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Abstract 17 

Thousands of scientific articles describing genes associated with human diseases are published 18 

every week. Computational methods such as text mining and machine learning algorithms are 19 

now able to automatically detect these associations. In this study, we used a cognitive 20 

computing text-mining application to construct a knowledge network comprised of 3,723 genes 21 

and 99 diseases. We then tracked the yearly changes on these networks to analyze how our 22 

knowledge has evolved in the past 30 years. Our approach helped to unravel the molecular 23 

bases of diseases over time, and to detect shared mechanisms between clinically distinct 24 

diseases. It also revealed that multi-purpose therapeutic drugs target genes which are 25 

commonly associated with several psychiatric, inflammatory, or infectious disorders. By 26 

navigating in this knowledge tsunami, we were able to extract relevant biological information 27 

and insights about human diseases. 28 
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Introduction 31 

Thousands of scientific articles are published every day, piling up with millions of already 32 

published papers (Fortunato et al., 2018). Keeping abreast of scientific significance has become 33 

an overwhelming task for researchers in their own fields and in other areas of science. In this 34 

scenario, computational methods such as text mining, machine learning, and cognitive 35 

computing are helping scientists to summarize published scientific literature. Recently, machine 36 

learning approaches have been used to analyze and integrate a variety of biological and 37 

medical data (Littmann et al., 2020; Zitnik et al., 2019). These include methods that integrate 38 

electronic health records (Rajkomar et al., 2018), capture latent knowledge from the material 39 

science literature (Tshitoyan et al., 2019), and discover potential novel drugs to treat psychiatric 40 

and neurological disorders using cognitive computing and network medicine analysis of the 41 

medical literature (Lüscher Dias et al., 2020). 42 

Particularly, the field of molecular biology has seen a remarkable increase in the number 43 

of new studies in recent decades. This has resulted in a large number of genes associated with 44 

diseases. As a positive consequence of this efflux of genetic knowledge, diseases that were 45 

previously not known to have common etiologies are now being connected through their shared 46 

alterations in gene expression and interaction patterns, which has opened many potential new 47 

roads for clinical advances (Brooks et al., 2014; Carson et al., 2017; Lees et al., 2011; Postma 48 

et al., 2011). One significant example of this trend is the association between psychiatric 49 

disorders and immune-related diseases (Gibney and Drexhage, 2013; Marrie et al., 2017; Wang 50 

et al., 2015). 51 

Network medicine (Barabási et al., 2011), a contemporary approach to studying 52 

relationships between genes and diseases, has also been made possible because of the large 53 
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amounts of data on genes and diseases available online. Moreover, knowledge networks, that 54 

is, complex graphs that connect concepts according to the established knowledge, can be 55 

analyzed under the network medicine framework to produce novel insights from medical 56 

knowledge (Bai et al., 2016; Lüscher Dias et al., 2020). 57 

In this study, we used IBM Watson for Drug Discovery (WDD; Y. Chen et al., 2016), a 58 

cognitive computing text-mining application, to extract known relationships between genes and 59 

psychiatric, inflammatory, and infectious diseases from the peer-reviewed literature published 60 

between 1990 and 2018. We developed knowledge networks of genes and diseases and 61 

monitored the evolution of these relationships yearly. We then quantified and described how 62 

genes were connected to each category of disease over this period and how key biological 63 

functions unraveled as new genes were added to the network. We also found pairs of diseases 64 

from different categories that significantly share genes with each other, indicating underlying 65 

clinical proximity between diseases that have not been historically related. Lastly, we explored 66 

the genes that were common to all psychiatric, inflammatory, or infectious diseases and 67 

investigated which drugs target them. By using a network medicine approach, we were able to 68 

extract relevant biological information and new insights of genes, pathways, and therapeutic 69 

drugs associated with complex human disorders.  70 
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Results 71 

Evolution of knowledge on the molecular bases of human diseases. 72 

We used WDD, a cognitive computing text-mining application, to identify connections 73 

between genes and diseases in millions of peer-reviewed studies (Y. Chen et al., 2016). For 74 

each year from 1990 to 2018, we queried WDD to obtain gene sets related to 99 inflammatory, 75 

psychiatric, and infectious diseases (Table S1). WDD detects terms of interest, such as genes 76 

and diseases, in scientific texts (e.g., PubMed abstracts and full text journal articles) and finds 77 

contextual elements connecting them (e.g., prepositions and verbs). These connections can be 78 

extracted from many distinct sources of evidence such as gene expression alterations, genome-79 

wide association studies, or protein expression experiments. A confidence score is established 80 

for each relationship based on the strength of the detected semantic association and also the 81 

number of documents in which the connection is found. However, the type of study from which 82 

the association is obtained is not considered for the calculation of the evidence score. Here, we 83 

kept only gene-disease relationships with a confidence score equal or higher than 50%, and 84 

which were supported by at least 2 studies. 85 

Next, we built yearly disease-disease networks connecting inflammatory, infectious, and 86 

psychiatric diseases according to the significance of the genes shared by each pair of diseases 87 

(Fig. 1A). These networks were cumulative: the 2018 network (Fig. 1A, rightmost network) 88 

displays all connections found in the entire period, while the 2000 network (Fig. 1A, second 89 

network from left to right), for instance, contains all connections from 1990 up to that year. The 90 

1990 network (Fig. 1A, leftmost network) depicts the relationships between diseases from the 91 

beginning of the literature registries up to 1990. 92 

 93 
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Figure 1. Evolution of knowledge on the molecular bases of human diseases. A. Disease-95 

disease knowledge network on infectious, inflammatory, and psychiatric disorders from 1990 to 96 

2018. Nodes represent diseases and are proportional to the number of genes associated with 97 

each disease in each year. Edge weights are proportional to the significance of gene-sharing 98 

between each pair of diseases. Only edges with a p-value < 0.01 are depicted. B. Cumulative 99 

number of genes associated with each disease category and with all diseases from 1990 to 100 

2018. C. Distribution of the number of genes associated with each disease and category in 101 

2018. D. Number of new genes added to the network in each category per year. E. Number of 102 

new genes added to the network in selected diseases each year. Color code: Green – 103 

infectious diseases, orange – inflammatory diseases, and blue – psychiatric disorders. 104 

