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ABSTRACT 

Longitudinal data analysis can improve our understanding of the influences on health trajectories 

across the life-course. There are a variety of statistical models which can be used, and their fitting 

and interpretation can be complex, particularly where there is a nonlinear trajectory. This paper 

provides a guide to describing nonlinear growth trajectories for repeatedly measured continuous 

outcomes using linear mixed-effects (LME) models with linear splines and natural cubic splines, 

nonlinear mixed effects Super Imposition by Translation and Rotation (SITAR) models, and 

latent trajectory models. The underlying model for each of the four approaches, the similarities 

and differences between models, and their advantages and disadvantages are described. Their 

applications and correct interpretation are illustrated by analysing repeated bone mass measures 

across three cohort studies with 8,500 individuals and 37,000 measurements covering ages 5-40 

years. Linear and natural cubic spline LME models and SITAR provided similar descriptions of 

the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. 

Latent trajectory models identified up to four subgroups of individuals with distinct trajectories 

during adolescence and similar trajectories in childhood and adulthood. Recommendations for 

choosing a modelling approach are provided along with a discussion and signposting on further 

modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts. In 

summary, we present a resource for characterising nonlinear longitudinal growth trajectories, that 

could be adapted for other complex traits. Scripts and synthetic datasets are provided so readers 

can replicate trajectory modelling and visualisation using the open-source R software. 
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INTRODUCTION 

Appropriate modelling of repeated measures in cohort studies can improve our understanding of: 

(i) patterns of change across the life-course (e.g., developmental trajectories to peak function and 

age-related decline); (ii) influences on these patterns of change; and (iii) influence of variation in 

patterns of change on later health and wellbeing [1]. Many developmental processes display non-

linear patterns of change with age, especially during the growing years, which makes it important 

but challenging to accurately model their trajectories [2]. Also requiring attention is the choice of 

method to appropriately address the research question, e.g., whether to use methods that model an 

average trajectory in the whole sample [3-5] or clustering based approaches to identify groups of 

individuals with similar trajectories [6]. An overview of sophisticated modelling procedures with 

open-source software applications in different cohorts is needed to address these challenges. 

This paper provides a guide to describing nonlinear longitudinal growth trajectories for a single 

repeatedly-measured continuous outcome using linear and natural cubic splines [3, 4], SITAR 

(Super Imposition by Translation and Rotation) models [5], and latent trajectory models [6] – all 

common methods for examining growth. The following section gives an overview of modelling 

nonlinear growth and the various models considered. The four approaches (and appropriate 

interpretation of results) are illustrated by modelling bone mass trajectories across three cohort 

studies to characterise patterns of change and differences between male and females. The final 

section provides recommendations about when different modelling methods might be useful and 

discusses extensions and challenges in analysing exposures and outcomes of patterns of change 

and making cross-cohort comparisons. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.21257519doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257519
http://creativecommons.org/licenses/by/4.0/


 

4 

 

UOB Open 

MODELLING NONLINEAR GROWTH 

A variety of statistical methods are available for handling repeated (correlated) observations from 

the same individuals and analysing trajectories [7]. Most methods involve fitting growth models 

within either a structural equation modelling framework (e.g., latent growth curve analysis where 

change is analysed as a latent process [8]) or a multilevel modelling framework, with both giving 

similar results under certain conditions [9]. One type of multilevel model that can be useful if the 

primary interest is estimating a population-average trajectory is generalised estimating equations 

(GEE) [10, 11]. This uses a working covariance matrix to correct for dependence among repeated 

observations, and usually not suited for examining variation within/between individuals. Another 

multilevel model that can estimate both population-average and individual-specific trajectories 

(and which is more robust to missing outcome data than GEE) is the mixed-effects model [12].  

 

Mixed-effects models 

Mixed-effects models (random-effects, multilevel, or hierarchical models) estimate a population-

average trajectory as ‘fixed effects’ and variation of individual trajectories around this average as 

‘random effects’ [11-13]. A common form is the linear mixed-effects (LME) model where the 

repeated outcome is modelled by a linear combination of the fixed and random effects. For a 

single continuous outcome (e.g., weight), an LME model for the outcome, as a linear function of 

time, which includes random intercepts and random slopes can be written as follows: 

 𝑦𝑖𝑗 = 𝛽𝑜𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗,   𝜀𝑖𝑗 ~ 𝑁(0, 𝜎𝜀
2), 𝑖. 𝑖. 𝑑.  

𝛽0𝑖 =  𝛽0 + 𝑢0𝑖 , 𝑢0𝑖  ~ 𝑁(0, 𝜎0
2), 𝑖. 𝑖. 𝑑.   

𝛽1𝑖 =  𝛽1 +  𝑢1𝑖, 𝑢1𝑖  ~ 𝑁(0, 𝜎1
2), 𝑖. 𝑖. 𝑑. 

