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Abstract	
Using	evidence	derived	from	previously	collected	medical	records	to	guide	patient	care	has	been	a	

long	standing	vision	of	clinicians	and	informaticians,	and	one	with	the	potential	to	transform	

medical	practice.	As	a	result	of	advances	in	technical	infrastructure,	statistical	analysis	methods,	

and	the	availability	of	patient	data	at	scale,	an	implementation	of	this	vision	is	now	possible.	

Motivated	by	these	advances,	and	the	information	needs	of	clinicians	in	our	academic	medical	

center,	we	offered	an	on-demand	consultation	service	to	derive	evidence	from	patient	data	to	

answer	clinician	questions	and	support	their	bedside	decision	making.	We	describe	the	design	and	

implementation	of	the	service	as	well	as	a	summary	of	our	experience	in	responding	to	the	first	100	

requests.	Consultation	results	informed	individual	patient	care,	resulted	in	changes	to	institutional	

practices,	and	motivated	further	clinical	research.	We	make	the	tools	and	methods	developed	to	

implement	the	service	publicly	available	to	facilitate	the	broad	adoption	of	such	services	by	health	

systems	and	academic	medical	centers.			
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The	need	for	on-demand	evidence	
Evidence-based	medicine	emphasizes	the	“conscientious,	explicit	and	judicious	use	of	current	best	

evidence”1	when	making	treatment	decisions2,3.	Randomized	controlled	trials	(RCTs)	are	

considered	the	highest	quality	source	of	evidence	about	treatment	efficacy	and	safety.	Evidence	

derived	from	RCTs,	however,	often	does	not	generalize	to	the	vast	majority	of	patients,	who	tend	to	

have	multiple	comorbidities,	take	many	medications,	and	differ	from	individuals	enrolled	in	RCTs	

on	many	characteristics4,	resulting	in	an	inferential	gap	between	the	evidence	that	is	available	and	

that	which	is	needed5,6.	Therefore,	it	is	necessary	to	transform	the	evidence	generation	process7	and	

to	incorporate	the	use	of	aggregate	patient	data	at	the	point	of	care8	in	order	to	create	a	successful	

learning	health	system9.	

	

Electronic	medical	records	(EMRs)	are	a	source	of	rich	longitudinal	data	about	millions	of	real	

world	patients.	Since	the	1970s,	clinicians	and	scientists	have	envisioned	using	the	medical	records	

of	previously	treated	patients	to	inform	the	care	of	current	and	future	patients10,11.	As	a	recent	

example,	in	2011	the	New	England	Journal	of	Medicine	published	an	article	by	Frankovich	et	al.12	

describing	the	use	of	EMR	data	to	support	management	of	an	adolescent	female	with	systemic	lupus	

erythematosus.	At	the	time,	incorporating	data	from	EMRs	into	clinical	decision	making	required	

significant	manual	effort,	rendering	it	infeasible	for	use	in	routine	patient	care.		

	

A	decade	later,	the	adoption	of	EMRs	across	the	United	States	and	internationally,	the	increasing	

ease	of	use	of	advanced	statistical	methods,	and	the	ability	to	compute	with	large	patient	cohorts	

has	enabled	a	core	tenet	of	the	learning	health	system:	deriving	on-demand	evidence	for	diverse	

clinical	scenarios	from	the	EMR7,13.	

	

Using	these	advances	as	a	foundation,	we	designed,	developed,	and	offered	a	consultation	service	

that	used	EMR	and	medical	insurance	claims	data	at	Stanford	Medicine	to	provide	on-demand	

evidence	for	questions	arising	during	clinical	care14.	Here,	we	report	our	findings	from	responding	

to	the	first	100	requests	to	the	service:	we	summarize	requests	by	medical	specialty,	the	types	of	

analyses	required	to	fulfill	their	requests,	and	clinicians’	responses	to	the	evidence	returned.	
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The	setup	of	the	consultation	service	
Beginning	in	2017,	with	approval	from	the	Stanford	Institutional	Review	Board,	we	offered	a	

consultation	service	to	provide	on-demand	evidence	to	clinicians	at	Stanford	Medicine,	staffed	by	a	

team	of	four	(described	below).	As	part	of	offering	the	service,	we	collected	data	on	the	motivations	

for	consultation	requests,	and	the	subsequent	actions	taken	in	light	of	the	evidence	returned.	At	the	

conclusion	of	the	study	in	August	2019,	we	analyzed	the	consultation	request	motivations	and	

resulting	actions,	and	assessed	the	concordance	of	consultation	results	across	clinical	data	sources	

as	a	measure	of	reliability	of	consultation	analysis	methods.	