 105 

We then assessed how these relationships evolved over the past three decades (1990–106 

2018) and explored the historical trends of the new genes connected to the network during the 107 

period (Fig. 1B–E and Table S2). In 1990, only 95 genes were connected in the network (Fig. 108 

1B), and no association between psychiatric disorders and inflammatory or infectious diseases 109 

could be established through shared genes (Fig. 1A). Accordingly, the overall similarity between 110 

diseases (between or within categories) was low in 1990 (Fig. S1). From 1990 to 2010, with the 111 

constant increase in the number of genes associated with diseases in all categories, a 112 

preliminary approximation between inflammatory and infectious diseases was observed (Fig. 113 

1A, second panel, and Fig. S1A). During the next 9 years (2010 to 2018), the new genes added 114 

to the network (Fig. 1B) resulted in a strengthening of the connections between infectious and 115 

inflammatory diseases, and a fast approximation between psychiatric disorders and the other 116 

two categories (Fig. 1A, fourth panel, and Fig. S1A). Meanwhile, the proximity of diseases within 117 
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the same categories also increased (Fig. S1B). Inflammatory diseases occupy a central position118 

in the 2018 network (Fig. 1A, fourth panel), which reflects their high between- and within-119 

category similarities sustained throughout the 30-year period (Fig. S1). Psychiatric and120 

infectious diseases presented the lowest similarity between each other (Figs. 1A and S1). 121 

 122 

 123 

Figure S1. Evolution of knowledge – supplementary results. A and B. Evolution of the124 

mean disease-disease similarity between diseases of different categories (A) or within diseases125 

of the same categories (B). C. Comparison of the total number of papers retrieved from PubMed126 

on diseases of all categories that were connected to less than 100 genes in the 2018 network127 

with that connected to more than 100 genes in 2018. The p-value is obtained from the t-test of128 

the mean comparison between the two distributions. 129 

 130 

In 2018, a total of 3,723 genes were present in the network (Fig. 1B). The number of131 

genes associated with each disease in the three different categories in 2018 also varied (Fig.132 

1C). The infectious diseases with the highest number of connected genes in 2018 were hepatitis133 

B (414 genes), hepatitis C (506 genes), and HIV infection (856 genes; Fig. 1C). However, 55 of134 
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63 infectious diseases were connected to less than 100 genes in 2018 (Fig. 1C). The most 135 

connected inflammatory diseases were psoriasis (346 genes), systemic lupus erythematosus 136 

(393 genes), and arthritis (490 genes; Fig. 1C). In the category of psychiatric disorders, 137 

Alzheimer’s disease was the most connected (657 genes), followed by schizophrenia (547 138 

genes) and depression (402 genes; Fig. 1B). The imbalance in the distribution of genes 139 

connected to infectious diseases likely reflects a bias in the research interest toward the 140 

discovery of genes related to diseases already connected to more genes. In fact, the 2018 141 

network showed that the number of scientific papers that mentioned poorly connected diseases 142 

(less than 100 genes) is significantly lower than the number of papers published on highly 143 

connected diseases (more than 100 genes) (Fig. S1C). 144 

Distinct historical trends of discovery were seen for each disease category (Fig. 1D and 145 

Table S3). Prominent peaks of gene-association discovery occurred in 1996 for infectious 146 

diseases, in 2005 for inflammatory diseases, and in 2013 for psychiatric disorders (Fig. 1C). 147 

From 2010 to 2017, the rate of gene discovery in all three categories increased (Fig. 1C). The 148 

significant increase in the number of genes associated with infectious diseases observed in 149 

1996 was mostly driven by 154 new genes associated with HIV infection (Fig. 1D), which 150 

corresponded to 50% of the new genes added to the network in that year (Table S3). The triple 151 

therapy for HIV using nucleoside reverse-transcriptase inhibitors and protease inhibitors was 152 

established in 1996 (Hammer et al., 1996), which likely influenced this outburst of genetic 153 

discovery. The 2005 increase in the number of genes associated with inflammatory diseases 154 

was mostly related to the new genes connected to psoriasis (41 genes) and systemic lupus 155 

erythematosus (33 genes; Fig. 1D), which together corresponded to 20% of the new genes 156 

associated with all of the diseases in 2005 (Table S3). The Th17 cell lineage was discovered in 157 
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2005 (Langrish et al., 2005), a cell type that has since been strongly associated with 158 

autoimmune and infectious diseases (Zambrano-Zaragoza et al., 2014). In 2013, a large 159 

number of new genes were associated with Parkinson’s disease (165 genes Fig. 1D), which 160 

corresponded to 17% of the new genes in the network in that year (Table S3). We could not 161 

detect any specific scientific landmark in 2013 that could explain this peak. Nevertheless, 162 

important genes related to the innate immune response to pathogens and inflammation are 163 

among the new genes associated with Parkinson’s disease in 2013, such as interleukin 1 beta 164 

(IL1B) and the p105 subunit of the nuclear factor kappa B (NFKB1). 165 

 166 

Evolution of disease relationships between categories 167 

Next, we investigated the evolution of the similarity between diseases from different 168 

categories according to their shared genes (see Methods section). For the top 9 most 169 

connected diseases of each category in 2018 (i.e., diseases connected to more genes), we 170 

detected the diseases from the other two categories with the most significant gene sharing 171 

between them and analyzed how these relationships evolved from 1990 to 2018 (Figs. 2, S2, 172 

S3, and S4). Alzheimer’s disease was the psychiatric disorder with the highest similarity to 173 

inflammatory diseases in 2018, including arthritis and systemic lupus erythematosus (Fig. 2A). 174 

The relationships between Alzheimer’s disease and these disorders grew steadily in 175 

significance from 1990 to 2018 (Fig. S2A), which captures the now well-established relevance of 176 

inflammatory processes in the pathophysiology of Alzheimer’s disease (Newcombe et al., 2018). 177 