(1) 

(1.1) 

(1.2) 
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where, 𝑦𝑖𝑗 denotes a single outcome 𝑦 measured in individual 𝑖 (𝑖 = 1, 2, … , 𝑁) at time 

𝑡𝑖𝑗  (𝑗 = 1, 2, … , 𝐽𝑖), with responses (𝑦1 … 𝑦𝑁) assumed to be independent between individuals. 

𝛽𝑜𝑖 and 𝛽1𝑖 are individual-specific intercept and slope terms (respectively) that have fixed effects 

(𝛽𝑜, 𝛽1) and random effects (𝑢𝑜𝑖, 𝑢1𝑖). The random effects 𝑢𝑖 are assumed to be independently 

normally distributed with mean zero and covariance matrix 𝛺𝑢. Residual errors 𝜀𝑖𝑗 are assumed 

to be independently identically normally distributed with variance 𝜎𝜀
2 and reflect the difference 

between observed and predicted values for individual 𝑖 at occasion 𝑗. The random effects 𝑢𝑖 and 

residuals 𝜀𝑖𝑗 are assumed to be mutually independent. 

 

Moving beyond a linear trajectory 

The LME model in (1) assumes linear change in the outcome with time (e.g., age). Nonlinear 

change, which is common (particularly when modelling change over a large age range) can be 

incorporated into LME models by including linear combinations of nonlinear terms for age in the 

model – i.e., keeping the linear link function. Historically, the standard approach has been to use 

polynomial functions to approximate nonlinear curves. However, as in Fig. 1, polynomials have 

limitations, e.g., simpler polynomials give few curve shapes and more complex polynomials tend 

to fit badly at extremes and produce artefactual turns in the curve. A more flexible alternative to 

modelling complex patterns of change (e.g., with several peaks and troughs, as with body mass 

index (BMI) over infancy, childhood, and adolescence) is using spline functions.  

The remaining subsections give an overview to using LME models with linear and natural cubic 

splines, and SITAR models to estimate population-average trajectories (and individual variation 

from these), and extensions to latent trajectory models to identify heterogenous trajectories in 

subpopulations. These four modelling approaches are summarised in Table 1. 
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Linear spline LME models 

A spline function is a set of piecewise polynomials that are joined together at points called knots 

[14]. Regression splines are a type of splines formed by a linear combination of the transformed 

time variable (e.g., age), thus they can be used within LME to model the repeated outcome as a 

nonlinear function of time. The simplest function is the linear spline where growth is described 

by a series of connected lines joined at knots, where the slope can change after each knot [3]. For 

example, a linear spline for age (measured from 5–40 years) with 2 knots at ages 10 and 15 years 

produces three different linear slopes of the repeated measure (e.g., weight): 5 to ≤10, 10 to ≤15, 

and 15 to ≤40 years. 

The LME model in (1) can be rewritten to include a linear spline function for age 𝑏(𝑡) with 𝐾 

knots 𝜉1 < 𝜉2 < ⋯ 𝜉𝐾 as: 

 

𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + ∑ 𝑏𝑘𝑖(𝑡𝑖𝑗 − 𝜉𝑘)+ + 𝜀𝑖𝑗

𝐾

𝑘=1

 

(2) 

The model in (2) includes a linear spline in both the fixed and random effects (with 𝑏𝑘𝑖 having 

fixed effect 𝑏𝑘 and random effect 𝑣𝑘𝑖) which gives nonlinear mean and individual trajectories, 

respectively. The fixed and random splines are assumed to have the same knots in (2) however, it 

is possible to allow fewer knots in the random spline. If the aim is solely to model a nonlinear 

mean trajectory, then (2) can be simplified by replacing the random spline with a random line – 

here, 𝛽𝑜𝑖 and 𝛽1𝑖 have similar interpretation as in (1), with random effect 𝑣𝑘𝑖 omitted (i.e., 𝑏𝑘𝑖 =

𝑏𝑘). Rate of change of a linear spline (1st derivative) is not continuous at the knots. An alternative 

function with continuous 1st and 2nd derivatives is the natural cubic spline. 

 
(𝑡𝑖𝑗 − 𝜉𝑘)+ = {  

0                        𝑡𝑖𝑗 < 𝜉𝑘 

(𝑡𝑖𝑗 − 𝜉𝑘)         𝑡𝑖𝑗 ≥ 𝜉𝑘
 

(2.1) 
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Natural cubic spline LME models 

A natural cubic spline (restricted cubic spline) is a set of cubic polynomials with continuity and 

slope constraints at each knot, and additional constraint of linearity at the extremes of the curve, 

before the first knot and after the last knot [11, 14-16]. This linearity constraint makes the 

trajectory less erratic at the ends of the distribution and so more reliable than linear splines (and 

unrestricted cubic splines), and more parsimonious for complex shapes than a linear spline with 

many knots.  

