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Abstract
Mobility data have demonstrated major changes in human movement patterns in response

to COVID-19 and associated interventions in many countries. This can involve sub-national

redistribution, short-term relocations as well as international migration. In this paper, we

combine detailed location data from Facebook measuring the location of approximately 6

million daily active Facebook users in 5km2 tiles in the UK with census-derived population

estimates to measure population mobility and redistribution. We provide time-varying

population estimates and assess spatial population changes with respect to population

density and four key reference dates in 2020 (First lockdown, End of term, Beginning of

term, Christmas). We also show how the timing and magnitude of observed population

changes can impact the size of epidemics using a deterministic model of COVID-19

transmission. We estimate that between March 2020 and March 2021, the total population of

the UK has declined and we identify important spatial variations in this population change,

showing that low-density areas have experienced lower population decreases than urban

areas. We estimate that, for the top 10% highest population tiles, the population has

decreased by 6.6%. Further, we provide evidence that geographic redistributions of

population within the UK coincide with dates of non-pharmaceutical interventions including

lockdowns and movement restrictions, as well as seasonal patterns of migration around

holiday dates. The methods used in this study reveal significant changes in population

distribution at high spatial and temporal resolutions that have not previously been quantified

by available demographic surveys in the UK. We found early indicators of potential

longer-term changes in the population distribution of the UK although it is not clear how

these changes may persist after the COVID-19 pandemic.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.22.21259336doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259336
http://creativecommons.org/licenses/by-nc/4.0/


Introduction
Responding to the outbreak of the COVID-19 pandemic has involved the widespread use of

location data collected from mobile devices1–3. Location data aggregated from individual

GPS locations and Call Detail Records have been used as a proxy for social contact in

infectious disease models4, and have been used to measure adherence to relevant

non-pharmaceutical interventions, such as domestic movement restrictions5. These data are

typically aggregated to preserve user privacy by decreasing the spatial and/or temporal

resolution of the data and applying censoring thresholds to aggregated metrics1. The

availability of these data sources has increased as platforms including Facebook, Apple,

Google, CityMapper, and mobile network providers like Vodafone and BT, have shared

anonymised user data to aid the response to the pandemic6–8.

The most common use of mobile location data for responding to COVID-19 has been as a

measure of travel and activity. This data is typically aggregated, anonymised and expressed

as a normalised deviation from a baseline value for specific locations or pairs of

locations1,2,5,9–11. Personally identifiable location data are also used for contact tracing and to

monitor individuals’ adherence to isolation and quarantine1,12. In the early stages of the

pandemic, mobile location data were combined with epidemiological data to estimate the

spatial diffusion of SARS-CoV-2 transmission13,14. Research using mobile location data has

demonstrated the large impact of COVID-19 and associated control measures such as

movement restrictions and “stay-at-home” orders on patterns of human movement5,10,14–16.

While there is strong evidence of disruptions in relative volumes of travel between locations,

there is less clarity about the specific spatial and temporal changes in population distribution

that have occurred during the pandemic.

The way that the distribution of population changes through time has important implications

for public health responses, health and economic impact assessments of COVID-19, and the

understanding of epidemic severity in the event of large redistributions of population.

Population estimates are critical for epidemiological analysis, but research typically employs

static estimates of population derived from annual or bi-annual census surveys and

projections. While these static population estimates are accurate at the time of

measurement, they do not reflect changes caused by major disruptions to patterns of

movement and migration17. In the UK, there have been a limited number of surveys

attempting to estimate the distribution of population during the COVID-19 pandemic,

primarily focusing on specific locations like London, or specific groups such as foreign

workers18,19.
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In this paper, we focus on creating estimates of changes in the UK population distribution at

a high spatial and temporal resolution to address existing gaps in our understanding of the

population distribution in the UK across continuous time scales. We propose a method for

generalising the location of Facebook users to the entire UK population, and provide

population estimates that “fill in” missing data between census population estimates. In the

first year of the COVID-19 pandemic we observed large disruptions in the population

distribution of the UK coinciding with seasonal patterns of movement and the dates of public

health interventions, as well as an overall trend of decreased populations in urban areas.

Coinciding with these subnational trends, we observe a decrease in the overall population of

the UK. Using the estimates of populations in specific locations, we demonstrate how

observed changes in population influence transmission using a model of COVID-19. In

particular, we show how variations in the timing and magnitude of population changes can

impact disease incidence. This has important implications for modelling approaches that

employ static population estimates, as estimates may not reflect the time-varying nature of

underlying populations.