Surprisingly, fibromyalgia was similar to several psychiatric diseases: depression, anxiety, 178 

bipolar disorder, schizophrenia, and Huntington’s disease (Figs. 2A and S2). The total number 179 

of genes associated with fibromyalgia in 2018 was low (25 genes), but 72% of these (17 genes) 180 
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are also associated with depression. These are genes related to nervous system development, 181 

such as brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neuropeptide 182 

Y (NPY), and inflammatory response, including interleukin 6 (IL6), C-X-C motif chemokine 183 

ligand 8 (CXCL8), and tumor necrosis factor (TNF). In fact, fibromyalgia patients often present 184 

psychiatric comorbidities such as depression and anxiety (Galvez-Sánchez et al., 2020). 185 
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Figure 2. Evolution of disease relationships between categories. A. Disease-disease 187 

similarity between diseases of different categories in the 2018 network according to their shared 188 

genes. The similarity score was defined as the –log10pval of the Fisher’s exact test result of the 189 

gene overlap between each disease pair. Each heatmap represents the similarity score 190 

between diseases of two different categories: A. psychiatric versus inflammatory diseases. B. 191 

psychiatric versus infectious diseases. C. inflammatory versus infectious diseases. 192 

 193 

Among infectious diseases, herpes was the most similar disease to autism, 194 

schizophrenia, and Huntington’s disease and was also among the top 5 most similar infectious 195 

diseases to depression, Parkinson’s disease, and Alzheimer’s disease (Figs. 2B and S3). 196 

Herpes infection might be associated with the development of Alzheimer’s disease (Harris and 197 

Harris, 2015); the typical amyloid-β deposition that occurs in the brain of Alzheimer’s disease 198 

patients could be an innate immunity mechanism to fight herpes virus infections (Eimer et al., 199 

2018). Our results indicate that there has been latent evidence of that association since the 200 

early 2000s in the scientific literature (Fig. S3A). In the 2005 network, Alzheimer’s disease and 201 

herpes virus infection shared 14 genes, which represented 58% of the known genes associated 202 

with herpes infection at that time. 203 

 204 
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 205 

 206 

Figure S2. Disease-disease similarity evolution between psychiatric and inflammatory207 

diseases from 1990 to 2018. A–I. Evolution of the similarity between psychiatric disorders and208 

inflammatory diseases: Alzheimer’s disease (A), anxiety disorder (B), autism (C), bipolar209 

disorder (D), dementia (E), depression (F), Huntington’s disease (G), Parkinson’s disease (H),210 

and schizophrenia (I). Similarity scores represent the –log10pval of the Fisher’s exact test result211 

of the gene overlap between each disease pair in each year from 1990 to 2018. 212 
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 213 

 214 

Figure S3. Disease-disease similarity evolution between psychiatric and infectious215 

diseases from 1990 to 2018. A–I. Evolution of the similarity between psychiatric disorders and216 

infectious diseases: Alzheimer’s disease (A), anxiety disorder (B), autism (C), bipolar disorder217 

(D), dementia (E), depression (F), Huntington’s disease (G), Parkinson’s disease (H), and218 

schizophrenia (I). Similarity scores represent the –log10pval of the Fisher’s exact test result of219 

the gene overlap between each disease pair in each year from 1990 to 2018. 220 
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Autoimmune inflammatory diseases, such as systemic lupus erythematosus, arthritis, 222 

and psoriasis, also showed strong gene sharing with viral infections such as hepatitis B and C, 223 

respiratory syncytial virus (RSV) infection, influenza, and HIV (Figs. 2C and S4). The 224 

association between viral infections and autoimmune diseases is well documented (Getts et al., 225 

2013). For instance, the SARS-CoV-2 virus can trigger Guillain–Barré syndrome, a neurological 226 

autoimmune disease, in COVID-19 patients (Dalakas, 2020). Dengue patients also present a 227 

higher risk of developing autoimmune diseases, such as systemic lupus erythematosus and 228 

vasculitis (Li et al., 2018), an association that was also captured in our analysis of the scientific 229 

literature since the late 1990s (Fig. S4I). 230 

 231 
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 232 

 233 

Figure S4. Disease-disease similarity evolution between inflammatory and infectious234 

diseases from 1990 to 2018. A–I. Evolution of the similarity between psychiatric disorders and235 

infectious diseases: age related osteoporosis (A), ankylosing spondylarthritides (B), arthritis (C),236 

chronic ulcerative colitis (D), Crohn’s disease (E), psoriasis (F), sarcoidosis (G), scleroderma237 

(H), and systemic lupus erythematosus (I). Similarity scores represent the –log10pval of the238 

Fisher’s exact test result of the gene overlap between each disease pair in each year from 1990239 

to 2018. 240 
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 241 

We then examined the number of publications retrieved from PubMed using the topmost 242 

similar pairs of diseases from distinct categories as queries (see Methods section; Fig. 3). The 243 

goal was to find out whether the gene-sharing similarities between diseases from different 244 

categories detected in our networks could also be captured from direct co-occurrence in the 245 

general peer-reviewed literature over the 30-year period. For each disease pair, we obtained a 246 

ratio between the similarity score of the diseases (i.e., the significance of the gene sharing 247 

between them) and the total number of studies retrieved from PubMed that mention both 248 

diseases of the pairs together (Table S4). This similarity-to-paper ratio was used to detect 249 

potentially understudied pairs of diseases that significantly share genes. Low similarity-to-paper 250 

ratio values (Figs. 3A and 3B, light green, and Table S4) represent similar diseases with many 251 

papers already published about them or dissimilar disease pairs. An example of such a pair is  252 

fibromyalgia and depression. These diseases have significant gene sharing and also hundreds 253 

of scientific papers that explore their relationship in the literature (Fig. 3B). Conversely, the 254 

genetic association between osteoporosis and mycobacterial infection is low and so is the 255 

number of papers that investigate these diseases together (Fig. 3B). These cases were 256 

considered as examples of a low knowledge gap between the genetic similarity obtained from 257 

our network analysis and the established literature coverage of the disease pairs. 258 
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 259 

 260 

Figure 3. Evolution of the knowledge gap between diseases of different categories. A.261 

Number of disease pairs according to the similarity-to-paper ratio index. This index was262 

obtained as a ratio of the similarity score to the total number of papers published for each263 

disease pair in 2018. Low similarity-to-paper ratio (<10) is colored in blue; intermediate264 

similarity-to-paper ratio (10 < ratio < 40) is colored in yellow; and high similarity-to-paper ratio265 