An LME model that includes a natural cubic spline function 𝑏(𝑡) with 𝐾 knots 𝜉1 < 𝜉2 < ⋯ 𝜉𝐾 

(and a linearity constraint for values 𝑡 < 𝜉1 and 𝑡 > 𝜉𝐾) can be written as: 

 

𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + ∑ 𝑏𝑘𝑖(𝑡
𝑖𝑗

− 𝜉
𝑘
)

∗

3 + 𝜀𝑖𝑗

𝐾−2

𝑘=1

 

(3) 

 (𝑡𝑖𝑗 − 𝜉𝑘)∗
3 = (𝑡𝑖𝑗 − 𝜉𝑘)+

3 − (𝑡𝑖𝑗 − 𝜉𝐾−1)+
3

𝜉𝐾 − 𝜉𝑘

𝜉𝐾 − 𝜉𝐾−1

+ (𝑡𝑖𝑗 − 𝜉𝐾)+
3

𝜉𝐾−1 − 𝜉𝑘

𝜉𝐾 − 𝜉𝐾−1

, 𝑘 = 1, 2, … , 𝐾 − 2 (3.1) 

In words, a natural cubic spline for age (measured from 5–40 years) with 2 knots at 10 and 15 

years (and with first and last knots at 5 and 40 years, respectively), invokes 3 cubic polynomials: 

between 5 to ≤10, 10 to ≤15, and 15 to ≤40 years, and has its curvature equal to 0 at ages 5 and 

40 years. If the first and last knots were placed at older and younger ages respectively, then the 

curve would be linear from the first and last knot to the youngest and oldest ages, respectively. 

Note we have defined the natural cubic spline using truncated power basis (like how the linear 

spline was defined). The analysis software creates this function using a B-spline basis which is 

mathematically challenging to represent but numerically more stable. Whatever basis is used, if 

the polynomial degree and knots are identical, then the spline will always be the same. 
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Choosing number and location of knots 

The flexibility of regression splines is determined by the number/position of the knot points. A 

small number of knots (between 3 and 5 knots) provides a good fit to some patterns [15] though, 

with many repeats (e.g., data spanning many decades) more knots may be required. Approaches 

to selecting number/position of knots include (i) placing knots at quantiles of the age distribution 

(ii) using equally spaced knots, (iii) inspecting smoothing curves and using these to select knots, 

(iv) starting with many knots and reducing their number, and (v) placing knots at mean age of 

data collection [3]. For natural cubic splines, the number of knots (rather than their position) is 

more important [15]. Model selection can be done informally (inspecting plots from competing 

models). Valid comparison between models with different knots (non-nested mean structures) 

can be done using likelihood-based information criteria if maximum likelihood (ML) estimation 

is used [17]. Cross-validation is also useful for model selection [18]. If knot position was primary 

interest (e.g., testing sensitive periods), then topic knowledge can inform placement of knots [19].  

 

SITAR models 

SITAR is a shape invariant nonlinear mixed-effects model [5, 20]. Whereas LME spline models 

are linear models that allow terms to describe a non-linear trajectory with age, nonlinear mixed-

effects models are fundamentally nonlinear in the coefficients [11]. SITAR assumes that a study 

population has a common characteristic curve (fitted as fixed effects), which through shifting and 

scaling (by a set of 3 random effects) can be transformed into any individual curve. Following the 

notation in Cole et al [5, 21], a SITAR model for outcome 𝑦 can be written as: 

 
𝑦𝑖𝑗 =  𝛼0  +  𝛼𝑖  +  ℎ (

𝑡 − 𝛽0  −  𝛽𝑖

exp(−𝛾0  −  𝛾𝑖)
) + 𝜀𝑖𝑗 

(4) 
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where 𝑦𝑖𝑗 is the outcome measurement for individual 𝑖 at age 𝑗; 𝛼0 , 𝛽0 , 𝛾0 are fixed effects; 𝛼𝑖, 

𝛽𝑖, and 𝛾𝑖 are random effects for the 𝑖th individual; ℎ(𝑡) is a natural cubic spline curve; and 𝜀𝑖𝑗 

are independent normally distributed errors. The 3 random effects describe the size (𝛼𝑖), timing 

(𝛽𝑖), and intensity (𝛾𝑖) of individual growth relative to the mean growth curve. 𝛼𝑖 adjusts for the 

differences in 𝑦 and geometrically reflects individual shifts up or down (translation) in the mean 

curve; 𝛽𝑖 adjusts for differences in the timing of peak growth in 𝑦 and geometrically reflects left 

to right shifts (translation) in the mean curve; and 𝛾𝑖 adjusts for the duration of the growth spurt 

and geometrically corresponds to shrinking or stretching of the age scale and rotating the curve.  

Note, a key difference from other mixed effects models, with or without a natural cubic spline 

mean curve, is that SITAR models growth on both the x- and y-axes – this allows differences in 

developmental age to be modelled. Common practice in selecting the best fitting SITAR models 

is to compare models with varying number of knots placed at quantiles of the age distribution for 

the spline curve [5]. The internal SITAR model structure is also customisable [22]. 