Results

Population Data
Facebook, a social network and mobile application provider, records users actively sharing

their location with Facebook applications, referencing these locations to an approximately

2.5km2 gridded tile system in sequential 8-hour windows between March 10th 2020 and

March 31st 20216. We estimated changes in the UK population by: 1) aggregating tiles to a

5km2 grid to align with census population estimates; 2) using 2019 mid-year population

estimates for small statistical areas (Supplemental Figure 1) to estimate the spatial

distribution of the UK population before the epidemic (Figure 1a); and 3) using changes in

the distribution of Facebook users to adjust these population estimates each day (Figure

1b)6,20. The generalisation method assumes that Facebook users travel at the same rates as

the rest of the UK population.

To understand the usual spatial distribution of Facebook users, we used

Facebook-generated baseline estimates of population calculated in the 45 days before

March 10th, from January 25th to March 9th, 2020. This baseline period is automatically

back-calculated by Facebook prior to data sharing and provides the earliest available

information on the distribution of Facebook users in the dataset. Before applying the
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population adjustment, we compared the population of Facebook users in the baseline

period to census population estimates across the UK to identify spatial variations in the

distribution of Facebook users and census population. We found a different median

percentage of Facebook users to population in each of the three 8-hour reporting periods

(00:00 to 08:00, 08:00 to 16:00, and 16:00 to 0:00), of 7.46%, 9.1%, and 9.77% respectively

(Figure 1c). These distributions reflect differences in the number of people actively using

Facebook services at different times of day. During the baseline period, we found that the

majority of tiles (77%) have percentages of Facebook usage between 5 and 20%

(Supplementary Figure 2). There are some tiles where Facebook usage exceeds 75%,

which was typically observed in low population tiles. Extreme discrepancies greater than

100% Facebook usage, observed in 33 tiles in total, may result from interference from

sparse cellular network coverage (Supplemental Figure 3). For the remainder of the study,

we used the observed number of Facebook users in tiles between March 10th, 2020 and

March 31st, 2021 in the 16:00 to 00:00 window. This window has the lowest weekly variance

of the number of observed Facebook users (Supplemental Figure 4), and tends to record

evening/nighttime populations, making it more appropriate to compare to census population

estimates which measure nighttime population.

Figure 1. The relationship between Facebook users and census population estimates. a) The
population of the UK in the baseline period estimated by generalising the locations of Facebook users
actively sharing location. b) The total number of Facebook users in each time window, dashed
horizontal lines show baseline values used to define the proportion of users to census population.
Note that axis limits for the number of users do not begin at 0. Grey bars indicate the 2 weeks
preceding and following reference dates (red lines): “First national lockdown”, “beginning of summer
holidays”, “return to school”, and “Christmas”. The decrease in users in the 00:00 to 08:00 period in
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late October most likely results from daylight savings time, which is not accounted for in these time
windows. c) The distribution of the percentage of Facebook users in individual cells for each daily time
window, showing that Facebook usage as a proportion of population tends to be higher in daytime
periods.

Dynamic population changes
We measured spatial changes in population, focusing on four important dates in 2020: 1) the

first national lockdown introduced on March 23rd, 2020; 2) the beginning of summer holidays

on July 21st, 2020; 3) the return to school on September 1st, 2020; and 4) Christmas on

December 25th, 2020. School start and finish dates are different in the nations of the UK and

regionally, so we selected approximate values for schools in England. Note that schools in

the UK were not open for in-person learning between March and July 2020 due to COVID-19

restrictions.

We observed decreases in the population of urban areas following the announcement of the

first national lockdown, with a corresponding increase in less densely populated areas

(Figure 2a, Supplemental Figure 5). This pattern is similar to the population changes

observed in the beginning of the summer holidays period, when populations decreased in

populous urban and suburban areas (Figure 2b). We observed an inverse pattern of

population change during the return to school period, where populations increased in

populous and decreased in less populous areas (Figure 2c). The Christmas period coincided

with an announcement of travel restrictions in the South East of England on December 19th,

2020 (Tier 4), with a short term relaxation of measures on Christmas day for other areas21

(Supplemental Figure 6). In this period, we observed a large decrease in population in

central London and an increase in the population in tiles immediately peripheral to London

(Figure 3d).

We calculated time-varying population estimates for the largest built-up areas (BUAs) in the

UK which show major changes at key points in the epidemic (Figure 2e, Supplementary

Figure 7-8). We observed a sustained decrease in the population of London between March

10th, 2020 and the implementation of public health measures on March 23rd, 2020.

