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Abstract 40 

COVID-19 is a huge threat to global health. Due to the lack of definitive etiological therapeutics 41 

currently, effective disease monitoring is of high clinical value for better healthcare and management 42 

of the large number of COVID-19 patients. In this study, we recruited 37 COVID-19 patients, 43 

collected 176 blood samples upon diagnosis and during treatment, and analyzed cell-free DNA 44 

(cfDNA) in these samples. We report gross abnormalities in cfDNA of COVID-19 patients, including 45 

elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA 46 

characteristics reflect patient-specific physiological conditions during treatment. Further analysis on 47 

tissue origin tracing of cfDNA reveals frequent tissue injuries in COVID-19 patients, which is 48 

supported by clinical diagnoses. Hence, we demonstrate the translational merit of cfDNA as valuable 49 

analyte for effective disease monitoring, as well as tissue injury assessment in COVID-19 patients. 50 
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Introduction 52 

The current pandemic, COVID-19, has become a huge threat to global health: as many as 130 53 

million patients had been diagnosed worldwide by early-Apr 2021. At present, there is no effective 54 

etiological treatment for COVID-19, and the number of diagnosed patients increases rapidly. 55 

Considering the tremendous amount of COVID-19 patients, disease monitoring is of particular 56 

clinical value for better management of these patients (1); however, efficient approaches are still 57 

limited. Since the pathogen of COVID-19 is a coronavirus named SARS-CoV-2 (2), nucleic acid test 58 

of the pathogenic virus has become a standard method for diagnosis, treatment monitoring and cure 59 

(3-5). Most patients turn negative for the nucleic acid test of SARS-CoV-2 several weeks after 60 

treatment, but some patients show persistent viral shedding with low IgG antibody response. 61 

Considering that many asymptomatic and discharged patients are also positive for SARS-CoV-2 test, 62 

additional diagnostic approaches are thus needed for better disease monitoring of the patients. 63 

Furthermore, as evidenced in multiple investigations (6-11), COVID-19 causes damages to various 64 

organs including lungs, the primary infected tissue, as well as heart, kidney, and brain. Such damage 65 

could further induce organ failures, shock, acute respiratory distress syndrome and even patient 66 

mortality. Hence, to take early intervention measurements to prevent the occurrence of serious 67 

complications of the patients, it is of particular importance and urgent clinical need to develop 68 

methods for disease monitoring and organ injury assessment of COVID-19 patients. 69 

 70 

Plasma circulating cell-free DNA (cfDNA) in peripheral blood has been discovered and actively 71 

studied for more than 70 years (12). CfDNA molecules are mostly derived from dying cells and 72 

retain various cell-type-specific signatures (13-16). Numerous studies have demonstrated that cfDNA 73 
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is a valuable analyte for diagnosis and monitoring of various diseases (17, 18). In healthy subjects, 74 

cfDNA mostly originate from the hematopoietic system (19, 20); while in organ transplantation and 75 

cancer patients, cfDNA molecules released from the affected organs are readily detectable (21, 22). 76 

Moreover, cfDNA molecules are rapidly cleared with a short half-life time (typically a few hours) 77 

(23), thus reflect the real-time responses of the human body. The successful applications of plasma 78 

cfDNA in various physiological and pathological conditions suggest that these molecules may 79 

promise a practical and efficient approach for COVID-19 monitoring; however, comprehensive 80 

investigations have not been explored yet. 81 

 82 

In this study, we have utilized plasma cfDNA to investigate the disease dynamics of COVID-19 83 

patients during treatment. We have collected and analyzed a total of 208 blood samples from 37 84 

COVID-19 patients and 32 controls. We report gross abnormalities, dynamics as well as organ injury 85 

signals in cfDNA, demonstrating high clinical potential of these analytes for effective disease 86 

monitoring and tissue injury assessment of COVID-19. 87 

 88 
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Results 90 

Overview of the study 91 

Fig. 1 shows the overall design of this study. A total of 37 COVID-19 patients, either in mild (N=18) 92 

or severe (N=19) conditions, were recruited from local hospitals in Guangdong province of China. 93 

Table 1 summarizes the major clinical characteristics of these patients. Briefly, in the COVID-19 94 

patients, severe cases suffer from acute severe viral pneumonia and show serious clinical symptoms 95 

that require mechanical ventilation and intensive care unit treatment, while mild cases show weak 96 

symptoms of pneumonia (usually minor upper respiratory tract infection) and recover within a few 97 

weeks (24-27). All the COVID-19 patients are immediately hospitalized upon diagnosis; for all 98 

COVID-19 patients, the first blood-collection timepoints are within 3 days after diagnosis. All 99 

COVID-19 patients receive standard treatment following the “Diagnosis and Treatment Protocol for 100 

