2:1, 2:1:1, and the optimal combination (see Table S2). Enhancement over the best single bNAb (VRC07-336 
523-LS) is generated through combinations when evaluating the percent of the viruses neutralized at a 337 
95% level. However, triple drug therapy does not meaningfully enhance over optimized 2-drug therapy 338 
levels, even when completely optimized. Indeed, a 1:1:1 3 drug therapy is outperformed by the optimized 339 
2-drug therapy, highlighting the need to carefully perform case-studies for any optimization scenario. 340 
Overall, all triple drug combinations predicted a protection level above 95% for roughly 25% of viruses at 341 
trough. Likewise, protection levels were above 50% for roughly 80% of viruses over the study (AUC). It 342 
was clear that VRC07-523LS was the best single antibody, and the optimal dosing ratio generally contained 343 
>60% of VRC07-523-LS (see Table S2).  Subsequently, the triple combination with 1:1:2 level of VRC07-344 
523LS was not much worse than optimal. Moreover, the optimal 2-drug combination without 3BNC117-T 345 
was nearly as effective as the optimal 3 drug therapy (which dosed at <10% of 3BNC117-T) potentially due 346 
to general lower potency of 3BNC117 or the overlap in epitope targeting with VRC07-523-LS resulting in 347 
redundant viral coverage in the database. Still, given our necessarily incomplete data on circulating 348 
strains, we would suggest using this 3-drug therapy at a 1:1:2 design to balance simplicity and protection 349 
for this example. 350 

Discussion 351 

Combination administration of broadly neutralizing antibodies is likely to form a key component of future 352 
studies of HIV prevention1,4,14,25. While antibody neutralization is essential, accurate balancing of antibody 353 
dosing requires modeling both neutralization and concentration levels over time. Our approach here 354 
addresses this critical unmet need. 355 
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Our analysis highlights that several types of data for each antibody in a combination modality must all be 356 
considered to optimize dosing rationally. These include 1) the input potency data relating each bNAb to 357 
existing in vitro assays that test drug potency (i.e., IC50); 2) a translation to an in vivo protection metric 358 
using a correlate derived from NHP meta-analysis; and 3) an understanding of drug interactions. The 359 
second step is crucial because in vitro IC50 measurements could underestimate in vivo efficacy18,26. While 360 
we illustrate use of a NHP correlate, human correlates may soon be derived from the AMP trials. The best 361 
correlate will likely need to be translational using readily available in vitro neutralization data for 362 
predictions14,22, which may be calculated using pseudoviruses (e.g., CATNAP database21) or breakthrough 363 
viruses in human infections27. 364 
Here, we depict how to implement a titer protection correlate into clinical design for combinations. As 365 
illustrated in our practical case study design using the NHP challenge correlate, we derive a dose-response 366 
relationship for titer and protection from the NHP challenge studies, and then assess combinations using 367 
this empirical protection as the PKPD outcome via viral coverage. We also highlight that the protection 368 
estimates derived from single bNAb studies need to be carefully translated into combination bNAb target 369 
outcomes. Specifically for the Bliss-Hill interaction, a combination sera titer may correspond to different 370 
protection estimates depending on the underlying individual concentrations of each bNAb. We suggest 371 
determining antibody-level protection first then applying the BH interaction. This approach is also 372 
amenable if different potency reduction factors or dose-response protection relationships are bNAb-373 
specific depending on target site. 374 
Because there remains uncertainty regarding the optimal PKPD protection endpoints for bNAb 375 
combinations, our sensitivity analysis illustrates several main categories with similar properties. 376 
Moreover, we show certain features of antibodies (long half-lives, broad coverage, etc.) are particularly 377 
predictive of success, raising the possibility of using these results to inform endpoint selection based on 378 
coarse knowledge of circulating strains. While PK heterogeneity will affect endpoints and should be 379 
considered for optimizing trial design, the endpoints we tested exhibited much more sensitivity to the PD 380 
profile of the product. The optimal ratio of a two-drug therapy was shown to be strongly sensitivity to 381 
specifics of the combined antibody features. Thus, in combination with additional demographic 382 
considerations and population risk, we advocate for specific optimization for any trial rather than relying 383 
on general rules. Additionally, certain endpoints are more sensitive to optimal dosing than others, which 384 
can be considered in endpoint selection, or alternatively, if an endpoint is preferred which is not 385 
particularly sensitive, practical considerations about dosing could be prioritized over precise dose 386 
optimization as illustrated by our 3-bNAb combination example.  387 
In our sensitivity analysis, we also find that PKPD outcome levels and optimal ratio are well correlated 388 
between the maximum, additivity, and BH interaction. This suggests that the design of the trial is not 389 
particularly sensitive to selecting the correct interaction model among these choices; however, the correct 390 
choice may still improve the accuracy of the predicted PKPD outcome. On the other hand, the minimum 391 
interaction formed a unique cluster of simulated endpoints and optimized compared to others. While the 392 
minimum interaction may be unrealistic, it explicitly penalizes designs that lack effective combination 393 
coverage. In practice, a trial optimization may evaluate both a minimum and Bliss-Hill interaction 394 
endpoints, allowing the minimum interaction to represent a worst-case scenario where there is no 395 
protection against viruses without sensitivity to at least two bNAbs. 396 
Although most of our analysis concerns prevention studies, this framework is applicable to curative 397 
studies attempting to use bnAbs to prevent viral rebound after stopping ART28,29. The challenge in this 398 
setting is within-host diversity in the reservoir. Blocking a single founder during a transmission event 399 
appears easier than blocking repeated reactivations of diverse viral populations. Several studies have 400 
illustrated bnAbs can delay viral rebound28–30. However, levels required to prevent rebound remain hard 401 
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to predict. In a cohort of 18 individuals receiving VRC01 infusion and ART cessation rebound occurred 402 
when plasma VRC01 levels were well above in vitro IC50s29.  403 
Our analysis shows potential limitations around bi-specifics once PK is considered. Specifically, if the 404 
synthetized product clears faster, performance can be worse than an optimized combination therapy of 405 
the two parent products. The prevention benefits from bi-specific products thus rely on beneficial co-406 
binding represented through some synergy, but these benefits may trade off with poorer half-life. 407 
Without synergy, bi-specifics are effectively a 2-fold concentration bonus, but neutralization is relatively 408 
insensitive on this scale, requiring input changes on the log-scale to either IC50s or concentrations. Of 409 
note, a powerful synergistic effect may allow these products to be potent at unmeasurable concentrations 410 
(i.e., below a typical limit of detection), which may not be tenable for study and practical use in a clinical 411 
setting. On the other hand, bi-specifics may be clinically preferable as they are a single product, and if the 412 
PK is at least half the dosing interval (or trough time), then our analysis suggests they theoretically perform 413 
comparably or better than combinations without consideration of synergy.  414 
The three-drug optimization exercise illustrates that one potent antibody can determine the ability of 415 
combinations. Indeed, in this specific example, a two-drug therapy would have been nearly as good. 416 
However, in considering that viral panels are necessarily incomplete, we would err on the side of 417 
inclusivity to both widen breadth and account for uncertainty about escape mechanisms. In this example, 418 
adding the third and optimizing the triple-drug ratio is always beneficial to the two-drug combination, 419 
albeit minorly.  420 
Going forward, our recommendation for designing therapeutic combinations for prevention or treatment 421 
of diverse pathogens is several fold: 1) choose outcomes based on expert opinions and given 422 
disagreements, assess whether these qualitative decisions are actually quantitatively in agreement; 2) 423 
consider multiple, distinct outcomes to evaluate a range of potential results; 3) optimize drug ratios for 424 
the specifics of component features; and 4) include subdominant levels of weaker antibodies to 425 
potentially cover holes in coverage not observable from incomplete preliminary data. 426 