Comparing the 14 days before and after the first national lockdown, the population of London

decreased by 3.44% (196,000 people). Further, we estimate the population of London was

646,000 lower in total between March 2020, and March 2021, with some periods of even

lower population observed during the summer and Christmas holidays. Between March 2020

and March 2021, the population decreased in the 20 largest BUAs in the UK, with the largest

decreases observed in Greater London, West Midlands, and Greater Manchester BUAs

(Supplemental Figure 7-8).
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Figure 2. Time-varying estimates of population change. Population change in the two weeks
preceding and following significant reference dates: a) “First national lockdown”, b) “Summer”, c)
“Return to school”, and d) “Christmas”. e) Time-varying population estimates for the six largest BUAs.
Red lines indicate reference dates and grey areas show the two weeks preceding and following these
dates.

The absolute daily difference in the population size of each tile indicates the daily degree of

population flux. The total absolute daily difference across the UK had strong short-term

periodicity, but on a weekly level, changes in flux were clearly visible in association with the

four key reference dates (Figure 3). Additionally, other national interventions also showed

responses with this metric, including the second national lockdown on November 2nd 2020

marked with a 1, and the reopening of schools on March 8th (schools in the UK were shut

after January 1st 2020) marked with a 2.
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Figure 3. Total displacement of population through time. The total change in population through
time, measured as the difference between lagged population estimates in daily and weekly time
windows. Vertical dashed lines show significant dates ([1] Second National Lockdown, [2] Reopening
of schools).

Rural population increase
We measured population changes in areas of different population density by dividing tiles

into deciles based on their census population size (Supplemental Figure 8) and calculating

time-varying population estimates for these deciles (Figure 4a). We found large decreases in

the most populous decile in the first lockdown period, with the greatest increase in

population observed in the 2nd most populous decile (Figure 4b). In the summer, we

observed a decrease in the top two most populous deciles and a more even distribution of

population among the remaining deciles, including the least populous. This reflects

movement to rural areas coinciding with the beginning of summer holidays. The summer

pattern is mirrored by a decrease in less populous tiles in the return to school period. Finally,

we observed a similar, though reduced pattern of population decrease in the Christmas

period where population in the most populous decile decreased, while in less populous

deciles it increased.

Each decile showed different patterns of population change over the course of the study

period (Figure 4c), where the lowest decile’s population increased to 120% of census

estimates during the summer period. This decile shows a smaller response to Christmas

than others, with the most pronounced increases in the central deciles. Of note is that most

deciles did not return to the pre-Christmas population sizes, suggesting that people could

have remained where they travelled for Christmas as the UK entered new restrictions on
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26th December. We estimated that, for the top 10% highest population tiles, the population

has decreased by 6.6%.

Figure 4. Population changes by population decile. a) The national distribution of population
deciles for individual tiles. b) The total population of tiles in each decile over time (log scale). c) The
change in population for tiles in each population decile in the two weeks preceding and following
reference dates. d) The normalized population (relative to baseline census estimate) for individual
deciles through time. Note different y-axes.

Potential impact on transmission
Deviations from census populations have implications for infectious disease dynamics and

transmission models based on static population estimates. We used a simple SEIR

(Susceptible-Exposed-Infectious-Recovered) model to simulate a COVID-19 epidemic while

changing the underlying population size according to five different regimes of population

change (Figure 5, Supplemental Figure 11).

During the study period, populations in tiles deviated from census estimates from -100%

(tiles completely emptying) to greater than +1000%, with mean 0.02% and median -0.19%

across all time periods (Supplemental Figure 10). Extreme outliers in population increase

were rare, and reflected short increases in population in low population cells, for example,

areas like beaches which experienced rare, short-term, extreme increases. Across all time

periods, the distribution of deviations from census population was bimodal, with a larger

number of tiles experiencing a decrease in population. The majority (95.02%) of deviations in

population vary between +/- 25% for all tiles.
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Changes in population size impacted the infection incidence and the final cumulative

incidence (Figure 5, Supplemental Figure 11). Decreases in population of 25% at varying

times relative to the progression of the epidemic decreased the epidemic curve, and the

timing of the population change strongly impacted the effect on the total cumulative

incidence (Fig 5a-c). For different magnitudes of population change the epidemic profile

changes, and the total incidence is higher for an increased population (Fig 5d-f).