Novel Coronavirus Pneumonia (Trial Version 5)” guidelines published by National Health 101 

Commission & National Administration of Traditional Chinese Medicine of China. In short, all 102 

COVID-19 patients receive antiviral treatment; severe patients receive additional antibacterial 103 

treatment, and most of them also receive antifungal treatment (Table 1). Notably, 1 severe patient 104 

also receives convalescent plasma therapy (Focosi et al. 2020; National Health Commission & 105 

National Administration of Traditional Chinese Medicine 2020) on day 16 of hospitalization. The 106 

most common comorbidity in the COVID-19 patients is hypertension (4 and 6 in mild and severe 107 

groups, respectively), followed by type-II diabetes (Table 1). A total of 176 blood samples were 108 

collected at multiple timepoints upon hospitalization and during treatment. In addition, 32 109 

age-matched non-COVID-19 controls were also recruited. CfDNA from all blood samples were 110 

investigated. Key clinical data, including SARS-CoV-2-specific immunoglobulin (i.e., IgG and IgM) 111 
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levels, Chest X-ray, Computed Tomography (CT) scan, coagulation profile, liver and renal functions, 112 

electrolyte, myocardial enzymes, interleukin-6, TNF-α, procalcitonin and C-reactive protein levels, 113 

were also collected (when available) during treatment to analyze the disease states of the patients. 114 

The plasma cfDNA was extracted, sequenced, and analyzed to investigate their correlations with 115 

COVID-19 as well as dynamics during treatment.  116 

Abnormalities in cfDNA of COVID-19 patients 117 

In a previous work, we found that SARS-CoV-2-derived DNA does not present in the plasma of 118 

COVID-19 patients (which is in consistent with the RNA-virus nature of SARS-CoV-2) (28); hence, 119 

we focused on cell-free DNA from human sources in this study. We first investigated the global 120 

characteristics of plasma cfDNA in COVID-19 patients. Firstly, cfDNA samples from COVID-19 121 

patients show significantly higher GC content (Fig. 2A) than controls, and the GC contents in 122 

COVID-19 patients are positively correlated with IgG levels in the peripheral blood (Supplementary 123 

Fig. S1A). Secondly, cfDNA samples from COVID-19 patients show significantly altered size 124 

patterns compared to controls. We divided the cfDNA data into short (i.e., < 150 bp), intermediate 125 

(150-250 bp), and long (i.e., > 250 bp) categories, as size pattern is a known characteristic that 126 

correlates with the tissue origin of cfDNA as well as various physiological conditions of the body (15, 127 

29-31). As a result, cfDNA samples from COVID-19 patients show significantly higher proportions 128 

of short fragments (Fig. 2B) while lower proportion of intermediate fragments (Fig. 2C); for the 129 

proportions of long fragments, cfDNA from COVID-19 patients do not show significant differences 130 

compared to controls; however, mild cases show significantly increased proportion of long molecules 131 

than severe patients (Fig. 2D). The cfDNA size pattern is further validated using Bioanalyzer 2100 132 

(Agilent) platform for 10 randomly selected samples (Supplementary Fig. S2). Besides fragment size, 133 
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end motif pattern is a newly discovered characteristic of plasma cfDNA that correlates with various 134 

physiological conditions (32, 33). We analyzed two types of end motifs (termed as 5’-CCCA and 135 

CT-5’-CC; see Methods and Supplementary Fig. S1B) in our data. CfDNA samples from COVID-19 136 

patients show significantly increased levels of 5’-CCCA and CT-5’-CC end motif usages than 137 

controls (Fig. 2E, Supplementary Fig. S1C). In addition, when 5’-CCCA and CT-5’-CC motif usages 138 

are analyzed side-by-side, the COVID-19 blood samples compose two patterns (Fig. 2F, one pattern 139 

is highlighted in purple circle). In addition, hypertension is the most common comorbidity in the 140 

COVID-19 patients; GC contents and motif usages do not show significant differences between 141 

COVID-19 patients with hypertension and without hypertension in the same group, while cfDNA 142 

size patterns show slight differences between COVID-19 patients with and without hypertension in 143 

the same group (Supplementary Fig. S3). Together, the results demonstrate gross abnormalities in 144 

cfDNA characteristics of COVID-19 patients. 145 

 146 

Alterations and dynamics of cfDNA characteristics during treatment 147 

We compared the plasma cfDNA characteristics at the first timepoint (i.e., upon hospitalization) 148 

versus the last timepoint, when treatment had taken effect (Fig. 3A-D, Supplementary Fig. S4). 149 

COVID-19 patients show significant increase in GC levels after treatment for both mild and severe 150 

groups (Fig. 3A). For cfDNA size patterns, differences in proportion of short fragments after 151 

treatment are not remarkable in mild patients, while significantly decreased in severe patients; in 152 

contrast, both mild and severe groups show significantly elevated proportion of long fragments (Fig. 153 