	

In	designing	the	service,	we	leveraged	best	practices15,	methods16,	and	tools17,18	to	derive	evidence	

from	EMRs.	Callahan	et	al15	summarizes	recommendations	for	conducting	and	reporting	

observational	studies	done	using	EMRs	derived	from	a	large	body	of	our	team’s	prior	work.	For	

example,	we	have	used	EMR	data	for	vigilance,	such	as	monitoring	adverse	drug	events19,20	and	

surveilling	implantable	devices21;	for	answering	clinical	questions	such	as	whether	there	is	an	

association	between	androgen	deprivation	therapy	and	dementia22,23;	and	for	elucidating	quality	of	

care,	by	profiling	unplanned	ED	visits24,	surfacing	patient	reported	outcomes25	and	quantifying	

treatment	variability	in	metastatic	breast	cancer26.	We	have	also	learned	from	leading	collaborative	

studies27,	developing	methods	for	electronic	phenotyping28–31,	and	from	participating	in	multiple	

OHDSI	network	studies32–38.	

	

Gombar	et	al.14	describes	the	consultation	service	setup	to	receive	questions	from	clinicians,	

retrieve	the	appropriate	patient	data	using	a	specialized	search	engine18,	perform	the	analyses	

required	for	the	question,	and	return	a	report	summarizing	the	results.	Schuler	et	al.16	describes	the	

methods	for	data	extraction,	processing,	and	analysis	used	in	the	consultation	service.	Datta	et	al17	

describes	the	platform	for	clinical	data	science	at	Stanford	Medicine	that	supported	the	operation	of	

the	service.	

The	workflow	for	fulfilling	a	consultation	request	
A	consultation	began	with	an	email	from	a	requestor,	detailing	a	clinical	question.	Upon	receiving	

the	request,	the	team’s	informatics	clinician	scheduled	an	intake	discussion	with	the	requesting	
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clinician	to	specify	the	population,	intervention,	comparator,	outcome	and	timeframe	(PICOT)	for	

their	particular	question14.		

	

Based	on	the	PICOT	formulation	of	the	question,	the	EMR	data	specialist	constructed	patient	

cohorts	using	the	Advanced	Cohort	Engine	(ACE)18	to	search	one	of	three	data	sources:	EMRs	of	3.1	

million	individuals	from	Stanford	Medicine;	IBM	MarketScan®	insurance	claims	for	124	million	

individuals;	or	Optum	Clinformatics	Data	Mart®	insurance	claims	for	53	million	individuals.	The	

data	scientist	then	conducted	the	necessary	statistical	analyses	and	worked	with	the	informatics	

clinician	to	write	a	report	summarizing	the	analyses	and	their	results.	The	report	was	then	shared	

with	the	requestor	and	explained	during	an	in-person	debrief	session.	Each	report	consisted	of	the	

original	question	as	posed,	the	PICOT	re-formulation,	and	sections	summarizing	the	cohort	

demographics,	the	interpretation	of	the	analyses,	and	a	detailed	walkthrough	of	the	analyses.	Three	

example	reports	are	provided	in	the	Supplement.	The	interaction	was	designed	to	be	similar	to	

obtaining	a	second	opinion	from	a	colleague.		

	

Our	workflow	evolved	to	incorporate	real-time	searches	of	the	EMR	as	the	informatics	clinician	

collected	PICOT	details.	For	example,	if	a	given	cohort	criterion	returned	very	few	patients,	then	the	

informatics	clinician	could	relay	this	information	during	the	intake	interview	in	order	to	elicit	

modifications	to	the	cohort	definition	from	the	requestor.	Clarifications	needed	during	debrief	

interviews	were	also	incorporated	into	subsequent	reports	and	debriefs	to	better	contextualize	

analysis	results	for	requestors.	The	majority	of	this	evolution	occurred	during	the	first	3	months	of	

offering	the	service.	

	

Based	on	the	time	required	to	respond	to	the	first	100	consultations	received	(see	Findings	from	the	

first	100	consultations),	we	believe	a	team	composed	of	one	full-time	clinical	informatics	fellow,	two	

full-time	EMR	data	specialists,	and	a	20%	part-time	data	scientist	would	be	able	to	complete	up	to	

20	such	consultations	in	one	week.	The	personnel	costs	for	our	geographic	area	(San	Francisco	Bay)	

for	this	team	are	estimated	at	$505,000/year.	Yearly	data	access	infrastructure,	cloud	compute,	

licensing,	and	professional	service	expenses	come	to	an	additional	$70,000/year.	With	these	

assumptions,	the	cost	of	running	such	a	service	would	be	approximately	$550	per	consultation.	
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Figure	1	illustrates	the	process	of	fulfilling	a	consultation	request.	The	datasets,	cohort	building	and	

analysis	methods	used	in	completing	consultations,	and	our	assessments	of	their	performance,	are	

further	described	in	the	following	subsections.		