Methods 427 

Code and data. All analysis were performed in R and Python. Simulations, data processing, and 428 
visualizations performed using R used the tidyverse package suite31. Sensitivity and cluster analysis of 429 
simulation results with subsequent visualizations were performed using the seaborn library in Python. All 430 
code will be available on GitHub. 431 

Estimation of Hill slope using CATNAP data. The Hill slope in the 2-parameter logistic Hill function (Eq 2) 432 
can be estimated from the IC50 and IC80 measurements (formula derived the Supplementary 433 
Information). We estimated the distribution of the neutralization Hill slope by performing this calculation 434 
across virus/antibody combinations available in the LANL CATNAP database21. To accommodate assay 435 
quantification limits that potentially vary across experimental study, we limited the analysis datasets to 436 
IC50 and IC80 values between 0.01 and 20 ug/mL, comprising 20,236 total combinations. Additionally, we 437 
grouped calculations within quartiles of input IC50 to assess whether Hill slopes vary by underlying viral 438 
sensitivity or measurement error that varies with the scale of IC50. 439 

Global sensitivity analysis. We performed ~10,000 simulations over all combinations of parameters in 440 
Table 2 and calculated all PKPD outcomes. We chose a one-compartment exponential PK model with 441 
trough time 84 days for each bNAb: 𝐶!(𝑡) = 𝐶!(0) exp(−𝑘!𝑡), and summarized the PK model with its half-442 
life ℎ𝑙! = ln 2/𝑘!. The PK model used a one compartment model with fixed volume of distribution (3 L)32,33. 443 
One bNAb was simulated to always have equivalent or better half-life than the other to avoid redundancy. 444 
We chose a log-normal distribution for IC50s for each bNAb parameterized by its mean 𝜇!  and standard 445 
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deviation 𝜎!  on the log10 scale, also allowing for a fraction 𝜔!  that are completely resistant (infinite IC50). 446 
We sampled 500 viruses per simulation. We then varied these parameters, along with the ratio of doses 447 
𝑟	and the total dose 𝐷. Then, we determined the optimal ratio as the ratio that maximized each PKPD 448 
outcome for all other parameter values across interaction models. To calculation IIP under Bliss-Hill, 449 
neutralization calculated for each bNAb and used as input, not titer (see Supplementary Information). 450 
Using the seaborn package in Python, we performed hierarchical clustering of Spearman correlations 451 
among outcomes and between parameters and outcomes. 452 
 453 
Comparison of bi-specific to parental antibodies. For the first parental bNAb, we chose a potent 454 
neutralizer (mean IC50 of 10+< with 0% viral resistance) but with poor PK: elimination half-life equivalent 455 
to 1/12 of the administration period (i.e., 7-day half-life for an 84-day trough). For the second bNAb, we 456 
chose a more modest neutralizing profile (mean IC50 of 10+= with higher variance and 33% viral 457 
resistance) but with excellent PK: elimination half-life equivalent to one administration period.  458 
To model the bi-specific, we assumed the single molecule formulation means two parental products are 459 
given at the identical dose. We also assumed the clearance PK was determined by the faster of the two 460 
parental products. We additionally allowed for synergy, such that each antibody’s potency is improved by 461 
a factor 𝛼. This factor was assumed to be the same for all viral strains. Thus, following Eq 3 and Table 2, 462 
the bi-specific IIP against a single virus 𝑉"  can be calculated for max, min, and additivity models, 463 
respectively 464 