3B-C). For end motif patterns, elevation in 5’-CCCA and CT-5’-CC end motif usages is marginal in 154 

mild patients while significant in severe patients (Fig. 3D). The results thus show that treatment 155 
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introduces drastic changes to cfDNA characteristics in COVID-19 patients. 156 

 157 

We further investigated whether cfDNA characteristics could reflect the body responses during 158 

treatment. To do this, we profiled cfDNA characteristics along with immunoglobulin levels for 159 

COVID-19 patients over the time courses during treatment. Three representative cases (1 mild and 2 160 

severe) are shown in Fig. 3E-G. The SARS-CoV-2-specific IgM level is an important clinical 161 

indicator for effective immune response to SARS-CoV-2 infection (3, 34, 35). Hence, for the patient 162 

shown in Fig. 3E, the immune system starts to take effect from the second timepoint, when 163 

SARS-CoV-2-specific IgG level also starts to increase; however, the other 2 cases (Fig. 3F-G) do not 164 

show convincing SARS-CoV-2-specific IgM signal, suggesting possible immune deficiency or 165 

insufficient immunization. CfDNA characteristics also show dynamics during treatment in these 166 

samples, such as the proportion of long fragments at certain timepoints. In particular, cfDNA end 167 

motif patterns gradually increase in the patient shown in Fig. 3E while remain modestly changed in 168 

the other two cases. 169 

 170 

Tissue injury signals in cell-free DNA 171 

To explore whether plasma cfDNA could reflect organ damages induced by COVID-19, we adapted 172 

our previous orientation-aware cfDNA fragmentation analysis approach (36) to detect signals linked 173 

to the tissue origins of cfDNA. Notably, besides blood cells, we focused on lungs, liver, heart, 174 

kidneys, pancreas, and brain in this study (Supplementary Tables S1), because these organs are 175 

known to be infected by SARS-CoV-2 (6, 7). CfDNA fragmentation patterns for controls are 176 

consistent with our previous report that cfDNA coverage decreases in the tissue-specific open 177 
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chromatin regions if the corresponding tissues contribute DNA in plasma (e.g., blood cells; Fig. 4A), 178 

as nucleosome-depletion in such regions makes the DNA unprotected from nuclease digestion (36); 179 

however, we find that cfDNA coverage in the open chromatin regions increase in most COVID-19 180 

samples, which may be due to the elevated GC content in cfDNA of COVID-19 patients, as GC 181 

content for tissue-specific open chromatin regions are higher than adjacent regions (Supplementary 182 

Fig. S5); nevertheless, altered fragmentation signals (e.g., imbalanced coverage patterns) around 183 

tissue-specific open chromatin regions are still observed in certain timepoints in almost all severe 184 

COVID-19 patients. Fig. 4A shows the coverage signal from the same patients as Fig. 3F-G. For 185 

instance, strong fragmentation signals around lung-, pancreas- and brain-specific open chromatin 186 

regions are observed at timepoint 2 of the severe case, which echoes the altered cfDNA 187 

characteristics (e.g., increase of long fragments) of this patient at the same timepoint (Fig. 3G). 188 

 189 

As an interesting example, we investigated the severe patient who receives convalescent plasma 190 

therapy (27, 37) on day 16 of hospitalization. Blood samples are taken 1 day before and ~6 hours 191 

after treatment. Both GC content, size and end motif patterns change remarkably after treatment. 192 

Orientation-aware cfDNA fragmentation analysis reveals drastic signal changes after treatment: both 193 

coverage and ends around blood cell-, lung-, kidney-, and brain-specific open chromatin regions alter 194 

sharply (Fig. 4B). Indeed, clinical records of this patient show various positive changes after 195 

treatment that are related to these organs, including returning to normal body temperature and 196 

improvements in the lung condition (lesions in the lower right lung field are slightly reduced 197 

according to chest radiograph and relief of respiratory distress) as well as consciousness state 198 

(increased dose of sedative and muscle relaxant). 199 
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 200 

Moreover, cfDNA fragmentation patterns for lungs, liver, heart, kidney, pancreas, and brain were 201 

quantified using our previous OCF (Orientation-aware CfDNA Fragmentation) approach (see 202 

Methods) (36). The results for the two presentative patients illustrated in Fig. 3F-G are shown in Fig. 203 

4C. In general, significantly altered OCF values are observed in the majority of patients and/or 204 

tissues, suggesting prevalent tissue injuries in COVID-19 patients. Notably, in COVID-19 patients, 205 