	
Figure	1.	The	workflow	for	fulfilling	a	consultation	request,	illustrating	the	order	of	each	step,	the	

time	required,	and	the	personnel	responsible.	

Datasets	and	Cohort	Building	

The	service	used	demographics,	diagnoses,	procedures,	medications,	laboratory	values,	clinical	

notes,	length	of	stay,	and	mortality	information	for	millions	of	patients	from	three	data	sources:	

EMRs	from	3.1	million	Stanford	Medicine	(Stanford)	patients	(54%	female,	spanning	1995-2019)39	

consisting	of	diagnosis,	procedure,	medication,	and	laboratory	test	records,	as	well	as	clinical	notes	

processed	using	a	previously	developed	and	evaluated	text-processing	pipeline40,41;	IBM	

MarketScan®	(MarketScan)	which	contains	employer	and	Medicare	insurance	claims	for	124	

million	lives	(53%	female,	spanning	2007-2015);	and	Optum	Clinformatics	Data	Mart®	(Optum)	
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which	contains	insurance	claims	for	53	million	lives	from	employer	sponsored	health	plans	(53%	

female,	spanning	2003-2016).		

	

The	choice	of	dataset	for	a	given	consultation	was	informed	by	the	question	and	primarily	based	on	

meeting	the	criteria	specified	in	the	PICOT.	For	example,	if	a	patient	cohort	definition	relied	on	a	

specific	range	of	laboratory	test	result	values,	then	this	necessitated	using	the	Stanford	EMR	

dataset,	because	claims	data	do	not	include	laboratory	test	results.	The	EMR	data	specialist	

constructed	patient	cohorts	using	the	Advanced	Cohort	Engine	(ACE)18	to	define	necessary	and	

sufficient	conditions	to	determine	if	an	exposure	or	outcome	of	interest	occurred	in	a	patient’s	

timeline.	A	patient	timeline	view	of	patient	records	provided	by	ACE	enabled	anonymized	chart	

review	for	quality	checks	of	the	exposure	and	outcome	definitions	and	resulting	cohorts.	

Supported	Analyses	

The	service	supported	treatment	comparisons	for	discrete,	continuous	and	time-to-event	outcomes	

as	well	as	custom	descriptive	analyses16.	For	discrete,	continuous	and	time-to-event	outcomes	we	

used	a	standardized	process	which	attempted	to	emulate	a	“target	trial”42	based	on	the	criteria	

specified	in	the	PICOT.		For	consultations	requesting	treatment	comparisons,	we	created	cohorts	of	

similar	patients	using	two	approaches:	Mahalanobis	distance	with	a	fixed	caliper	based	on	age,	

gender,	length	of	record,	and	year	of	entry	into	the	cohort	(we	call	this	“simple	matching”)	or	high	

dimensional	propensity	score	matching	(hd-PSM)43,44.	Matching	is	a	way	to	identify	subsets	of	

patients	that	are	similar	in	most	respects	other	than	the	treatment	they	received,	in	order	to	reduce	

the	chance	that	observed	differences	in	outcomes	are	due	to	variation	in	properties	other	than	

treatment	but	which	also	impact	the	outcome	(commonly	referred	to	as	confounding)43.	For	

propensity	score	estimation,	we	used	an	L2	regularized	logistic	regression	model	with	a	time-

binned	count	based	featurization	of	pre-treatment	clinical	data	elements	(diagnoses,	procedures,	

medication	records),	fit	using	GLMnet45.	Regularization	strength	was	determined	using	10-fold	

cross	validation	with	a	final	refit	on	the	entire	data	before	estimating	propensity	scores	for	all	

patients46.	Results	from	both	matching	strategies	were	included	with	each	report.		

	

The	subsequent	analysis	performed	on	matched	cohorts	was	selected	based	on	the	outcome	

specified	in	the	PICOT	formulation	of	the	question.	For	treatment	comparisons	with	binary	

outcomes	we	calculated	odds	ratios	and	associated	confidence	intervals.	For	treatment	

comparisons	with	continuous	outcomes,	we	fit	regression	models	and	reported	mean	change	in	

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.16.21259043doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.16.21259043
http://creativecommons.org/licenses/by-nd/4.0/


response	estimates	and	associated	confidence	intervals.	For	treatment	comparisons	with	time-to-

event	(survival)	outcomes,	we	computed	Kaplan-Meier	plots	and	performed	log	rank	tests	for	

differences	in	survival	curves	between	compared	treatments,	and	reported	hazard	ratios	(HRs)	and	

associated	confidence	intervals.		