(>40) is colored in pink. B. Selected cases of disease pairs with low, intermediate, or high266 

similarity-to-paper ratios depicting the evolution in the number of papers on each pair and the267 

evolution of the similarity between them. 268 
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 269 

Cases with an intermediate similarity-to-paper ratio (Figs. 3A and 3B, yellow, and Table 270 

S4) were considered as cases of moderate knowledge gap (Fig. 3A), which was the case for 271 

arthritis and hepatitis B (Fig. 3B). As previously mentioned, several recent studies have 272 

explored the association between viral infections and autoimmune diseases (Dalakas, 2020; 273 

Getts et al., 2013; Li et al., 2018). In 2018, there were over 250 published papers in which 274 

arthritis and hepatitis B were mentioned together (Fig. 3B). Virally mediated arthritis represents 275 

~1% of all arthritis cases, including cases related to hepatitis B infection (Marks and Marks, 276 

2016). Scientists have detected the hepatitis B virus in the synovial fluid of rheumatological 277 

patients, which could contribute to the pathogenesis of arthritis (Chen et al., 2018). Although 278 

these diseases are known to be clinically associated at least since the 1970s (Mirise and 279 

Kitridou, 1979), our results show that the knowledge on the gene sharing between them 280 

increased rapidly after 2015, which was not followed at the same rate by the number of papers 281 

published on the two diseases together. This represents a potential gap to be explored by novel 282 

research on the genetic bases of the relationship between arthritis and hepatitis B. 283 

Lastly, we considered the disease pairs with strong gene sharing and few studies 284 

supporting a direct association as cases of a high knowledge gap (Figs. 3A and 3B, pink, and 285 

Table S4). We suggest that these cases might represent potentially underexplored fields of 286 

research that deserve further investigation. Surprisingly, the number of papers published until 287 

2018 that mentioned psoriasis and malaria together was neglectable (Fig. 3B). These diseases 288 

share 31 genes, one-third of the genes associated with psoriasis, and over 10% of the genes 289 

associated with malaria in the 2018 network. Hydroxychloroquine, a drug used to treat malaria 290 

(Ben-Zvi et al., 2012) and rheumatic diseases, such as arthritis and lupus (Ben-Zvi et al., 2012), 291 
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can trigger psoriatic lesions (Balak and Hajdarbegovic, 2017). Among a few papers in which 292 

malaria and psoriasis are mentioned together, there is a report from 2014 that describes cases 293 

of hydroxychloroquine-induced psoriasis in patients undergoing malaria treatment (Gravani et 294 

al., 2014). The authors of this study suggest that there should be guidelines for the 295 

management of psoriasis patients who are also at risk of malaria (Gravani et al., 2014). Our 296 

findings corroborate the need for future studies to investigate the association between these 297 

diseases. 298 

 299 

Evolution of biological pathways 300 

We performed a gene overrepresentation analysis (ORA) against Reactome pathways 301 

with the genes associated with the top 9 most connected diseases in each year from 1990 to 302 

2018 (Figs. 4-6 and Table S5). We detected 433 Reactome pathways that presented significant 303 

enrichment (p.adjust < 0.01) among the genes of at least one disease (Table S5). Functional 304 

enrichment analysis, such as ORA, often yields too many significant pathways, making these 305 

results difficult to interpret at the individual pathway level. For this reason, we used a network 306 

approach to reduce the complexity of the obtained set of enriched pathways (see Methods 307 

section). Briefly, we built a pathway network (Fig. 4) with the significant Reactome pathways 308 

obtained from the ORA. We connected these pathways to each other according to the gene 309 

sharing between them, similar to what was done in Fig. 1A. We then identified 11 clusters of 310 

closely connected pathways in the network and annotated these clusters according to the main 311 

biological functions of the pathways within them (Fig. 4 and Table S5). One of the detected 312 

clusters grouped several pathways associated with interferon-stimulated genes, interleukins, 313 

and antigen presentation (Fig. 4 and Table S5). The pathways in this cluster were significantly 314 
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enriched among the genes of diseases in all categories, including malaria, HIV infection, 315 

arthritis, lupus, depression, and Alzheimer’s disease (Fig. 5). The pathways related to 316 

interleukin signaling (e.g., “interleukin 10 signaling”), for instance, were among the top enriched 317 

pathways associated with depression genes in the 2018 network (Fig. 5 and Table S5). Another 318 

cluster of pathways that showed consistent enrichment across all disease categories was NFκB-319 

mediated inflammation induced by toll-like receptors (TLRs), T-cell receptors (TCRs), and B-cell 320 

receptors (BCRs; Fig. 4). These results illustrate the most recurring theme detected in our 321 

study: psychiatric, inflammatory, and infectious diseases share common immunological 322 

mechanisms that are mostly related to innate immunity and inflammation. 323 
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 324 

Figure 4. Reactome term network built from the ORA results of the genes associated with325 

human diseases in 2018. Significant Reactome ORA terms (p.adjust < 0.01) obtained from the326 

genes of the top 9 diseases in the 2018 network were connected to each other according to the327 

significance of the gene sharing between them (edge weight). Only terms with a gene sharing328 

with a p.adjust < 0.01 were connected. We detected 11 clusters (node colors) of closely related329 

terms using the Louvain clustering algorithm in the R package igraph (Csardi and Nepusz,330 

2006) and compared the enrichment score distribution of the terms in these clusters in each331 

disease category (box plots). Box plots are colored according to the disease categories: green –332 

infectious diseases, orange – inflammatory diseases, and light blue – psychiatric disorders. Dots333 
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in the box plots represent individual enriched Reactome pathways that belong to each network334 

cluster. 335 

 336 

 337 

 338 

Figure 5. Key biological pathways are enriched among the genes associated with human339 

diseases in 2018. A. ORA networks depicting the enrichment score of Reactome pathways in340 

selected infectious, inflammatory and psychiatric disorders. The networks in A have the same341 

topology of the network in Figure 04. The nodes are colored according to the logarithm of342 

enrichment score (-log10pval) of the terms represented by each node. B. ORA enrichment score343 

distribution of the terms in the clusters and diseases from panel A. Box plots are colored344 

according to the category of each disease: green – infectious, orange – inflammatory, and light345 
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blue – psychiatric. Dots in the box plots represent individual Reactome pathways that belong to 346 

the clusters listed in the y axis and that were enriched in each disease. 347 

 348 

Conversely, we found a cluster of closely connected pathways related to 349 

neurotransmission that were enriched mostly among the genes of psychiatric disorders (Fig. 4 350 

and Table S5). However, three inflammatory and infectious diseases (hepatitis B, arthritis, and 351 