 

Latent trajectory models 

The spline and SITAR models described above assume that the population is homogenous and 

described at the population level by a mean trajectory, with variability of individuals about this 

mean. As an alternative, latent trajectory modelling assumes there is a heterogenous population 

composed of unknown subgroups (latent classes) of individuals, each characterised by a unique 

mean trajectory profile [6, 23, 24]. These models aim to minimise within group variance and 

maximise between group differences so that individuals are more similar within groups than 

between groups. Each individual has a probability of belonging to each latent class and is 
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assigned to the class with the highest probability. Class membership is defined using a latent 

discrete random variable, and membership probability described by a multinomial logistic model.  

Several modelling approaches are possible (see [6] for a recent overview). These include models 

that ignore the longitudinal structure (referred to as longitudinal latent class analysis) and models 

with no variability between individuals within subgroups (known as latent class growth analysis 

or group-based trajectory models). A direct extension of standard mixed-effects models is growth 

mixture models, which involves fitting multiple growth curves to subgroups of individuals that 

share a common trajectory. Following the notation in Herle et al [6], the LME model in (1) can 

be rewritten as a growth mixture model as: 

 𝑦𝑖𝑗|𝑐 =  𝛽0𝑖
𝑐 + 𝛽1𝑖

𝑐 𝑡𝑖𝑗 + 𝜀𝑖𝑗
𝑐      for 𝑐 = 1, … , 𝐶, (5) 

where 𝐶 indicates number of latent classes, with probabilities 𝑝𝑐, 𝑐 = 1, … , 𝐶, with 0 ≤ 𝑝𝑐 ≤ 1 

and ∑ 𝑝𝑐 = 1𝐶
𝑐=1 . All other terms are defined as before but specifically for each class 𝑐. Growth 

can be parameterised as nonlinear, e.g., using a natural cubic spline curve in each class (assuming 

same number/position of knots). Class-specific covariances for individual-level error terms can 

be included, and fixed and random effects can be class specific.  

Model estimation is conditional on a pre-specified number of classes, with the optimal number of 

classes identified through a combination of approaches. These include assessing interpretability 

and plausibility of classes e.g., inspecting if trajectories show biologically plausible patterns and 

examining characteristics (e.g., socioeconomic position) of the classes [25], information criteria, 

entropy (statistic for class separation), and numerically meaningful sub-groups (e.g., ≥5% class 

size). Models with >1 class are prone to local maxima solutions (convergence to best solution in 

a neighbourhood of the parameter space, rather than the global maximum (largest loglikelihood)). 

This can be avoided by using different starting values [26]. 
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ILLUSTRATIVE EXAMPLE 

In this section we use data from three cohort studies to demonstrate how the four approaches can 

help answer our research aim to characterise bone mineral content (BMC) growth trajectories and 

their sex differences. 

 

Bone mass through the life-course 

Bone mass in early life is thought to be an important determinant of fracture and osteoporosis risk 

in later life [27] however, few studies have described its developmental trajectory. Furthermore, 

sex differences in osteoporotic fracture are assumed to be due to menopause but may also reflect 

early sexual dimorphism in bone development. This is a timely exploration, given the availability 

of studies with repeated measurements of BMC (a marker of bone strength).  

 

Studies and measurements 

Three studies with repeated BMC measurements from childhood to adulthood were included 

(Table 2, Online Resource 1): Avon Longitudinal Study of Parents and Children (ALSPAC) 

[28, 29], Bone Mineral Density in Childhood Study (BMDCS) [30], and Pediatric Bone Mineral 

Accrual Study (PBMAS) [31]. Total-body (excluding-head) BMC was measured in grams using 

whole-body Dual-Energy X-ray Absorptiometry (DXA) scans. Of note, the studies used DXA 

devices from different manufacturers (Lunar vs. Hologic) which scale differently and are not 

interchangeable but repeat scans within studies were acquired on the same device. Individuals 

from each study were included if they had ≥1 measure of BMC and no missing data on age at 

DXA scan (in years) or sex. Analyses were restricted to white ethnicity because 2 cohorts were 
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ethnically homogeneous [29, 31]. The final analysis samples comprised 3,888 males and 4,007 

females in ALSPAC, 465 males and 488 females in BMDCS, and 112 males and 127 females in 

PBMAS. All studies had ethics approval and obtained parental or participant informed consent. 

 

Statistical analysis 

Analyses were performed in R version 4.0.2 (R Project for Statistical Computing) and RStudio 

version 1.3.1 (RStudio Team). R code is available at https://github.com/aelhak/nltmr/. Synthetic 

versions of the PBMAS cohorts were simulated from natural cubic spline LME models [32] and 

can be found in the same repository. 

Prior to trajectory modelling scatterplots of BMC against age, and line plots of the individual 

BMC trajectories were used to inspect the form of the trajectory and identify clearly outlying 

observations. The datasets used for trajectory modelling (Fig 2) showed as expected nonlinear 

change in BMC with age, and higher BMC in ALSPAC due to Lunar device. The numbers of 

individuals at each visit were described and age and BMC were summarised with means and 

standard deviations (Online Resource 1). Models were fitted separately by sex due to expected 

difference in bone accrual and our aim was to explore this in the illustrative example. 