OCF values are decreased for lungs and brain, while they are elevated for other tissues. We also 206 

observe abnormal OCF values in certain timepoints in the COVID-19 patients while the overall 207 

statistical comparisons do not show significant differences (mostly due to limited number of 208 

timepoints in this patient or other timepoints show similar OCF values to the controls). To overcome 209 

this drawback and to provide explicit tissue injury assessment results, we further built a machine 210 

learning-based classification model to predict the tissue injuries based on the orientation-aware 211 

cfDNA fragmentation signals (see Methods). The results are summarized in Fig. 5. Notably, clinical 212 

diagnoses on tissue injuries for lungs, liver, kidneys, and heart are also available for a proportion of 213 

patients. Frequent injuries are observed in various tissues, including lungs, pancreas, and brain, 214 

which results are consistent with clinical diagnoses for the majority of patients. 215 

 216 
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Discussion 218 

The outbreak of COVID-19 has last for more than 1 year. Considering the unclear therapeutics, 219 

disease monitoring is of high clinical value for better management and healthcare of the large amount 220 

of COVID-19 patients; however, efficient methods are still limited, especially for assessment of 221 

various organ injuries (38). In this proof-of-principle study, we have conducted a comprehensive 222 

analysis of 176 blood samples collected from 37 COVID-19 patients. Although previous studies on 223 

cfDNA characteristics exist, most of them focus on elevated cfDNA concentration and neutrophil 224 

extracellular traps (NETs) in the COVID-19 patients (39-42), while our study reveals gross 225 

abnormalities and dynamics in a broad range of cfDNA characteristics as well as their clinical 226 

potentials in disease monitoring, including increased GC content, altered size and end motif patterns 227 

(Fig. 2A-D). COVID-19 patients suffer from active immune response to the viral infection and 228 

produces high level of immunoglobulins (35, 43), which prefer binding/protecting GC-rich DNA 229 

(e.g., DNA molecules originated from the open chromatin regions) (44), suggesting that immune 230 

response may be responsible to the abnormalities in plasma cfDNA characteristics in COVID-19 231 

patients. Moreover, the NET process is known to generate long cfDNA molecules; Fig. 2D shows 232 

that mild COVID-19 patients tend to have more long cfDNA molecules than controls while severe 233 

patients do not. This result suggests that patients in the mild group may have a higher innate immune 234 

activity than those in the severe group, which may explain why their symptoms are weaker. In the 235 

meantime, Fig. 3C shows that after treatment, the proportions of long cfDNA molecules are 236 

increased in both mild and severe COVID-19 patients, suggesting more NETs, i.e., enhanced 237 

immune responses of the patients after treatment, which is consistent with the improvement of 238 

clinical symptoms in these patients. It is also interesting to see differences in size patterns between 239 
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COVID-19 patients with and without hypertension (Supplementary Fig. S3), as previous studies have 240 

demonstrated that cfDNA alterations could serve as a diagnostic biomarker for cardiovascular 241 

diseases (45). In addition, end motif analysis reveals two patterns in COVID-19 patients; 242 

interestingly, most of the samples that form the altered pattern (Fig. 2F, purple circle) are collected at 243 

the first or second timepoints of severe patients, when the patients’ conditions are most critical (e.g., 244 

in a coma). Plasma cfDNA fragmentation patterns could be affected by various biological and 245 

clinical scenarios, while current knowledge in this field is still limited. Hence, the altered cfDNA 246 

signals may suggest aberrant, yet elusive, cell death in COVID-19 patients. 247 

 248 

Furthermore, plasma cfDNA reveal disease dynamics and organ injury signals during the 249 

treatment. For instance, significant changes are observed in cfDNA samples at the last timepoint 250 

compared to the first timepoint (Fig. 3A-D), indicating that cfDNA characteristics could reflect 251 

therapeutic efficacies. Moreover, cfDNA show fragmentation signals around tissue-specific open 252 

chromatin regions in various cases, which is partly in line with clinical observations on organ injuries 253 

in these patients. In fact, organ injury in COVID-19 patients may correlate and partially explain the 254 

altered characteristics in cfDNA, as cells in damaged organs may die abnormally thus release DNA 255 

with aberrant fragmentation patterns (Fig. 2) (46). As an interesting example, cfDNA from a severe 256 

case receiving plasma therapy show huge alterations ~6 hours after treatment: we observe drastic 257 

changes around blood cell- and lung-specific open chromatin regions, suggesting that the patient has 258 

responded to the treatment, especially the lungs, which is evidenced by the clinical observations; 259 

kidney-specific open chromatin regions also show strong fragmentation patterns after treatment, 260 

which is reasonable because kidney is an important organ for metabolism and is known to involve in 261 
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COVID-19 (47). Hence, the data indicate that cfDNA analysis is indeed sensitive in monitoring the 262 

body response during treatment. 263 

 264 

Detection and monitoring of organ injuries are highly valuable for COVID-19 patients. Tissue 265 

injury assessment could be indicative for potential sequelae of the patients as COVID-19 patients 266 

frequently suffer from multiple tissue injuries even months after discharge (11), and organ failure is a 267 

major cause of mortality in COVID-19 (25, 48). In this study, we compared the quantified 268 

orientation-aware fragmentation patterns (i.e., OCF values) between COVID-19 patients and controls 269 