HIV infection) presented enrichment for pathways in this cluster (Fig. 5 and Fig. S5). The genes 352 

related to these diseases presented enrichment for the pathway “transcriptional regulation 353 

MECP2”, a member of the neurotransmission cluster. Methyl CpG binding protein 2 (MECP2) is 354 

located in the X chromosome, and mutations in this gene are the primary cause of Rett 355 

syndrome (Liyanage and Rastegar, 2014). There is no evidence in the scientific literature that 356 

there is a link between HIV infection or hepatitis B and Rett syndrome, but recent studies 357 

indicate a link between this neurodevelopmental disorder and autoimmune diseases, including 358 

arthritis (De Felice et al., 2016). Moreover, AIDS patients can develop neurological 359 

manifestations similar to those observed in Rett patients, such as cognitive dysfunction and 360 

movement disorders (Brew and Garber, 2018). Our results suggest that the similarity between 361 

Rett syndrome and autoimmune diseases might also occur for infectious diseases of viral 362 

etiology. 363 
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 364 

Figure S5. ORA network analysis of genes associated with inflammatory, infectious, and365 

psychiatric diseases. Enrichment score distribution of the terms in the clusters from Fig. 4 for366 

diseases not depicted in Fig. 5. Box plots illustrate the distribution of the enrichment scores of367 

the Reactome pathways in each cluster. 368 

 369 

We also detected other clusters of pathways with similar enrichment results between370 

diseases of different categories (Fig. 4). The genes related to arthritis and those related to371 

Alzheimer’s disease presented enrichment for pathways related to the extracellular matrix372 

organization, coagulation, and lipoprotein metabolism (Fig. 5). In arthritis, fibroblast-like373 

synoviocytes become hyper-inflammatory and disrupt the extracellular matrix integrity, which374 

leads to the degradation of synovial joint collagen (Nygaard and Firestein, 2020). In Alzheimer’s375 
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disease, some extracellular matrix macromolecules seem to promote the production and 376 

stabilization of amyloid β, while others act to protect neurons from amyloidosis (Sethi and Zaia, 377 

2017). The pathways in the signal transduction on growth factor stimulation and GPCR-378 

mediated signaling clusters were also enriched among the genes of diseases in all categories 379 

(Figs. 4, 5, and S5). This result was expected because the genes involved in signal transduction 380 

and intracellular signaling are usually shared between cellular pathways and are involved in 381 

virtually all biological functions relevant to diseases (Figs. 5 and S5). 382 

After determining the major biological functions related to the genes connected to 383 

infectious, inflammatory, and psychiatric diseases in the 2018 network, we investigated how this 384 

knowledge evolved from 1990 to 2018 (Fig. 6). The pathways related to interferon-stimulated 385 

genes, interleukins, and antigen presentation became enriched for the genes associated with 386 

inflammatory and infectious diseases already since the early 1990s (Fig. 6). Surprisingly, this 387 

enrichment appeared earlier for inflammatory diseases, despite the highly relevant role of 388 

interferon-stimulated genes and antigen presentation in infectious diseases. Conversely, there 389 

was a significant increase in the enrichment of these pathways for the genes related to 390 

depression, autism, and schizophrenia since 2010 (Fig. 6). Recently, the specific roles of the 391 

immune system in psychiatric diseases begun to be revealed (Chen et al., 2016; de Baumont et 392 

al., 2015; Dong et al., 2018; Madore et al., 2016; Yuan et al., 2019). Particularly, neuroglial cells 393 

have gained importance as key neuroimmune players in the development of autism (microglia 394 

and oligodendrocytes; Scuderi and Verkhratsky, 2020), Alzheimer’s disease (microglia; Clayton 395 

et al., 2017), and schizophrenia (astrocytes; Gandal et al., 2018). The association of pathways 396 

related to apoptosis, senescence, and cell differentiation with psychiatric disorders has also 397 

occurred recently, except with Alzheimer’s disease, which began early in the period (Fig. 6). 398 
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Alzheimer’s, Parkinson’s, and Huntington’s diseases are neurodegenerative conditions in which 399 

chronic neuronal death happens in distinct parts of the brain (Dugger and Dickson, 2017). We 400 

also found an increasing association in recent years of genes related to autism and depression 401 

to cell fate pathways (Fig. 6), showing that these disorders might also have a neurodegenerative 402 

component. In fact, apoptosis and cell death in response to stress and inflammation are relevant 403 

factors in the pathogenesis of autism (D. Dong et al., 2018) and depression (Leonard, 2018). 404 
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Figure 6. Evolution of knowledge on biological pathways. Ridge plots of the enrichment405 

score of selected clusters from the network in Figure 04 for the top 9 diseases in each category406 

from 1990 to 2018. The height of the ridges are proportional to the mean enrichment score407 

(mean log10pval) of the Reactome pathways in each cluster listed in the y axis. 408 

 409 

Evolution of drug target hub genes 410 

Lastly, we examined how drugs that are used to treat inflammatory, infectious, and411 

psychiatric diseases target the genes that are shared between the three categories. We found412 

that 345 genes were common to all disease categories (Fig. 7A). Ninety-nine genes were413 

shared only between inflammatory and psychiatric diseases; 259 were common only between414 

psychiatric and infectious diseases; and a total of 409 genes were related exclusively to415 

inflammatory and infectious diseases (Fig. 7A). The remaining genes were unique to416 

inflammatory (493 genes), psychiatric (869 genes), and infectious diseases (1,209 genes; Fig.417 