Linear and natural cubic spline LME models were fitted using the ‘lme4’ package [33]. Models 

with 2 to 6 knots (at quantiles of the age distribution) in the fixed effects curve were compared. 

Nonlinear individual trajectories were allowed by including random effects spline with 1 knot at 

the median. SITAR models with 2 to 6 knots (at quantiles of the age distribution) in the spline 

curve (and three random-effects) were fitted using the ‘sitar’ package [22]. LME and SITAR 

models were fitted by ML estimation and best fitting models (optimum number of knots) were 

determined by smallest Bayesian Information Criterion value (BIC0 (Online Resource 2). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.21257519doi: medRxiv preprint 

https://github.com/aelhak/nltmr/
https://doi.org/10.1101/2021.05.26.21257519
http://creativecommons.org/licenses/by/4.0/


 

13 

 

UOB Open 

Goodness of fit for selected models was assessed by examining residuals (conditional on the 

random effects) from LME models and variance in BMC explained by SITAR models. The 

selected models were used to describe BMC growth trajectory and growth velocity. Slopes of the 

fixed effects spline segments from linear spline models were used to summarise mean BMC 

velocity during different age windows and identify windows for peak growth. Mean peak and age 

at peak velocity were obtained from natural cubic spline LME and SITAR models by 

differentiating mean spline curves.  

Growth mixture models were fitted using the ‘lcmm’ package [26]. The forms of the best-fitting 

mean natural cubic spline curves were used to model the fixed effects age curve. Models included 

random intercepts and random linear age slopes. Models with different numbers of latent classes 

were compared: from a 1-class model (i.e., a standard LME model where all individuals follow a 

single mean trajectory) up to models with 5 classes. Models with >1 class included class-specific 

random effects covariance matrices. An automatic search procedure was used to estimate each 2-

5 class model for 100 iterations using random initial values from the distribution of the 1-class 

model. Optimal number of classes was chosen by inspecting predicted trajectory sub-groups from 

each model for biological plausibility, in addition to the smallest BIC and biggest entropy, and by 

excluding small class size (≥5%). Goodness of fit and discrimination capacity of the selected 

models was assessed by calculating posterior class membership probabilities [26]. 

 

Results 

The mean predicted BMC trajectories in each cohort from the linear spline LME (Fig. 3), natural 

cubic spline LME (Fig. 4), and SITAR models (Fig. 5) showed that BMC increased with age up 

to a plateau in young adulthood, and thereafter remained stable to age 40 (PBMAS). All models 
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showed evidence of steeper growth trajectories through adolescence coinciding with emerging 

sex differences, with males subsequently having higher BMC than females, and plateauing later 

than females. BMC trajectories from all models were broadly similar (Fig. 6). Both spline LME 

models and SITAR provided a good fit to the data (Online Resource 2). Mean BMC growth 

velocity in different age windows (from linear spline LME models) peaked during adolescence, 

and the peak was lower and occurred earlier in females than males (Table 3). Mean BMC growth 

velocity curves from natural cubic spline LME and SITAR models were similar (Fig. 4-5): for all 

cohorts, mean ages at peak velocity from both models were within the age windows for peak 

growth identified by the linear spline models (Table 4).  

The selected growth mixture models identified 3 subgroups for females and 2 subgroups for 

males in ALSPAC and BMDCS, and 4 for females and 3 for males in PBMAS (Fig. 7). Overall, 

differences in mean BMC between subgroups were larger during adolescence than in childhood 

and adulthood. One group with 15% of PBMAS females had higher mean BMC up to age 40 than 

the remaining three groups. A group comprising 27% of PBMAS males reached a lower peak and 

showed signs of bone loss by age 40, compared to the other two groups. Model discrimination 

capacity was better in PBMAS (and BMDCS) than ALSPAC, likewise entropy was high in 

PBMAS and low in ALSPAC and BMDCS (Online Resource 3). 

 

Interpretation  

Our results provide evidence on bone mineral accrual from 5-40 years. LME splines and SITAR 

models showed that the levels and rates of change in BMC were greater for males than females, 

with peak gains in adolescence in both, but later in males than females. Growth mixture models 

identified potentially distinct trajectory sub-groups, with the greatest between-group differences 
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seen in adolescence. Whilst the main aim of these analyses is to illustrate different modelling 

approaches, our results are consistent with previous studies on sex differences in BMC and 

suggest that in both sexes puberty is an important period for peak bone accrual [34-36]. 

 

DISCUSSION 

Choosing a modelling approach  

All the modelling techniques presented may be used to model BMC and other growth processes. 