(Fig. 4C), which results show frequently altered fragmentation patterns in COVID-19 patients, 270 

suggesting that tissue injuries are indeed common in COVID-19 patients. Interestingly, the OCF 271 

values for lungs and brain show an opposite direction in COVID-19 patients compared to other 272 

tissues. The underline mechanisms are elusive; while for lungs, we think that it may be related to 273 

their unique position as the primary organ of viral infection where frequent non-apoptotic cell deaths 274 

may occur. Besides the statistical comparisons, we further developed a machine learning-based 275 

approach to for qualitative (i.e., yes or no) measurement of tissue injuries, which could provide an 276 

explicit result for easier interpretation of the data. 277 

 278 

Considering that cfDNA analysis could reveal tumor signals long before clinical diagnosis (49), 279 

we think that cell-free nucleic acid analysis could be more sensitive than clinical diagnosis in tissue 280 

injury assessment. For instance, cfDNA analysis shows that almost all COVID-19 patients suffer 281 

from lung injury which is consistent with the fact that lungs are the primary infection sites in 282 

COVID-19. Besides lungs, kidneys, pancreas, and brain are other organ with frequent injuries, which 283 
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is consistent with clinical reports on COVID-19 (50-52). Hence, COVID-19 induced low-level 284 

oxygen in the blood, blood clots, and cytokine storms can cause kidneys to malfunction (53); 285 

diabetes is one of the most common comorbidities in COVID-19 patients and COVID-19 also causes 286 

diabetic symptoms in the non-diabetic patients (54, 55); neurological abnormalities are also common 287 

in COVID-19 patients (56, 57). Furthermore, currently convalescent plasma therapy is a legal, yet 288 

controversial, therapeutic method for COVID-19 (27, 58). Through analyzing the blood sample from 289 

one patient with plasma therapy, we show that although plasma therapy makes improvements of 290 

clinical symptoms in this patient, it also introduces various tissue injuries therefore suggesting that 291 

dedicated medical inspections on various organs would be helpful for patients receiving plasma 292 

therapy. 293 

In the meantime, we only have limited clinical data for tissue injury assessment in the 294 

COVID-19 patients, and clinical diagnoses for pancreas and brain are not available at all. In fact, 295 

clinical approaches for organ injury assessment usually require dedicated assays for assessment of 296 

each tissue, while such assays may not be feasible, or with a low priority, when the medical system is 297 

overloaded during the outbreak of the pandemic; as a contrast, cfDNA is much more favorable as it 298 

able to profile the injury landscape of various organs from one tube of peripheral blood, therefore 299 

promises a much more efficient and convenient approach. In previous studies, Cheng et al. and 300 

Andargie et al. have also investigated tissue injuries in cfDNA through tissue-specific DNA 301 

methylation markers (59, 60); however, considering the experimental challenges and complexities in 302 

current cfDNA methylation profiling assays, our approach significantly lowered the experimental 303 

difficulty as we only require routine whole-genome sequencing. In particular, the dynamics of 304 

cfDNA characters and tissue injury signal for a mild and a severe patient (Fig. 3, 4) show favorable 305 
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consistency (e.g., kidney injury signal in the mild case, and signals of multiple tissue injuries in the 306 

severe case), demonstrating the potential of cfDNA in disease monitoring during treatment. 307 

 308 

On the other hand, there are various limitations in this study. Firstly, the clinical diagnosis for 309 

many COVID-19 patients and tissues are not available due to the limited medical resources during 310 

the outbreak of the pandemic. Secondly, we could only perform qualitative analyses without 311 

comprehensive statistical analyses for tissue injuries. Hence, to provide more meritorious 312 

information to the clinic, it is worthwhile to validate the results using larger and more thorough 313 

datasets in the following studies. In addition, it would be favorable to explore the feasibility of other 314 

analyses, such as nucleosome positioning (14, 36) and promoter coverage patterns (61) , for 315 

quantitative measurement of organ injuries in following works. 316 

 317 

As a summary, through analysis of cfDNA in COVID-19 patients, we report alterations and 318 

dynamics of cfDNA characteristics during treatment, as well as organ-specific signals in cfDNA, 319 

demonstrating that cell-free DNA could serve as valuable analytes for effective disease monitoring 320 

and tissue injury assessment of COVID-19 patients. 321 

 322 

  323 
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Methods 324 

Ethics approval and patient recruitment 325 

This study had been approved by The First Affiliate Hospital of Guangzhou Medical University 326 