IIP> = log-* V1 + 𝛼min? 𝜏!"Z,         Eq 6 465 
IIP> = log-*[1 + 𝛼max? 𝜏!"],         Eq 7 466 
IIP> = log-*[1 + 𝛼 ∑ 𝜏!"! ].         Eq 8 467 
 468 
For Bliss-Hill interaction, the derivation from individual titers to a combination IIP is shown in the 469 
Supplementary Information (Eqs S27 & S29) and then the bi-specific synergy was implemented as follows: 470 
 471 
IIP> = ∑! log-*[1 + 𝛼𝜏!"].         Eq 9 472 

For comparing the combination and bi-specific therapies, we examined IIP and % viruses having IIP>2 (a 473 
surrogate of protection in nonhuman primate studies17) for AUC and trough. Calculations were based on 474 
500 simulations as implemented for the global sensitivity analysis. 475 

Realistic clinical trial simulation. The full trial design contained a 12-week observation window and 600 476 
mg total subcutaneous (SC) dosing with PK parameters established from clinical study (Table S1 and 477 
Supplementary Fig 4A). To boost performance of 3BNC117 and 10-1074, we artificially enhanced their 478 
half-lives by 3-fold to mimic an -LS variant (3BNC117-T and 10-1074-T). The distribution of in vitro 479 
neutralization against circulating strains was modeled using in vitro derived IC50s from 507 available 480 
common strains in the LANL CATNAP database21 (Supplementary Fig 4B).  481 
 We tested several models to map in vivo protection from in vitro neuralization. Pegu et al. 482 
developed a logistic regression model to predict protection probability from in vitro neutralization titer17. 483 
We use the output of their model at 50%, 75%, and 95% protection to test our model (Supplementary Fig 484 
4C). Specifically, we employed the following approach: for a given bNAb (𝑖) at a given concentration, we 485 
estimated in vivo protection (𝑝) using neutralization titer (𝜏!") against a virus (𝑗). Using Eq 3 and estimating 486 
a single parameter, the potency reduction, found 𝜌=1/91 and led to reasonable fits. However, a better fit 487 
was achieved using a 5-parameter logistic (5PL) model, a generalized dose-response type function with 5 488 
parameters {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} and the form 489 
 490 
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𝑦(𝑥) = 𝐷 + (𝐴 − 𝐷){1 + exp[𝐵(log	(𝑥) − log	(𝐶))]}+@,     Eq 10 491 
 492 
here mapping in vitro titer 𝑥 = 𝜏!"  and to in vivo protection 𝑦 = 𝑝!". We fixed 𝐷 = 0 and 𝐴 = 1 so that 493 
protection ranges from 0-1. The remaining 3 parameters were estimated as 𝐵 = −1.84, 𝐶 = 257, and 494 
𝐸 = 0.338. The best fit of the potency reduction model and the 5PL model are compared in 495 
Supplementary Fig 4C. 496 
 We then illustrate predictions of the 5PL model for each bNAb via % viral coverage at in vitro 497 
neutralization >50% compared to in vivo protection >50 and >95% in Supplementary Fig 4D. Using this 498 
model of protection, we then calculated combined protection across the administered bNAbs (𝑏 is the 499 
number of antibodies considered) assuming independence similar to Bliss-Hill: 500 
 501 
𝑝" = 1 −∏ (A! 1 − 𝑝!")          Eq 11 502 
 503 
We then defined our protection PKPD outcome as viral coverage fraction such that we can determine 504 
what % of all viruses have protection above a certain threshold value 𝑋: 505 
 506 
𝑓(𝑡, 𝑋) = -

7
∑ ℐ(7
"8- 𝑝"(𝑡) > X)          Eq 12 507 

 508 
where ℐ is the indicator function equal to 1 if the inequality holds and 0 otherwise. 509 
 We assessed PKPD at the trough time (12-weeks, T) and as an average over the administration 510 
period (AUC/T over time through T). 511 
 512 
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