Choice of method will be determined by research question, including whether this is concerned 

with differences in mean change over time (e.g., with LME and SITAR models) or whether the 

aim is to identify data-driven subgroups for patterns of change), complexity of the underlying 

trajectory, and data availability i.e., number of individuals and repeat measurements (see [37] for 

a discussion on sample size in growth models). There may also be value in using a combination 

of approaches [38], like in this paper. Both spline LME models and SITAR were previously used 

on height/weight/BMI [4, 21, 39, 40]; linear splines and SITAR were previously used to model 

bone density [34, 41]; linear and natural cubic spline LME were used to analyse blood pressure 

change [42, 43]. All models in this paper can handle unbalanced datasets (i.e., with individually 

varying measurement occasions, as in our illustrative example). 

When the main aim is to quantify growth rate at different periods of the life-course, then linear 

splines may be preferred because of their more interpretable slope coefficients compared to the 

natural cubic spline LME and SITAR models. If the aim is to describe the shape of the trajectory 

or identify specific peaks and troughs (e.g., age at peak velocity), then natural cubic spline LME 

or SITAR are more useful, because linear spline cannot identify points of maxima/minima (but 

can identify periods/age windows). The number and spacing of repeated measures can influence 
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model convergence and the complexity that can be allowed [44, 45]. SITAR was designed to 

model adolescent growth in height, and (like other nonlinear models) its parameters reflect its 

specific purpose. Hence, SITAR may not work well for complex trajectories (e.g., depressive 

symptoms [46]), and the natural cubic splines LME may offer more flexible alternatives. Note 

however, SITAR fitted without the timing fixed effect is analogous to a random intercept random 

slope model, and so should be at least as flexible as LME. Other strategies that may improve the 

SITAR model include logging age or outcome and manually specifying the knots.[44, 47]. 

Latent trajectory models have been used to identify trajectory subgroups for BMI [48], depressive 

symptoms [49], physical activity [50], glucose response [51], and environmental exposures [52], 

among others. Growth mixture models and latent trajectory models in general take longer to run, 

particularly in larger cohorts. Less complex group-based trajectory models are faster; however, 

subgroup differences may just reflect within class variability, which is likely to be absorbed by 

the random effects in growth mixture models. If exploring specific hypotheses (e.g., sensitive 

periods), clustering (data driven) approaches might not provide a suitable sub-group to test this, 

e.g., if the aim was to explore the hypothesis that lower birth weight followed by faster growth in 

the first 1000 days increased cardiovascular risk, this approach might not identify a latent class 

with this specific growth pattern. It is difficult to determine the optimal number of sub-groups, 

including whether the latent classes are meaningful or if the model is splitting the distribution of 

the random effects into a larger group and smaller extremes. Model selection is often subjective, 

and trajectory subgroups tend to be cohort-specific and do not replicate in other cohorts – so it is 

essential to follow reporting guidelines [24]. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.21257519doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257519
http://creativecommons.org/licenses/by/4.0/


 

17 

 

UOB Open 

Identifying determinants and outcomes of trajectories 

The models in this paper can be extended to include early life exposures and later outcomes to 

explore their associations with trajectories. Choice of method will depend on the research aims. 

Exposure variables can be added within LME spline models as fixed effects and as interactions 

with splines to test their effect on trajectories and growth rate [3, 34, 53]. Individual growth 

features (e.g., peak velocity and  age at peak velocity) can be obtained from spline LME model 

random effects and used in separate analyses as outcomes or exposures [4, 54] – however, it is 

important to have enough complexity in the random-effects splines for sufficient between-person 

variability (Fig 8). Individual growth features are easily obtained from SITAR models and can be 

used in subsequent analyses to examine associations with exposures or outcomes [41, 55]. Of 

note, 2-stage approaches may be more biased than 1-stage joint modelling [56, 57]. Exposures 

and outcomes can be related to latent trajectories in a joint model or a multistage process where 

the subgroups are first identified and then used in separate models (unweighted or (preferably) 

weighed for classification probabilities) to examine associations [26, 48-52]. If the aim was to 

identify effects of repeated exposure, then a structured modelling approach may be useful for 

testing competing hypotheses [58]. 

It is important to identify potential biases and explore ways for mitigating them when analysing 

(causal) associations between trajectories and exposures or outcomes in cohort studies. Missing 

data can bias associations depending on mechanism, and appropriate approaches to describe and 

handle missing data should be explored [11, 59-63]. In a repeated measure setting, individuals 

with missing outcome values can be included in the estimation sample if they have at least one 

observed outcome value. Mixed-effects models give unbiased results (i.e., not biased by missing 

data) when the probability that an outcome value is missing depends on observed values of the 

outcome (i.e., outcome missing at random (MAR) depending on observed outcome values). Bias 
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due to missing data will occur for these models when the probability that the outcome is missing 

depends on underlying missing values (i.e., outcome missing not at random (MNAR) depending 

on missing outcome values). With incomplete covariates, bias can occur when the probability of 

excluding an individual with missing covariate data is related to the outcome. Regardless of bias, 

excluding individuals with missing covariate information will often mean discarding useful 

observed data, leading to imprecision [64].  

Confounding can lead to spurious associations between trajectories and exposures or outcomes. 