Figure 5. The effect of population change on an SEIR model of 1 million people. a) Regimes of
abrupt population decrease by 20% and slow return to baseline, starting at varying times. b) The
resulting disease incidence and c) the resulting final cumulative incidence as a proportion of the
population. The black line shows the “no change” scenario where population is constant. d) Regimes
of population change of varying magnitude (between -50% and +100%). e) The resulting disease
incidence and f) the resulting final cumulative incidence as a proportion of the original population.

Changes in population can also affect estimates of the impact of the epidemic in real-time.

Some statistics, like the rate of cases per 100,000 rely on census population estimates to

calculate disease incidence relative to a population. We found that the inclusion of

time-varying population estimates led to changes in the calculated COVID-19 incidence

rates, leading to an altered interpretation of the severity of outbreaks in different areas.

Using time-varying population estimates, we identified differences in the rate of confirmed

COVID-19 cases in the 8 largest BUAs in England ranging between 23.24% and -3.26% of

the rate calculated with static populations (Supplemental Figures 12-13). This difference

between epidemic rates reflects changes in the underlying population of these areas through

time. 84% of the time-varying rates are within 10% of the rates computed using a static
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population. Nonetheless, the differences in epidemic rates are not trivial, particularly in urban

areas during the period of highest COVID-19 cases between December 2020 and January

2021. The combined effect of high numbers of cases and population outflows from urban

areas led to a consistent underestimation of the scale of the COVID-19 epidemics in the

most populous Built Up Areas (Supplemental Figures 12-13).

Discussion
In this study, we present a novel approach for estimating population changes using a large,

near-real time dataset of the location of millions of Facebook users in the UK. This study

identifies important changes in the population of the UK coinciding with the announcement of

public health interventions and with seasonal migrations in the UK. We provide evidence

supporting previous reports of a decrease in population in urban areas. We also

demonstrate how observed changes in population have varied in space and time. We show

how these population changes can impact disease transmission and the predicted size of

epidemics. This is particularly important for understanding how the timing of population

changes relate to the progression of a disease epidemic. We also provide new estimates of

the rate of cases using time-varying populations in different locations, which could be

extended to other rates like calculated rates of vaccinations.

The COVID-19 pandemic has resulted in unprecedented changes in the population

distribution of the UK. These changes include abrupt changes in population as well as broad

trends of population change since the announcement of the first national lockdown in March

2020. Decreases in the population of the 20 largest urban areas in the UK have persisted

throughout 2020 which may reflect new patterns of employment and home working. The

trend of decreasing urban populations has not been monotonic, as the population of urban

centers has increased during specific periods. Nor has the trend of population increases in

less populous areas been uniform. As we demonstrate, rural populations have experienced

unique population dynamics during public health interventions and seasonal migrations

during summer holidays.

Our estimates of population change are similar to the limited available estimates of

population changes during COVID-19 in the UK, but provide much higher spatial and

temporal resolution18,19. In January 2021, the consulting firm PWC estimated that the

population of London would decrease by 300,000 people, while a study of the non-UK born

population estimated a decrease of ~600,000 people in Greater London18,19. While these

estimates are limited, they provide helpful early evidence of the large-scale changes in
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population that have occurred during the pandemic and reflect estimated population changes

of a similar magnitude as those reported in detail in this study (646,000 in Greater London).

The population estimates calculated in this study are a novel resource for understanding the

evolution of the UK population through time and could be used to “fill the gap” between

census population estimates. In the future, these estimates can be compared to results from

the 2021 census to gain a detailed understanding of their accuracy at a high spatial

resolution, and to identify potential biases in the generalization method. It is important to

note that demographic trends are informed by varying rates of births, deaths, immigration

and emigration. Changes in commuting patterns, the labor market, and seasonal migrations

also impact patterns of population change17,19. The estimates presented in this study are

intended to provide detailed information on dynamic population changes between March

2020 and March 2021 but it is unclear how the trends of population change observed during

the COVID-19 pandemic will persist in the future.

We demonstrate how transmission dynamics can be influenced by dynamic changes in

population size using a transmission model of COVID-19. While extreme increases in

population are rare, the regular fluctuation of populations through time is an important factor

which is not widely incorporated in epidemiological models, and something that occurs at a

frequency shorter than standard intervals for census population estimation. We also

demonstrated that time-varying population estimates impact reported rates of disease

incidence. Other measurements of disease impact (attack rate, hospitalisation rate) could

also be calculated by incorporating contemporaneous (time-varying) estimates of population.