7A). 418 
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Figure 7. Evolution of drug target hub genes. A. UpSet plot showing the common genes 420 

between all categories (hub genes), between two categories exclusively and genes that are 421 

unique to each category. B. Number of therapeutic drugs of inflammatory, infectious, and 422 

psychiatric diseases that target the top 20 target hub genes according to the comparative 423 

toxicogenomics database (CTD). C. Timeline of the association of the top 20 target hub genes 424 

to the gene-disease network. The year in which each gene was associated with the first disease 425 

of each category is depicted by the circles with distinct colors for each category. D. Number of 426 

hub genes targeted by the top 20 drugs that target more hubs according to CTD. E. Drug-gene 427 

network depicting the top 20 drugs and that target hub genes. We selected a few drugs and 428 

illustrated their molecular structure and diseases for which they are listed as therapeutic 429 

according to CTD. 430 

 431 

We used the comparative toxicogenomics database (CTD; Davis et al., 2021) to find 432 

drugs that have a therapeutic relationship with the top 9 diseases and the list of genes that 433 

these drugs affect (see Methods section). From these lists, we highlight the top 20 most 434 

common target genes of the therapeutic drugs listed by CTD (Fig. 7B). Among these genes, IL6, 435 

TNF, and interferon gamma (IFNG) were already connected to inflammatory diseases in the 436 

1990 network and were gradually related to diseases in the other two categories until 2002 (Fig. 437 

7C). Interleukin 1 beta (IL1B), B-cell lymphoma 2 (BCL2), tumor protein P53 (TP53), and 438 

CXCL8 also appeared in our networks in the early 1990s and were first connected to 439 

inflammatory diseases (Fig. 7C). Eight drug target genes were first connected to psychiatric 440 

disorders (Fig. 7C): caspase 3 (CASP3; 1996), prostaglandin-endoperoxide synthase 2 441 

(PTGS2; 1997), heme oxygenase 1 (HMOX1; 2000), BCL-2-associated X (BAX) and mitogen-442 
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activated protein kinase 1 (MAPK1; 2001), RAC-alpha serine/threonine-protein kinase (AKT1; 443 

2003), nuclear factor erythroid 2-related factor 2 (NFE2L2; 2007), and mitogen-activated protein 444 

kinase 1  (MAPK3; 2008). The other 5 genes were first connected to infectious diseases (Fig. 445 

7C): NFkB P65 Subunit (RELA; 1996), poly(ADP-Ribose) polymerase 1 (PARP1) and ATP 446 

binding cassette subfamily B member 1 (ABCB1; 1999), cyclin dependent kinase inhibitor 1A 447 

(CDKN1A; 2001), and caspase 8 (CASP8 ; 2010). All top 20 drug target genes were first 448 

connected to one of the categories until 2010, with the majority of new connections happening 449 

in the 1990s (Fig. 7C). These are very well-known genes involved in inflammation (e.g., IL6 and 450 

IL1B), innate immunity (e.g., IFNG), apoptosis (e.g., CASP3 and CASP8), cell cycle (e.g., 451 

TP53), and other key biological functions that are altered in several diseases. 452 

Next, we found the top 20 therapeutic drugs that affect the most hub genes of 453 

inflammatory, psychiatric, and infectious diseases (Fig. 7D). Valproic acid, a class I histone 454 

deacetylase (HDAC) inhibitor (Göttlicher et al., 2001), was the drug that affected the most hub 455 

genes, 259 (Fig. 7D). According to CTD, among the diseases we analyzed in this study, valproic 456 

acid is a therapeutic drug for anxiety, autism, bipolar disorder, and schizophrenia (Fig. 7E). This 457 

drug is also an efficient anti-convulsant used to treat epilepsy (Tomson et al., 2016) because it 458 

facilitates gamma-aminobutyric acid (GABAergic) neurotransmission (Chateauvieux et al., 459 

2010). There is extensive evidence in the literature of the anti-inflammatory effects of valproic 460 

acid and its potential use to treat conditions such as spinal cord injury (S. Chen et al., 2018), 461 

renal ischemia (Costalonga et al., 2016), and sepsis-induced heart failure (Shi et al., 2019). 462 

Valproate was also speculated as a potential repurposing candidate to treat diseases caused by 463 

infectious agents, such as COVID-19 (Pitt et al., 2021) and toxoplasmosis (Goodwin et al., 464 

2008). HDAC inhibitors promote epigenetic modifications in the genome that induce the 465 
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expression of genes in many biological functions and cell types (Hull et al., 2016). This could 466 

explain valproic acid’s versatility and why it ranked first in our analysis. 467 

Among the other top 20 drugs, we found molecules that are currently under investigation 468 

for repositioning from one disease category to another. Methotrexate (Fig. 7D), which affects 469 

141 genes among the 345 hubs, is used to treat several inflammatory diseases, including 470 

psoriasis, lupus, and arthritis (Fig. 7E). Recently, a randomized clinical trial revealed a potential 471 

for methotrexate to treat positive symptoms in schizophrenia patients (Chaudhry et al., 2020). 472 

The authors of the trial argue that this effect of methotrexate might be achieved through 473 

resetting of systemic regulatory T-cell control of immune signaling, which is also the way this 474 

drug is thought to act in autoimmune diseases (Chaudhry et al., 2020). The use of anti-475 

inflammatory drugs for the treatment of neuropsychiatric diseases gained traction in recent 476 

years (Kohler et al., 2016; Ozben and Ozben, 2019; Pandurangi and Buckley, 2020; Rosenblat 477 

et al., 2016) influenced by the increasing evidence that these disorders have underlying immune 478 

causes, which we have extensively demonstrated in this study. Dexamethasone (Fig. 7D) is a 479 

glucocorticoid anti-inflammatory drug listed in CTD as a therapy for arthritis and depression (Fig. 480 

7E), but it is also used to treat several other inflammatory disorders. Indeed, dexamethasone 481 

was one of the few drugs submitted to randomized clinical trials that reduced mortality in 482 

COVID-19 patients subjected to invasive ventilation (RECOVERY Collaborative Group, 2021). 483 