Ethics Committee, and the institutional review board of BGI; written informed consents had been 327 

obtained from all patients and healthy donor participated in this study. A total of 37 COVID-19 328 

patients and 32 non-COVID-19 controls were recruited from local hospitals in Guangdong. The 329 

COVID-19 patients were divided into mild (N=18) or severe (N=19) groups according to the 330 

Guidelines for COVID-19 Diagnosis and Treatment (Trial Version 5) (27) issued by the National 331 

Health Commission of China. Control subjects were collected from the same hospitals as the 332 

COVID-19 patients based on the following criteria: negative for SARS-CoV-2 tests on the 333 

blood-taken day and has never been diagnosed to have COVID-19 until the end of this study, and 334 

comparable age distribution to the COVID-19 patients. Blood samples were collected during Jan 27 335 

to Mar 28, 2020. 336 

 337 

 338 

Clinical data acquisition and analysis 339 

The epidemiological, demographic, clinical, laboratory characteristics and treatment data were 340 

extracted from electronic medical records, and all the data had been double-checked by the relevant 341 

physicians to ensure the accuracy and completeness of the epidemiological and clinical findings. 342 

Frequency of clinical examinations was determined by the physicians-in-charge. 343 

 344 

Diagnoses of severe pneumonia and ARDS (Acute Respiratory Distress Syndrome) in the 345 
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COVID-19 patients were according to Diagnosis and Treatment Protocol for Novel Coronavirus 346 

Pneumonia (Trial Version 5) (27) and the Berlin Definition (62), respectively. Kidney injury was 347 

diagnosed according to the Kidney Disease: Improving Global Outcomes (KDIGO) guideline (63). 348 

Heart injury was diagnosed if serum levels of cardiac biomarkers (e.g., cardiac troponin I) were 349 

above the 99th percentile upper reference limit, or if new abnormalities were shown in 350 

electrocardiography and echocardiography (25). Liver function indicators measured on admission, 351 

including alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin, etc.; 352 

patients whose ALT or AST is above the normal range were considered to suffer from liver function 353 

abnormality (64). Pancreatic function tests were not carried out for most patients in our cohort; in 354 

addition, most patients are in a state of sedation and neurologic examinations (e.g., brain MRI) were 355 

also omitted (57). 356 

 357 

cfDNA extraction and processing 358 

All blood samples (including those from the controls and COVID-19 patients) are collected and 359 

processed according to consensus guideline for cell-free DNA analysis (65). Briefly, for each sample, 360 

1ml peripheral blood was collected using EDTA anticoagulant-coated tubes, then centrifuged at 361 

1,600g for 10 min at 4°C within six hours after collection; the plasma portion was harvested and 362 

recentrifuged at 16,000g for 10 min at 4 °C and to remove blood cells. Cell-free DNA was extracted 363 

from 200 µl plasma using MagPure Circulating DNA KF Kit (MD5432-02, Magen) following the 364 

manufacturers’ protocols. Sequencing libraries was prepared using MGIEasy Cell-free DNA Library 365 

Prep kit (MGI) on the amplified cfDNA following the manufacturer’s protocol. All the cfDNA 366 

libraries passed quality control and sequenced on DNBSEQ platform (BGI) in paired-end 100 bp 367 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.19.21260139doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260139


19 

 

mode.  368 

 369 

CfDNA sequencing and data processing 370 

We used SOAPnuke (v1.5.0) (66) software to trim sequencing adapters, filter low quality and high 371 

ratio Ns in the raw reads with default parameters. The preprocessed reads were then aligned to the 372 

human reference genome (NCBI build GRCh38) using BWA (67) software with default parameters. 373 

After alignment, PCR duplicates were removed using in-house programs: if more than two reads 374 

shared the same start and end positions, only one was kept for following analyses and the others were 375 

discarded as PCR duplicates. 376 

 377 

CfDNA characteristics profiling 378 

For each cfDNA sample, GC content was determined as the proportion of G or C in the sequenced 379 

nucleotides; fragment size for each molecule was determined as the distance between the two 380 

outmost ends obtained from the alignment result; short fragments were defined as reads shorter than 381 

150 bp, and long fragments were defined as reads longer than 250 bp. Considering that most 382 

nucleases in mammals function in an endonuclease manner (i.e., they bind to DNA and cut within the 383 

bound sequence), besides the 4-mer motifs at the 5’-end of cfDNA as in previous studies (32, 33), we 384 

extended 2 bp from the 5’-end and proposed a novel 4-mer motif definition: 5’-CCCA motif usage 385 

was calculated as the proportion of reads starting with CCCA, and CT-5’-CC motif usage was 386 

calculated as the proportion of reads starting with CC and the 2 bp in the genome prior to the 5’-end 387 

are CT. The definition of 5’-CCCA and CT-5’-CC motifs are illustrated in Supplementary Fig. S1B. 388 