While this information is useful for retrospective reinterpretations of the severity of disease in

particular locations, it would be particularly valuable for the modelling of disease spread,

where time-varying population estimates could more accurately reflect population

distributions in real time.

This study and the proposed method of population generalisation have a number of

limitations. As the basis for our population generalisation, we use the closest available

census population estimates to the baseline period. As demonstrated in this study, the

population of the UK experiences dynamic redistributions and it is not possible to identify any

population changes which occured between the time of census estimation and the baseline

period. The estimates presented in this study will be valuable for comparison to results from

the 2021 census, and can provide further information on the use of alternative sources of

population data for measuring patterns of population change.
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Further research is required to fully understand the demographic characteristics of Facebook

users who are presented in aggregated population and mobility metrics, and how the

behaviour of these individuals varies from the general population22,23. There is still a limited

understanding of how user subsets from applications like Facebook vary from the general

population and how this difference may be reflected in aggregated location metrics. In the

future, research on the bias of these user subsets could be used to improve the

generalisation of the behaviour of these individuals for representing the entire population.

Conclusion

Time-varying population estimates provide detailed information on major changes in the

population distribution of the UK during the COVID-19 pandemic. Generalising the

movement of Facebook users, we present strong evidence of population decreases in major

urban areas in the UK and demonstrate the ways that these changes impact transmission

models.

Methods

Data
We used population data provided by the Facebook Data for Good program6 which records

the number of active Facebook users in spatial tiles in sequential time periods. We used

data from March 10th 2020 to March 31st 2021, and we also rely on the

Facebook-generated baseline from a 45 day period between January 29th and March 9th

2020 as our reference for the baseline population of Facebook users.

Facebook datasets are provided in a gridded spatial reference, referred to as “tiles” which

are referenced by a unique integer (a “quadkey”). The resolution of tiles is defined by a

“zoom level.” The population data is provided at zoom level 13 (approximately 2.5 km2)  and

zoom level 12 (approximately 5 km2). We aggregate population data to zoom level 12 to

combine it with census population estimates. There are 4 level 13 tiles for each level 12 tile.

Data are provided in sequential 8-hour periods (00:00 - 08:00, 08:00 - 16:00, and 16:00 to

00:00) and are available with approximately 48 hours delay. Baseline population values are

defined as the median number of users in a tile for each 8-hour period during a baseline

period. These values provide an aggregated measure of the population of individual tiles,
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which we use to incorporate information preceding the start of the full dataset on March 10th

2020.

We applied a population adjustment to the population of Facebook users, transforming the

number of Facebook users into the number of actual people using 2019 mid-year population

estimates from small statistical areas in the UK (England and Wales: Output Areas, Northern

Ireland: Small Areas, Scotland: Data Zones). These estimates are the highest resolution

population data produced by UK statistics agencies. We used 2019 mid-year estimates as

they are the closest estimates available to the baseline period of the Facebook data. There

is uncertainty in the relationship between 2019 population estimates and the distribution of

Facebook users due to unobserved changes in population between 2019 and March 2020.

Facebook population data do not include demographic information and therefore, we are not

able to compare to the total UK population on age structure, gender, ethnicity, or

socioeconomic status because of the privacy-preserving structure of the dataset. In previous

research, we have found no associations with key demographic factors at the tile level24.

Users may also be removed from the dataset due to varying patterns of usage including

deactivating their accounts or pausing their use of Facebook services, or because of

international travel. Finally, because location sharing is an “opt-out” feature for Facebook

users, there may be bias in the population of Facebook users included in these datasets. We

use data from a specific time period (16:00 to 00:00) to reduce the influence of varying

patterns of usage.

Population Adjustment
We estimated the population from the number of Facebook users by combining Facebook

population data with census population estimates. First, we extracted census Population

estimates to zoom level 12 tiles by assigning the population weighted centroid of each

census to the overlapping tile. We then summed the census population estimates for each

tile

𝑃
𝑖
 =

𝑗=1

𝑛

∑ 𝑂
𝑖, 𝑗

 

where is the census population of the tile, and is the OA population estimate𝑃
𝑖

𝑖𝑡ℎ 𝑆
𝑖, 𝑗

𝑗𝑡ℎ

intersecting the tile. We then computed the the median number of Facebook users in𝑖𝑡ℎ

each tile in the baseline period for each tile

for𝐹
𝑖

= 𝑚𝑒𝑑𝑖𝑎𝑛(𝐹
𝑖, 𝑗

) 𝑖 = 1,...  ,  𝑛
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where is the reference number of Facebook users in the tile and is the baseline𝐹
𝑖