	

Custom	descriptive	analyses	required	bespoke	code	for	each	request,	primarily	written	in	R,	with	

data	aggregation	using	Python	as	necessary.	All	analyses	were	conducted	in	R.	Analysis	code	is	

publicly	available47.	

Quality	checks	for	supported	treatment	comparison	analyses	

Given	that	there	is	no	known	ground	truth	for	the	questions	received	by	the	consultation	service,	

we	established	code	correctness	using	synthetic	datasets	as	well	as	derived	an	estimate	of	the	false	

positive	rate	for	treatment	comparison	analyses	using	publicly	available	datasets	of	drug-effect	

pairs	as	ground	truth.			

Establishing	code	correctness	

We	generated	eight	synthetic	datasets,	each	with	10,000	patients,	using	all	combinatorial	variations	

of	three	properties:	whether	a	binary	treatment	had	an	effect	on	a	single	survival	outcome,	whether	

treatment	assignment	had	a	dependence	on	a	single	binary	covariate,	and	whether	the	covariate	

had	an	effect	on	the	survival	outcome.	We	confirmed	the	correctness	of	the	analysis	code	by	

verifying	that	the	analyses	returned	a	treatment	effect	if	and	only	if	the	underlying	data	were	

constructed	with	a	treatment	effect,	and	that	the	direction	of	the	derived	treatment	effect	was	

concordant	with	the	treatment	effect	specified	when	creating	the	synthetic	dataset.	On	performing	

treatment	comparisons	using	cohorts	matched	with	hd-PSM,	the	analysis	code	correctly	identified	

protective	effects	for	the	four	synthetic	datasets	constructed	to	have	such	intervention	effects	and	

no	effects	for	the	four	synthetic	datasets	constructed	to	have	no	effect.	For	the	two	synthetic	

datasets	where	there	was	both	a	biased	treatment	and	a	covariate	effect,	resulting	in	confounding,	

propensity	matching	correctly	recovered	the	true	effect	for	the	treatment.	

Quantifying	the	expected	false	positive	rate	

We	selected	treatment-outcome	pairs	known	to	be	either	associated	or	non-associated	as	compiled	

by	the	OMOP	community	(Ryan	et	al48,	399	pairs)	and	the	EU-ADR	project	(Coloma	et	al20,	93	pairs)	
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because	they	are	publicly	available	and	have	been	used	as	ground	truth	sets	in	other	studies49–51.	

While	both	reference	sets	contain	known	associations	as	well	as	asserted	non-associations,	only	the	

asserted	non-associations	were	informative	in	quantifying	the	false	positive	rate.	Of	the	399	drug-

outcome	pairs	from	the	OMOP	community	reference	set,	234	are	non-associations.	Of	the	93	pairs	

from	the	EU-ADR	project,	50	are	non-associations.		

	

We	constructed	cohorts	corresponding	to	each	of	the	asserted	non-associated	treatment-outcome	

pairs	in	the	reference	sets	and	estimated	a	treatment	effect,	using	Stanford	EMR	data.	Cohorts	were	

constructed	by	transforming	each	treatment	and	outcome	definition	into	corresponding	ACE	

queries.	Outcomes	were	defined	using	ICD9	codes	and	drug	treatments	were	defined	using	RxNorm	

codes.	We	used	a	new	patient	cohort	design	where	patients	entered	a	cohort	immediately	after	the	

first	time	they	were	prescribed	a	drug.	Outcomes	were	measured	as	events	after	the	first	

prescription,	with	patients	being	marked	as	censored	when	their	medical	records	ended.	A	result	

was	counted	as	false	positive	if	our	analysis	found	that	a	given	treatment	was	associated	with	an	

increased	or	decreased	hazard	ratio	relative	to	the	comparator	(with	an	effect	estimate	greater	than	

or	less	than	1,	and	a	p-value	≤	0.05),	and	the	reference	set	marked	it	as	not	associated.	

	

Of	the	234	non-associated	pairs	from	the	OMOP	community,	there	were	137	drug-outcome	pairs	for	

which	a	minimum	100	patients	exposed	to	the	drug	were	present	in	Stanford	data.	Of	these,	27	

associations	were	false	positives	and	the	remaining	110	were	correctly	identified	as	non-

associations,	providing	an	estimated	false	positive	rate	of	20%.	From	the	50	non-associated	

treatment-outcome	pairs	from	the	EU-ADR	project,	there	were	42	pairs	for	which	there	was	enough	

data.	Of	these,	7	associations	were	false	positives	and	the	remaining	35	correctly	identified	as	non-

associations,	providing	an	estimated	false	positive	rate	of	17%.	