Confounders (factors causally related to exposure and outcome) should be identified (e.g., using 

Directed Acyclic Graphs) and controlled for, taking care not to adjust for mediators (factors on 

the causal pathways) [65, 66]. Even with adjustment, residual confounding (from using poorly 

measured confounders or not adjusting for important confounders) can bias results. Useful 

strategies for checking if residual confounding influences results include negative control 

variables and comparing cohorts with different confounding structures [38, 67-69]. 

 

Comparing and modelling trajectories across cohorts 

It is important to be aware of potential differences in the participants, data collection methods and 

analysis models when comparing cohort-specific trajectories from different studies. For example, 

the higher BMC due to the Lunar machine in ALSPAC means it is inaccurate to conclude that 

Britons had higher BMC (and peak velocity) than North Americans. Another example is effect of 

medication use by older cohorts on blood pressure trajectories [70]. Multicohort collaborations 

provide unique opportunities to jointly model trajectories across different cohorts and extend 

amounts of the life-course studied [71]. However, this creates additional challenges including on 

model selection and missing data (see [72] for a recent discussion of challenges and solutions to 
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multicohort modelling). Whatever approach is taken (cohort-specific or multicohort modelling), 

data harmonisation is an important first step that involves making data comparable across studies 

[73], e.g. DXA reference standards to harmonise BMC [74]. Because age was fully harmonised 

in our example, a simple approach to obtaining valid pooled estimates of age at peak velocity is 

fitting a growth model to all individuals with BMC expressed in cohort-specific SD units (Fig 9). 

 

Conclusion 

LME models with linear and natural cubic splines, SITAR, and growth mixture models are useful 

for describing nonlinear growth trajectories in longitudinal population studies. Choice of method 

depends on research aims, complexity of the trajectory, and available data. This illustrative paper 

and accompanying analysis code and example datasets will we hope be a useful resource for 

researchers interested in modelling nonlinear longitudinal trajectories. 
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TABLES 

Table 1 Overview of linear spline LME models, natural cubic spline LME models, SITAR, and 

latent trajectory models for analysing nonlinear growth trajectories of a single repeatedly 

measured continuous outcome. 

Table 2 Characteristics of the three cohort studies included in the trajectory modelling. 

Table 3 Estimated mean BMC growth velocity during different age windows from the selected 

linear spline LME models. 

Table 4 Estimated mean age at peak BMC velocity from the selected natural cubic spline LME 

models, and selected SITAR models. For comparison, the age windows for peak BMC velocity 

from the linear spline LME models are also presented. 

 

FIGURES 

Fig. 1 Example illustrating the limitations of using polynomial functions to approximate a 

nonlinear growth trajectory. 

Fig. 2 Plots of the cohort datasets used in the trajectory modelling showing (a) bone mineral 

content (BMC) values at each age, and (b) BMC individual trajectories. 

Fig. 3 Mean BMC growth trajectory from the selected linear spline LME models. 

Fig. 4 Mean BMC growth trajectory (left panels) and mean BMC growth velocity and age at peak 

velocity (right panels) from the selected natural cubic spline LME models. 
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Fig. 5 Mean BMC growth trajectory (solid black curves), mean BMC growth velocity (dashed 

blue curves), and mean age at peak BMC velocity (vertical red lines) from the selected SITAR 

models. 

Fig. 6 Overlayed mean BMC growth trajectories from the selected linear spline LME models, 

natural cubic spline LME models, and SITAR models. 

Fig. 7 Mean BMC growth trajectories by subgroup (latent class) from the selected growth 

mixture models. 

Fig. 8 Effects of increasing the number of knots in the random effects spline on the individual 

growth velocity curves from the natural cubic spline LME model. 

Fig. 9 Pooled mean BMC growth trajectory (solid black curves), mean BMC growth velocity 

(dashed blue curves), and mean age at peak BMC velocity (vertical red lines) from SITAR 

models applied to individual participant data (ALSPAC, BMDCS and PBMAS). 

 

SUPPLEMENTARY MATERIAL 

Online Resource 1 Cohort characteristics and participant numbers, and age and BMC at each 

visit. 

Online Resource 2 BIC and fit statistics for linear spline LME models, natural cubic spline LME 

models, and SITAR models with 2 to 6 knots in the fixed effects spline curve 

Online Resource 3 Fit statistics and predicted mean BMC latent trajectories for growth mixture 

models with 1 to 5 latent classes.
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Table 1 Overview of linear spline LME models, natural cubic spline LME models, SITAR, and latent trajectory models for analysing nonlinear 

growth trajectories of a single repeatedly measured continuous outcome. 