As a result, the previous definition presents CCCA while our new definition reveals CTCC as the 389 
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motif with the highest usage. Notably, in our cohort, the CT-5’-CC motif usage is positively 390 

correlated with, and always higher than, 5’-CCCA, suggesting that our newly discovered CT-5’-CC 391 

motif could also reflect enzymatic preferences during cell apoptosis. 392 

 393 

Orientation-aware cfDNA fragmentation analysis 394 

In our previous work (36), we had mined and investigated tissue-specific open chromatin regions for 395 

blood cells, lungs, liver, intestines, breast, ovary, and placenta. Based on clinical reports on tissue 396 

injuries of COVID-19 patients (6), we added kidney, pancreas, heart, and brain into the tissue list, 397 

while removed placenta from the tissue list (as there is no pregnancy samples in our cohort) in the 398 

current study. Tissue-specific open chromatin regions for all the tissues in the list were mined using 399 

the same algorithm as described in our previous work. The accession numbers of the Dnase I 400 

hypersensitivity data and the final list of tissue-specific open chromatin regions used in this study 401 

were summarized in Supplementary Table S1. For each cfDNA sample, coverage and end pattern 402 

around the tissue-specific open chromatin regions were profiled using the same algorithm as 403 

described in our previous work (36). To minimize the biases of the abnormally high coverage in the 404 

center of open chromatin regions in COVID-19 patients (Fig. 4A), OCF values for each patient and 405 

tissue were quantified using (-210, -180) and (180, 210) windows around the tissue-specific open 406 

chromatin regions. 407 

 408 

Prediction of tissue injury using cfDNA fragmentation pattern 409 

Considering that the GC content is significantly elevated in COVID-19 samples (Fig. 2A), to 410 

minimize the potential biases (e.g., from sequencing), we developed a new method to infer tissue 411 
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injury signals that solely depends on the cfDNA data from the COVID-19 samples. Based on the 412 

knowledge that blood cells are the major contributor of cfDNA in most clinical scenarios (19, 68) 413 

and to date there is no clinical/genetic evidence of ovary injuries in COVID-19 patients (in fact, a 414 

large proportion of the COVID-19 patients are male in our cohort), we utilized the orientation-aware 415 

cfDNA fragmentation pattern around blood cell- and ovary-specific open chromatin regions from all 416 

COVID-19 blood samples as positive and negative signals, respectively, to train a classification 417 

model for injury assessment of other tissues. Briefly, for each cfDNA sample, after profiling of 418 

orientation-aware cfDNA end signals around the tissue-specific open chromatin regions, for all the 419 

tissues-of-interest (i.e., blood cell, ovary, lungs, liver, kidneys, pancreas, heart, and brain), the 420 

differences in normalized upstream (U) and downstream (D) end signals were calculated for each 421 

locus in two symmetrical 30 bp windows around the corresponding tissue-specific open chromatin 422 

regions (i.e., (-210,-180) and (180,210)); hence, a vector of 60 values would be obtained for each 423 

tissue; then, we collected all the vectors for blood cells and ovary in the COVID-19 blood samples as 424 

positive and negative datasets, respectively, to train a classification model using SVM (Support 425 

Vector Machine) approach (69). During training, a 5-fold cross-validation was employed, which 426 

showed an overall accuracy of 93.5% on the training dataset. After model-training, for each of the 427 

tissue-of-interest, we applied the SVM classification model on its U and D end signal difference 428 

vector to determine whether it showed injury or not, during which procedure a score (calculated by 429 

the classification model) of 0.8 was used as the classification cutoff. Lastly, for each patient, we 430 

calculated the frequency of positive injury predictions in his/her blood samples for all the 431 

tissues-of-interest as the final prediction results (Fig. 5). 432 

 433 
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Statistical analysis 434 

Comparisons of cfDNA characteristics between COVID-19 patients and controls were performed 435 

using Mann-Whitney U test; comparisons of cfDNA characteristics for COVID-19 patients at the 436 

first and last timepoint were conducted using Wilcoxon signed-rank test; comparisons between OCF 437 

values for COVID-19 patients and controls were performed using Mann-Whitney U test. All p-values 438 

are two-tailed and a p-value lower than 0.05 was considered as statistically significant. 439 

 440 

Data access 441 

The data that support the findings of this study have been deposited into CNGB Sequence Archive 442 

(CNSA)(70) of China National GeneBank DataBase (CNGBdb) (71) with accession number 443 

CNP0001306. 444 
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Figure legends 653 