	

Because	the	OMOP	and	EU-ADR	reference	sets	were	constructed	to	evaluate	methods	for	treatment	

comparisons,	the	17-20%	expected	false	positive	rate	is	applicable	to	consultations	requesting	a	

comparison	of	the	hazard	ratio	of	an	outcome	between	treatments.	
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Summarizing	the	first	100	consultation	requests	

Categorizing	motivations	for	requests	and	subsequent	actions	

We	categorized	the	scenarios	motivating	consultation	requests,	and	subsequent	actions	by	

requestors,	based	on	the	intake	and	debrief	meetings,	respectively.	Each	consultation	request	was	

assigned	a	single	motivation	category,	and	one	or	more	subsequent	action	categories.	We	

categorized	subsequent	actions	into	one	or	more	of	three	possible	categories.	If,	during	debrief,	the	

requestor	stated	that	they	would	use	the	knowledge	gained	from	the	consultation	to	change	the	

treatment	of	a	current	or	future	patient	with	similar	presentation,	the	consultation	was	categorized	

as	having	changed	patient	care.	Debriefs	where	the	requestor	planned	to	obtain	approval	to	further	

study	their	question	or	use	the	findings	from	the	consultation	to	generate	hypotheses	for	an	

ongoing	research	project	were	categorized	as	guiding	further	research.	Debriefs	where	the	

requester	used	the	results	from	the	consultation	report	directly	as	the	basis	of	a	publication,	poster,	

abstract,	grant	submission,	or	presentation	were	categorized	as	follow-up	analyses.	Because	the	

motivating	scenarios	were	not	known	in	advance,	the	eight	categories	of	motivation	(Table	2)	were	

developed	after	the	100	consultations	were	completed.	

Concordance	of	consultation	results	across	data	sources	

We	compared	results	obtained	using	different	data	sources	for	the	same	consultation	request.	To	do	

so,	we	first	identified	consultations	requesting	treatment	effect	comparisons	which	could	be	re-

executed	using	another	dataset.	For	example,	if	a	consultation	was	originally	completed	using	data	

from	Stanford,	we	re-executed	it	using	MarketScan	and	Optum	claims	data.	Some	two-way	

comparisons	across	datasets	failed	due	to	few	patients	in	a	given	dataset	(our	threshold	was	100	

patients),	while	for	others	the	matching	procedure	resulted	in	groups	with	no	overlap	in	their	

propensity	score	distributions	and	thus	were	unsuitable	for	comparison52.	

	

Because	a	consultation	to	provide	a	treatment	comparison	could	involve	more	than	one	outcome,	

we	summarized	concordance	in	terms	of	the	number	of	outcomes,	rather	than	the	number	of	

consultations.	We	evaluated	the	concordance	of	results	for	59	outcomes	from	33	consultations	

across	Stanford	and	Optum;	and	53	outcomes	from	22	consultations	across	Stanford	and	

MarketScan.		
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Using	the	notion	of	‘regulatory	agreement’53,	a	result	was	counted	as	concordant	across	two	

datasets	only	if	both	datasets	provided	an	effect	estimate	in	the	same	direction	(e.g.	both	greater	

than	1	or	both	less	than	1)	with	a	p-value	≤	0.05,	or	if	the	effect	estimates	derived	from	both	

datasets	did	not	indicate	a	significant	effect	on	the	outcome(s)	of	interest,	regardless	of	direction.		

Findings	from	the	first	100	consultations	

Consultations	requests	came	from	multiple	specialties	

Of	the	first	100	requests	by	53	users	from	multiple	specialties,	83	consultations	were	completed.	17	

consultations	could	not	be	completed	due	to	missing	data	elements,	available	data	sources	having	

too	few	patients	meeting	the	specified	cohort	criteria,	inability	to	define	a	cohort,	or	requiring	an	

unsupported	study	design.		

Of	the	83	completed	consultations,	48	were	descriptive	analyses.	35	were	treatment	comparison	

analyses,	of	which	18	had	discrete	or	continuous	outcomes	and	17	had	time-to-event	outcomes.	78	

out	of	83	(94%)	consultations	used	Stanford	EMR	data,	and	4	out	of	83	(5%)	used	national	claims	

data	to	obtain	adequate	sample	size.	One	consultation	used	both	EMR	and	claims	data.		

Internal	medicine	was	the	most	common	requesting	specialty,	in	terms	of	both	requests	received	

and	number	of	requestors,	followed	by	dermatology,	oncology	and	cardiology	(Table	1).	Among	53	

users,	24	requested	a	consultation	more	than	once,	for	a	total	of	76	consultations.	Internal	medicine	

also	had	the	highest	number	of	repeat	users.	