𝑖𝑡ℎ 𝐹
𝑖, 𝑏

𝑗𝑡ℎ

value for the the tile. We then computed the proportion of Facebook users to census𝑖𝑡ℎ

population for each tile

𝑃𝑟𝑜𝑝
𝑖
 =  

𝐹
𝑖

𝑃
𝑖

where the is the proportion of Facebook users, is the baseline number of Facebook𝑃𝑟𝑜𝑝
𝑖

𝐹
𝑖

users, and is the census population estimate of the tile. We then adjusted the number𝑃
𝑖

𝑖𝑡ℎ

of Facebook users to the population using these proportions

𝑃
𝑎𝑑𝑗

𝑖

=  
𝐹

𝑜𝑏𝑠
𝑖

𝑃𝑟𝑜𝑝
𝑖

where is the adjusted population, is the observed number of Facebook users, and𝑃
𝑎𝑑𝑗

𝑖

𝐹
𝑜𝑏𝑠

𝑖

is the baseline proportion of Facebook users to census population for the tile.𝑃𝑟𝑜𝑝
𝑖

𝑖𝑡ℎ

Population Variation
We measured the change in population in individual cells in sequential daily and weekly time

periods as a proxy for population movement. To compute this measurement in daily periods,

we computed the difference between lagged and current population estimates for individual

tiles. We then summed the absolute value of these differences for daily periods.

To compute the difference in population change for weekly periods, we computed the

average population of individual tiles per week, then calculated the difference between

lagged and current population estimates for individual tiles. We summed the absolute value

of these differences for weekly periods to measure weekly changes in population.

Population Deciles
We assigned tiles to population deciles based on the value of their census populations. This

labelling was consistent across the time series and was not altered in response to population

changes in individual tiles.

Transmission Model
To simulate the progression of a sample epidemic in the presence of changes in population

size, we constructed a SEIR model which models the number of individuals in Susceptible

(S), Exposed (E), Infectious (I), Recovered (R) compartments through time. We assumed

population changes occurred independently of the infectious state. The progression of the
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modelled disease is influenced by the parameter R0, which defines the average number of

infections that will result from a single infection in a completely susceptible population, δ, the

latent period, and γ, the duration of infectiousness. In our example, we use a model where

R0 = 2, δ = , γ = 25,26, initial population = 1,000,000.1
3

1
5

Incidence Rates
We calculated the rate of COVID-19 cases using data on confirmed COVID-19 cases by

specimen date in Lower Tier Local Authorities (LTLAs)27. We aggregated this data to Built Up

Areas (BUAs) using a lookup of LTLAs to BUAs28. We restricted this method to the top 20

BUAs by population (total BUAs: 6,347) because these BUAs encompassed multiple LTLAs,

ensuring spatial consistency between COVID-19 case data and population data.

We then extracted census and dynamic (estimated) population data from tiles to BUAs. We

computed the rate of COVID-19 cases per 100k people against a static population for each

time period using

𝑅𝑎𝑡𝑒
𝑠𝑡𝑎𝑡𝑖𝑐

 = ( 
𝐶𝑎𝑠𝑒𝑠

𝑃𝑜𝑝
𝑠𝑡𝑎𝑡𝑖𝑐

) *  100000

Where is the rate of COVID-19 cases in a given time period against a static𝑅𝑎𝑡𝑒
𝑠𝑡𝑎𝑡𝑖𝑐

𝐶𝑎𝑠𝑒𝑠

population . We computed the same rate using a time-varying (dynamic) population𝑃𝑜𝑝
𝑠𝑡𝑎𝑡𝑖𝑐

using:

𝑅𝑎𝑡𝑒
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 = ( 
𝐶𝑎𝑠𝑒𝑠

𝑃𝑜𝑝
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) *  100000

Where is the rate of COVID-19 cases in a given time window by𝑅𝑎𝑡𝑒
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐶𝑎𝑠𝑒𝑠

population, .𝑃𝑜𝑝
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

Data and Code Availability
The terms of use of data from the Facebook Data for Good program prohibit unauthorised

distribution. Data is available from the Facebook Data for Good Partner Program by

application. Data processing and analysis code is available from

https://github.com/cmmid/uk_fb_population_estimation. We have also aggregated our

population estimates to 2019 Local Authority Districts, available from

https://zenodo.org/record/5013620.
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