 654 

 Figure 1. Overview of the study. A total of 37 COVID-19 patients (18 and 19 in mild severe 655 

conditions, respectively) and 32 healthy controls were recruited in this study. For the COVID-19 656 

patients, 176 blood samples are collected upon hospitalization and during treatment. Plasma 657 

cfDNA is extracted and analyzed together with clinical data. As a result, we report 658 

disease-specific characteristics, dynamics, and tissue injury signals in cfDNA of COVID-19 659 

patients.  660 

 661 

Figure 2. Characteristics of plasma cfDNA in COVID-19 patients. (A) GC content; (B) 662 

proportion of short (i.e., < 150 bp), (C) intermediate (i.e., 150-250 bp), and (D) long (i.e., > 250 663 

bp) molecules; (E) proportion of reads with (i.e., usage of) 5’-CCCA end motif; (F) side-by-side 664 

comparison of 5’-CCCA and CT-5’-CC end motif usages. In panels A-E, the p-values of statistical 665 

comparisons between any groups are shown. ns: non-significant; *: p < 0.05; **: p < 0.01; ***: p 666 

< 0.001; ****: p < 0.0001. 667 

 668 

 669 

Figure 3. Alterations and dynamics of cfDNA characteristics in COVID-19 patients. (A-D) 670 

comparison of GC content, proportion of short/long reads, and usage of 5’-CCCA end motif usage 671 

between first (usually upon hospitalization) and last timepoints (when treatment has taken effect) of 672 

COVID-19 patients, respectively (dots linked by lines indicate samples from the same patients); 673 

(E-G) SARS-CoV-2-specific immunoglobulin levels (Optical Density values), and various cfDNA 674 
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characteristics during treatment of 3 representative patients. Cyan and purple lines stand for 675 

SARS-CoV-2-specific-IgM and SARS-CoV-2-specific-IgG levels, respectively; orange and green 676 

lines stand for proportion of short and long fragments, respectively; pink and blue lines stand for 677 

CT-5’-CC and 5’-CCCA end motif usages, respectively. The x-axis labels indicate the blood 678 

collection date in “Dmmdd” format; for instance, ‘D0127’ means Jan 27th, 2020. ns: non-significant; 679 

*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001. 680 

 681 

Figure 4. CfDNA fragmentation patterns around tissue-specific open chromatin regions. (A) 682 

normalized cfDNA coverage around tissue-specific open chromatin regions in controls, 683 

representative mild and severe cases, respectively. CfDNA signals are illustrated in various colors 684 

based on the patients or sample collection timepoints. Each row present one tissue and the y-axis 685 

show the normalized cfDNA coverage. (B) Plasma cfDNA from 1 day before, and ~6 hours after 686 

treatment of a patient receiving convalescent plasma therapy. Each row present one tissue; y-axis 687 

present the normalized read coverage (black line) and orientation-aware end signals (red and blue 688 

lines). (C) comparison of OCF values between controls and two representative COVID-19 patients. 689 

OCF (Orientation-aware CfDNA Fragmentation) is a measurement approach of cfDNA 690 

fragmentation pattern as defined in our previous work (34). Each tissue-of-interest has 3 columns: 691 

black, blue, and red dot represents one control, one timepoint in the mild case, and one timepoint in 692 

the severe case, respectively. The “ns” and asterisks represent the statistical comparisons between the 693 

COVID-19 cases and controls. ns: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p 694 

< 0.0001. 695 

 696 
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Figure 5. Summary of tissue injury assessment in all COVID-19 patients. For lungs, liver, kidney, 697 

and heart, the two columns represent frequencies of cfDNA samples that are predicted to suffer from 698 

injuries based on cfDNA fragmentation pattern analysis (left) and clinical diagnoses (right), 699 

respectively, for each patient. Blank points mean that clinical diagnoses are not available for these 700 

patients. For pancreas and brain, clinical diagnoses are not available for all patients and only the 701 

results from cfDNA fragmentation pattern analysis are shown. 702 

Tables 703 

 704 

Table 1. Characteristics of COVID-19 patients and controls 705 

 706 

Demographics Controls Mild patients Severe patients 
Number 32 18 19 
Age (years)* 45.61 (±8.07) 49.61 (±18.53) 59.16 (±13.82) 
Female (proportion) 3 (9.38%) 7 (38.89%) 4 (21.05%) 

Comorbidities 
   

Hypertension 0 4 6 
Type 2 diabetes mellitus 0 1 5 
Cardiovascular disease 0 0 3 
Gallbladder disease 0 0 3 
Chronic obstructive pulmonary disease 0 0 2 
Hepatitis B virus infection 0 0 2 
Metabolic arthritis 0 1 1 
Kidney cysts 0 0 2 
Thalassemia 0 1 0 

Medications 
   

Antiviral NA 18 19 
Antibacterial NA 3 19 
Antifungal NA 0 16 
Glucocorticoid NA 0 6 

* Age is presented as mean (±sd). 707 
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