Median	consultation	turnaround	time	was	5	days,	with	71	(86%)	of	consultations	completed	in	10	

days	or	less.	Longer	turnaround	times	occurred	when	additional	data	elements	were	needed,	there	

were	delays	in	scheduling	conversations	with	the	requestor,	or	when	matching	required	substantial	

time	for	large	cohorts.	As	the	service	workflow	matured,	by	the	end	of	the	study,	19	consultation	

reports	were	returned	in	48	hours	or	less	by	reusing	cohort	definitions,	experience	in	PICOT	

formulation	of	the	request,	and	analysis	code	optimization.	
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Table	1.	Summary	of	completed	consultations	by	specialty,	showing	the	number	of	consultations	of	

each	analysis	type.	

Specialty	 Consultations	 Analysis	type	

Descriptive	 Treatment	comparison	

Discrete	or	
Continuous	

Time-to-event	

Internal	Medicine	 21	 10	 11	 0	

Dermatology	 9	 8	 1	 0	

Oncology	 9	 1	 1	 7	

Cardiology	 6	 1	 0	 5	

General	Pediatrics	 5	 5	 0	 0	

Emergency	Medicine	 4	 2	 2	 0	

Endocrinology	 4	 2	 0	 2	

Hematology	 4	 1	 1	 2	

Allergy	and	Immunology	 3	 3	 0	 0	

Infectious	Disease	 3	 3	 0	 0	

Pediatric	Neurology	 3	 3	 0	 0	

Vascular	Surgery	 3	 1	 2	 0	

Anesthesiology	 2	 2	 0	 0	

Orthopaedic	surgery	 2	 2	 0	 0	

Pathology	 2	 2	 0	 0	

Nephrology	 1	 1	 0	 0	

Ophthalmology	 1	 0	 0	 1	

Urology	 1	 1	 0	 0	

Total	 83	 48	 18	 17	

Consultation	requests	had	diverse	motivations	

Consultation	requests	were	driven	by	a	variety	of	motivations,	including	evaluating	patient	

management	strategies	for	a	given	disease	or	patient	presentation,	identifying	comparatively	

effective	treatments	for	patients	with	typically	understudied	characteristics,	and	quantifying	

associations	between	diseases.	The	categorization	of	consultation	motivations	is	summarized	in	

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.16.21259043doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.16.21259043
http://creativecommons.org/licenses/by-nd/4.0/


Table	2,	and	cross-tabulated	with	the	subsequent	actions	taken	by	requestors.	10	consultations	led	

to	changes	to	patient	care,	52	guided	further	research,	and	17	led	to	follow	up	analyses,	including	

four	that	were	presented	at	medical	conferences	or	published	in	peer-reviewed	journals54–57.	Not	all	

subsequent	actions	could	be	categorized	into	the	three	groups:	27	consultations	lacked	clear	

subsequent	actions,	suggesting	that	the	consultation	may	have	been	sought	primarily	to	contribute	

to	the	personal	knowledge	of	the	requestor,	or	that	the	findings	were	not	sufficiently	compelling	to	

warrant	action	on	their	basis.	

	

Table	2.	Clinical	motivations	and	subsequent	actions	taken	by	requestors	for	the	83	completed	

consultations.	Each	request	was	assigned	a	single	motivation	category	and	one	or	more	follow-up	

action	categories.	

Clinical	motivations		 Total	 Changed	
patient	care	

Guided	further	
research	

Follow	up	
analyses	

Evaluating	institutional	patient	
management	

29	 4	 23	 9	

Profiling	outcomes	of	approved	
drugs	

29	 0	 15	 4	

Profiling	associations	between	
laboratory	test	results	and	
outcomes	

11	 3	 5	 3	

Prognosis	for	understudied	
presentations	

4	 1	 3	 1	

Treatment	comparison		for	
understudied	populations	

4	 0	 3	 0	

Profiling	associations	between	
diseases	

3	 0	 2	 0	

Profiling	rare	disease	
presentations	

2	 2	 0	 0	

Profiling	outcomes	of	non-
pharmacological	treatments	

1	 0	 1	 0	

Total	 83	 10	 52	 17	
	

We	highlight	three	consultations	that	demonstrate	the	diversity	of	situations	motivating	a	

consultation:	a	request	to	characterize	a	rare	disease	presentation	(a	pediatric	patient	with	

mononeuritis	multiplex);	a	request	to	compare	treatment	outcomes	(for	a	recently	approved	class	

of	melanoma	drugs,	PD-1	inhibitors);	and	a	request	to	summarize	the	institutional	use	of	

procalcitonin	tests	(to	inform	antibiotic	discontinuation).	The	reports	for	these	three	consultations	
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are	provided	in	the	Supplement.	In	each	of	these	consultations,	the	service	addressed	a	different	

need.		