Several of the other top 20 drugs were also listed in CTD to be used as therapy for diseases of 484 

different categories, such as cyclosporine (hepatitis C and psoriasis), indomethacin (Alzheimer’s 485 

and autoimmune diseases), dronabinol (neuropsychiatric diseases and HIV infection), and 486 

quercetin (anxiety and influenza; Fig. 7E). 487 

 488 
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Discussion 489 

Similar to the exponential increase in the number of published papers seen in the past 490 

decades (Fortunato et al., 2018), the number of genes associated with psychiatric, 491 

inflammatory, and infectious diseases have also increased significantly in the past 30 years . 492 

This rapid growth in knowledge about the genetic underpinnings of these diseases can be 493 

directly attributed to at least two historical landmarks: the publication of the human genome in 494 

2001 (Lander et al., 2001; Venter et al., 2001) and the advent of high-throughput DNA-495 

sequencing technologies (Margulies et al., 2005). Discrete advances in genes associated with 496 

specific diseases could also be spotted throughout the period analyzed here. In 1996, the triple 497 

therapy for HIV was developed using nucleoside reverse-transcriptase inhibitors and protease 498 

inhibitors (Hammer et al., 1996). In the same year, 50% of the new genes added to the 499 

knowledge network were connected to HIV infection. In 2005, a peak of novel genes associated 500 

with psoriasis and systemic lupus erythematosus was detected. This year also saw the 501 

discovery of the Th17 cell lineage (Langrish et al., 2005). The central role of these pro-502 

inflammatory cells in the pathogenesis of autoimmune and infectious diseases was later 503 

identified (Zambrano-Zaragoza et al., 2014). Indeed, the key genes of the differentiation and 504 

maintenance of the Th17 phenotype in CD4+ T lymphocytes, such as interleukin 17F (IL17F), 505 

interleukin 21 (IL21), the peroxisome proliferator-activated receptor gamma (PPARG), and the 506 

fatty acid-binding protein 5 (FABP5), were connected to psoriasis and systemic lupus 507 

erythematosus in the network in 2005 (Hwang, 2010; Nalbant and Eskier, 2016). 508 

One of the advantages of using text mining and network medicine to study the 509 

relationships between genes and diseases is the possibility of detecting novel connections from 510 

established scientific knowledge. When two diseases share a genetic mechanism, they can also 511 
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present common clinical or epidemiological characteristics, despite having distinct etiological 512 

backgrounds (Barabási et al., 2011). These similarities can inform researchers of potential 513 

treatment options (Lüscher Dias et al., 2020). Here, we showed that diseases from 514 

inflammatory, psychiatric, and infectious etiologies significantly share genes with each other. 515 

This sharing was strong between disease pairs that were well studied together, such as 516 

depression and fibromyalgia. Conversely, the gene sharing between psoriasis and malaria could 517 

be perceived in our knowledge networks since the 2000s, but the number of papers featuring 518 

the two conditions together in PubMed is virtually null. We detected a few such cases, mostly 519 

involving neglected infectious diseases, which could explain the knowledge gap. We also found 520 

cases of diseases that just recently began to share genes that also lack many publications 521 

directly connecting them in the literature. A case in point is autism and RSV. We also found 522 

disease pairs, such as dementia and Toxoplasma gondii infection, for which there have been 523 

direct associations in the literature since 1990, but that just recently started to share genes in 524 

the network. Our results reveal potentially underexplored pathways for future research on the 525 

association between diseases of distinct categories and also for the discovery of new genes 526 

related to well-studied disease pairs. 527 

The sharing of genes between diseases from distinct categories also reflects in the 528 

overlap of biological functions, particularly those related to immunological processes. The genes 529 

of several diseases in all categories presented enrichment for Reactome pathways related to 530 

the interferon response, cytokines, and NFkB-mediated inflammation. This pattern was 531 

detectable in our networks since the early 1990s for inflammatory diseases and gradually 532 

appeared for infectious and psychiatric diseases as well. Pathways associated with 533 

neurotransmission were almost exclusively enriched among the genes of psychiatric diseases. 534 
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Nevertheless, we found enrichment for a neurotransmission-related pathway, “transcriptional 535 

regulation by MECP2”, among the genes of HIV infection and hepatitis B that could point to a 536 

connection between these disorders and Rett syndrome, a neurological condition. Our 537 

functional enrichment results also highlighted the relevance of core cellular functions in 538 

diseases of all categories, such as signal transduction and the regulation of gene expression by 539 

transcription factors. 540 

Our network medicine text mining approach also revealed how shared genes between 541 

disease categories can signal toward common therapeutic solutions. The findings presented in 542 

the last section of our study emphasize the relevance of drugs that target shared genes for the 543 

treatment of distinct diseases. Our results show that the genes targeted by therapeutic drugs 544 

shared by inflammatory, psychiatric, and infectious diseases have been associated with these 545 

disorders early in the past 30 years of scientific research. These genes are associated with 546 

inflammation, the cell cycle, apoptosis, and central pathways of cellular function. We also 547 

demonstrated that well-established and promising cases of repositioning involve drugs that 548 

target shared genes between diseases. Future studies should aim to reveal more common 549 

molecular mechanisms between these categories of diseases as well as to harness that 550 

knowledge for novel drug discovery and repurposing. 551 

In summary, we could apply a machine learning and cognitive computing text-mining 552 

strategy using WDD to extract knowledge about genes related to inflammatory, infectious, and 553 

psychiatric diseases from the scientific literature and depict how this knowledge evolved during 554 

the past 30 years.  555 
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Methods 556 

Knowledge network construction 557 

We built knowledge networks containing interactions between diseases and genes using 558 

the WDD (Y. Chen et al., 2016). WDD discovers connections between genes and diseases 559 

using a natural language processing algorithm that reads full texts from PMC open access 560 

journals, patents, and abstracts in the MEDLINE (PubMed) database. A connection is found 561 

when two terms of interest (e.g., genes and diseases) are detected in the same sentence, 562 

separated by a preposition or a verb. These connections can be derived from many sources of 563 

evidence, such as gene expression, disease-associated mutations, genome-wide association 564 

studies, or protein expression experiments. WDD attributes a confidence score (0–100%) to 565 

each association based on the number of documents in which the relation is found and also on 566 

the semantic relevance of the link, determined by the natural language processing algorithm. 567 