	

In	the	case	of	the	pediatric	mononeuritis	multiplex	patient	the	consultation	required	a	custom	

descriptive	analysis	of	a	rare	disease	presentation	that	resulted	in	changes	to	patient	care.	We	

provided	the	requestor	with	summaries	of	the	most	frequent	diagnoses	preceding	and	following	

mononeuritis	multiplex	diagnosis	in	118	similarly	aged	patients,	which	included	bacterial	and	viral	

infections	as	well	as	psychosomatic	disorders.	A	variety	of	treatments	were	prescribed	for	those	

patients,	including	steroids,	antibiotics,	anti-inflammatory	medications,	painkillers,	and	hormone	

supplements.	These	findings,	alongside	further	clinical	workup	suggested	managing	the	patient’s	

symptoms	as	a	post-viral	syndrome.	The	patient	improved	with	a	trial	of	steroids	and	was	

discharged.		

	

In	the	case	of	the	use	of		PD-1	inhibitors	the	consultation	required	a	treatment	comparison	analysis	

for	an	understudied	population	that	guided	further	research.	The	consultation	was	motivated	by	a	

melanoma	patient	who	had	a	herpes	simplex	reactivation	following	treatment	with	nivolumab.	We	

found	587	similar	patients	and	found	no	difference	in	viral	reactivation	rates	in	patients	treated	

with	PD-1	inhibitors	compared	to	those	treated	with	other	antineoplastic	agents.	Published	

evidence	on	the	relationship	between	PD-1	therapies	and	herpetic	reactivations	was	not	available,	

perhaps	because	nivolumab	was	only	recently	approved	(in	2014).	Here,	the	consultation	findings	

filled	an	important	clinical	evidence	gap.		

	

In	the	case	of	procalcitonin	testing,	the	request	entailed	a	custom	descriptive	analysis	to	evaluate	

institutional	patient	management	that	changed	patient	care.	The	consultation	was	requested	

because	while	procalcitonin	is	a	serum	biomarker	capable	of	discriminating	between	bacterial	and	

non-bacterial	causes	of	infection58–61	the	exact	cut-off	value	at	which	to	discontinue	antibiotics	is	

not	universally	agreed	upon.	Procalcitonin’s	utility	for	deciding	whether	to	order	a	blood	culture	

remains	unclear62,63.	By	analyzing	approximately	16,000	procalcitonin	test	results	and	29,000	blood	

culture	results,	we	calculated	how	often	a	positive	blood	culture	was	obtained	within	48	hours	of	

one	cut-off	value	for	a	procalcitonin	result,	how	frequently	antibiotic	therapy	was	discontinued	at	

different	cut-offs	of	procalcitonin	values,	and	how	often	antibiotics	were	restarted	within	72	hours	

of	discontinuation.	The	analysis	found	that	at	the	cut-offs	in	use	(procalcitonin	>	0.5)	a	positive	test	

was	not	associated	with	a	positive	blood	culture.	This	finding,	combined	with	further	analyses,	
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informed	an	institutional	protocol	change:	procalcitonin	values	are	no	longer	used	to	inform	

ordering	a	blood	culture	when	deciding	whether	to	discontinue	antibiotic	therapy.	

Consultation	results	were	concordant	across	datasets	

When	comparing	results	obtained	using	different	data	sources	for	the	same	consultation	request,	

68%	to	74%	of	results	were	concordant	across	datasets.	In	the	Stanford	and	Optum	comparison,	

results	for	68%	(40	out	of	59)	of	the	evaluated	outcomes	were	concordant.	For	28	outcomes,	both	

datasets	reported	a	significant	treatment	effect	with	the	same	direction	of	the	effect.	For	12	

outcomes,	results	from	both	datasets	did	not	have	a	significant	effect.	In	the	Stanford	and	

MarketScan	comparison,	74%	(39	out	of	53)	of	the	evaluated	outcomes	were	concordant.	For	30	

outcomes,	results	from	both	datasets	had	a	significant	treatment	effect	with	the	same	direction	of	

the	effect.	For	9	outcomes,	results	from	both	datasets	did	not	have	a	significant	effect.		

A	vision	realized:	strengths,	caveats	and	next	steps		
Using	data	generated	during	routine	care	to	guide	the	care	of	future	patients	is	a	core	tenet	of	a	

learning	health	system64–67	and,	as	a	distillation	of	clinical	expertise,	of	evidence-based	medicine1,68.	

Our	work	is	a	first-of-its-kind	implementation	of	this	vision,	demonstrating	that	an	on-demand	

consultation	service	to	summarize	the	experiences	of	previously	seen	patients	is	feasible	from	both	

an	engineering	and	operational	standpoint.	The	variety	of	consultation	requests	we	received	(in	

terms	of	clinical	motivations,	analyses	needed	and	subsequent	actions)	also	empirically	illustrates	

the	potential	to	inform	a	broad	range	of	clinical	decisions	(Figure	2).	As	large	patient	data	

repositories	become	commonplace	75,76,	the	ability	to	learn	from	the	experience	of	similar	patients	

is	one	of	the	nobler	opportunities	such	repositories	enable77.	
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Figure	2.	Sankey	plot	illustrates	the	flow	(horizontal	colored	lines)	of	completed	consultations	in	

terms	of	the	clinical	motivation	(left)	to	the	analysis	type	(center)	to	the	subsequent	action	(right).	

The	thickness	of	each	flow	is	proportional	to	the	number	of	consultations.	For	example,	

consultations	motivated	by	evaluating	institutional	patient	management	required	mostly	

descriptive	analyses,	and	resulted	in	all	three	categories	of	subsequent	action.	

	

Our	work	has	several	unique	strengths.	First,	the	service’s	underlying	search	engine,	ACE—which	is	

essential	for	rapidly	constructing	cohorts	and	defining	electronic	phenotypes	corresponding	to	

exposures	and	outcomes	of	interest—is	freely	available	for	non-commercial	use,	allowing	

implementation	of	such	a	service	at	other	sites	without	extensive	monetary	or	technical	

resources18.	Second,	we	found	68-74%	concordance	of	consultation	results	across	multiple	

datasets,	a	rate	of	agreement	comparable	both	to	the	rate	at	which	results	from	randomized	

controlled	trials	(RCTs)	agree	with	each	other	(67-87%)69	and	to	the	rate	at	which	results	derived	

from	observational	claims	data	agree	with	RCTs	(60-80%)70.	Finally,	the	number	of	repeat	requests	

demonstrates	the	need	for,	and	viability	of,	such	a	consultation	service.	

	

Our	study	has	several	limitations.	First,	users	of	the	service	were	self-selecting;	consultation	

requestors	may	thus	have	been	predisposed	to	finding	value	in	the	service,	and	self-reported	utility	
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for	advancing	research	or	patient	care	may	have	been	affected	by	subjective	expectations	of	the	

service.	Second,	the	cost	to	deploy	such	a	service	will	vary	at	institutions	where	the	necessary	data	

access	and	analysis	infrastructure	does	not	yet	exist.	Our	implementation	was	at	an	academic	

medical	center	with	ready	access	to	EMR	and	claims	data	resulting	in	an	estimated	cost	per	consult	

at	$550	USD14,16;	costs	may	be	higher	elsewhere.	Moreover,	while	the	current	turnaround	time	is	

analogous	to	a	send-out	laboratory	test,	providing	an	ongoing	service	would	require	additional	

engineering	effort	incurring	additional	costs71.	Third,	the	choice	and	evaluation	of	patient	matching	

and	causal	inference	methods	remains	an	active	area	of	research72–74.	Future	work	may	find	

methods	beyond	hd-PSM	that	offer	improved	concordance	across	data	sources.	Lastly,	the	net-

benefit	of	providing	on-demand	evidence	needs	to	be	studied	prospectively	at	multiple	sites	by	

measuring	impact	on	patient	outcomes,	cost	of	care,	and	health	system	operations.	We	hope	that	

our	experience	and	the	tooling	we	share	will	enable	such	studies.	

Takeaways	
On-demand	evidence	generation	to	inform	clinical	decision	making	is	an	achievable	goal,	given	the	

confluence	of	scalable	technology	for	data	analysis,	a	growing	data	science	workforce,	the	training	

of	increasingly	data	savvy	clinicians,	and	the	availability	of	large	amounts	of	patient	data	from	

EMRs	and	claims	8,14.	The	consultation	service	we	created	provides	proof-of-feasibility	for	realizing	

this	goal.	Such	a	service	is	capable	of	informing	patient	care	at	the	bedside	for	specific	patients,	

informing	the	medical	literature	and	supporting	institutional	guideline	creation.	As	large	patient	

data	repositories	are	created75,76,	the	potential	to	benefit	from	such	a	service	is	immense77.	Given	

the	feasibility,	and	the	documented	need,	studies	establishing	the	utility	of	having	such	a	

consultation	service	are	logical	next	steps.	
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