We performed independent searches on WDD with 27 inflammatory diseases, 63 568 

infectious diseases, and 9 psychiatric and neurological disorders (Table S1) in July 2018. WDD 569 

returned lists of genes related to these diseases according to the scientific literature in each 570 

year from 1990 to 2018. These associations are cumulative, that is, the genes associated with 571 

the diseases in 2018 include all the associations present in the previous year. We only kept 572 

connections between genes and diseases supported by a confidence score of at least 50% and 573 

2 documents of evidence. Custom R code was used to process, filter, and analyze data and to 574 

plot figures. The full code of all analyses and figures in this study is available at 575 

https://github.com/csbl-usp/evolution_of_knowledge. 576 

 577 

 578 
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Evolution of knowledge 579 

We calculated Fisher’s exact test p-value of the gene overlap between each pair of 580 

diseases in each year from 1990 to 2018. The total number of genes connected in the network 581 

in each year was used as Fisher’s exact test universe. For each year, a disease-disease 582 

knowledge network was developed using the –log10pval of the Fisher’s exact test (“disease-583 

disease similarity”) as the edge weight for each disease pair. The networks were constructed 584 

using the R package igraph (Csardi and Nepusz, 2006) and plotted using the package ggraph. 585 

We detected new genes in each year by comparing the list of genes of the diseases in one year 586 

to the list of genes of the same disease in the previous year. Thus, we obtained a list of new 587 

genes that were added to the network in each year from 1991 to 2018. The total number of 588 

genes associated with each disease was also calculated for each year. Line, violin, and ridge 589 

plots were created to illustrate the results using ggplot2 (Wickham, 2016). 590 

 591 

Evolution of disease relationships between categories 592 

For the top 9 diseases of each category that were connected to the most genes in 2018 593 

(“top 9 diseases"), we detected the diseases from the other two categories with the most 594 

significant gene sharing between them (“disease pairs”) and analyzed how these relationships 595 

evolved from 1990 to 2018. The disease-disease similarity scores obtained previously were also 596 

used in this analysis. We used the MeSH.db R package (Tsuyuzaki et al., 2015) to obtain the 597 

MeSH IDs and terms of all 99 diseases. Using the obtained MeSH terms of the diseases in each 598 

pair, we used the easyPubMed R package to search for PubMed papers in which both disease 599 

MeSHes were found together. We then used an adapted version of the fetch_pubmed_data 600 

function (see code in GitHub) of the easyPubMed package to retrieve the number of papers that 601 
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contained the searched MeSH pairs in each year from 1990 to 2018. We used the disease-602 

disease similarity score and the number of papers in 2018 to calculate a similarity-to-paper ratio 603 

for each disease pair as follows: 604 

����������. 
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��. ����� 

���. ���. ����������

��������
�
���
 

Low similarity-to-paper ratios (<10) were considered as cases of low knowledge gap between 605 

the gene sharing and the general scientific interest in the disease pairs. Pairs in this category 606 

included those in which the diseases did not share a significant amount of genes or pairs of 607 

similar diseases for which there is also a proportional number of papers that cite the two 608 

diseases together. Ratios between 10 and 40 were considered as cases of intermediate 609 

knowledge gap, that is, the diseases in the pair are similar in the genes they share, but the 610 

number of papers on the two diseases together is not proportionally high. High similarity-to-611 

paper ratios (>40) were interpreted as cases of a large knowledge gap. The pairs that fell in this 612 

category include diseases that share a significant proportion of their genes but that have almost 613 

never been studied together, evidenced by the very low number of papers including the two 614 

MeSH terms. 615 

 616 

Evolution of biological pathways 617 

We used the enricher function of the R package clusterProfiler (Yu et al., 2012) to 618 

perform an ORA against Reactome pathways of the genes associated with the top 9 diseases of 619 

each category in each year. We selected the significant Reactome pathways (p.adjust < 0.01) of 620 

the top 9 diseases in 2018 and calculated the significance of the gene overlap between these 621 

pathways with Fisher’s exact test. We considered only the genes of each significant pathway 622 

that were also present in the 2018 gene-disease network. By doing this, we limited pathways to 623 
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cluster according to the genes shared from our data set, not all the genes in the pathways. We 624 

then built a pathway network connecting the significant Reactome terms using the –log10pvalue 625 

of the Fisher’s exact tests as edge weights, similar to what was done for the disease-disease 626 

network in Fig. 1A. We detected clusters of pathways in this network using the cluster_louvain 627 

function (Blondel et al., 2008) of the igraph R package (Csardi and Nepusz, 2006). Edge 628 

weights were considered for the cluster detection. We calculated the weighted degree of each 629 

pathway in the network using the strength function of the igraph package (Csardi and Nepusz, 630 

2006). We manually annotated the detected clusters for their major biological function using the 631 

pathways with the highest weighted degree in each cluster as reference. The significance 632 

values (–log10pval) of ORA for the pathways in each cluster were used to make box and ridge 633 

plots to illustrate the results for each disease in 2018 and how these results changed from 1990 634 

to 2018. 635 

 636 

Evolution of drug target hub genes 637 

Using the 2018 gene-disease network, we detected the genes common to all three 638 

categories of diseases (“hub genes”). We used the R package UpsetR to visualize the number 639 

of genes shared and exclusive to the disease categories. We downloaded the drug-gene and 640 

the drug-disease interaction databases from the CTD (http://ctdbase.org/; Davis et al., 2021). 641 

We used the MeSH terms of the 99 diseases to filter the drug-disease database and kept only 642 

interactions between drugs and diseases that were listed as “therapeutic” by CTD. These are 643 

cases of a “chemical that has a known or potential therapeutic role in a disease (e.g., chemical 644 

X is used to treat leukemia)”, according to the CTD glossary (Davis et al., 2021). We filtered the 645 

drug-gene database and kept only the interactions between the therapeutic drugs and the hub 646 
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genes of our analysis. This final drug-gene list was used to detect the top 20 drugs that target 647 

the most hub genes and the top 20 hub genes most targeted by the therapeutic drugs. We 648 

visualized these drug-gene interactions in a network built with the R packages igraph and 649 

plotted with ggplot2 and ggraph. We used the yearly gene-disease networks to detect when the 650 

top 20 drug target hub genes were first connected to diseases in each category to build a 651 

timeline. 652 
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