 Linear spline LME model Natural cubic spline LME model SITAR Latent trajectory model 

Description linear mixed-effects model with 

a linear spline function of the 

independent time variable 

linear mixed-effects model with 

a restricted cubic spline function 

of the independent time variable 

nonlinear mixed-effects 

model based on the shape 

invariant growth model 

heterogenous growth 

curves fit to unknown 

subgroups of individuals 

Advantages 

 

easy to interpret the spline slope 

coefficients; can describe growth 

rate during different periods of 

the growth process 

continuous 1st & 2nd derivatives 

give smoother trajectory and can 

identify points of peaks/troughs; 

linearity constraint gives a more 

reliable trajectory shape as less 

erratic at the tails of distribution 

has useful features of the 

natural cubic spline, easy 

to estimate individual 

growth features – most 

notably individual ages at 

peak growth velocity 

can identify unobserved 

sub-groups of individuals 

sharing distinct growth 

trajectories if any exist 

Limitations biologically implausible sudden 

changes in velocity (i.e., at the 

knots); erratic at the tails; cannot 

identify points of velocity 

maxima/minima; position (and 

location) of knots important 

coefficients difficult to interpret 

(so plotting is more useful); can 

be challenging to estimate the 

individual growth curves due to 

complex spline basis functions 

used by the statistical software 

may not work well for 

complex growth patterns 

e.g., with multiple peaks 

and troughs or where the 

growth curve does not 

plateau in adulthood 

difficult to identify the 

optimal number of sub-

groups; may identify 

implausible subgroups; 

trajectories tend not to 

replicate in other cohorts 

R package(s) lme4; lspline lme4; splines sitar lcmm, splines 

All models can include all individuals with at least one observed outcome measure, with valid estimates obtained under the assumption of outcome 

data missing at random (MAR) depending on observed values of the outcome and/or covariates. Note all models assume no autocorrelation (in our 

example, there are wide enough gaps between measures to assume that here).
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Table 2 Characteristics of the three cohort studies included in the trajectory modelling 

Study name Avon Longitudinal Study 

of Parents and Children 

(ALSPAC) 

Bone Mineral Density 

in Childhood Study 

(BMDCS) 

Pediatric Bone 

Mineral Accrual 

Study (PBMAS) 

Design birth cohort study (started 

in 1990-1992) 

child cohort study 

(started in 2002-2003) 

child cohort study 

(started in 1991) 

Region and country catchment area of 3 health 

authorities in Southwest 

England, UK 

5 USA clinic centres: 

Los Angeles, New 

York, Cincinnati, 

Omaha, Philadelphia 

2 elementary 

schools, Saskatoon, 

Saskatchewan, 

Canada 

Birth years 1990-1992 1985-1997 1983-1976 

Ethnicity 98% white ethnicity ethnically diverse 95% white ethnicity 

DXA device used to 

measure BMC 

Lunar Prodigy Hologic QDR-4500A Hologic QDR-2000 

Mean age at the 

baseline/youngest 

DXA scan (range) 

9.9 years  

(8.8-11.7 years) 

10.8 years  

(6.0-17.0 years) 

11.8 years 

(8.0-15.1 years) 

Mean age at 

last/oldest DXA scan 

(range) 

24.6 years 

(22.4-26.5 years) 

16.1 years 

(6.9-23.3 years) 

37.3 years 

(34.3-40.2 years) 

Frequency and the 

maximum number of 

repeated DXA scans 

up to 6 repeated scans at 

mean ages 9.9, 11.7, 13.8, 

15.4, 17.8, and 24.6 years 

up to 7 yearly repeated 

scans 

Up to 16 repeated 

scans (1991-1998, 

2003-2005, 2007-

2011 and 2016-2017) 

Individuals included 

in the analysis* 

4007 females  

3888 males 

488 females  

465 males 

127 females  

112 males 

*Trajectory modelling was restricted to white ethnicity individuals. 
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Table 3 Estimated mean BMC growth velocity during different age windows from the selected linear spline LME models. 

 Grams per year change in BMC [(mean (95% CI)] 

 ALSPAC BMDCS PBMAS 

Females    

8.8y to 11.4y (ALSPAC); 5.0y to 7.9y (BMDCS); 7.9y to 14.2y (PBMAS) 177.7 (173.8 to 181.6) 67.6 (60.1 to 75.1) 195.4 (189.7 to 201.1) 

11.4y to 13.9y (ALSPAC); 7.9y to 10.7y (BMDCS); 14.2y to 20.5y (PBMAS) 238.9 (236.0 to 241.7) 84.1 (79.0 to 89.2) 34.7 (30.0 to 39.5) 

13.9y to 16.4y (ALSPAC); 10.7y to 13.6y (BMDCS); 20.5y to 26.9y (PBMAS) 117.3 (113.2 to 121.3) 189.0 (184.7 to 193.3) -3.3 (-7.5 to 0.9) 

16.4y to 18.9y (ALSPAC); 13.6y to 16.4y (BMDCS); 26.9y to 33.2y (PBMAS) 5.0 (-1.3 to 11.3) 85.7 (80.1 to 91.3) 9.1 (3.0 to 15.1) 

18.9y to 21.5y (ALSPAC); 16.4y to 19.3y (BMDCS); 33.2y to 39.5y (PBMAS) 99.2 (74.2 to 124.2) 17.4 (10.6 to 24.1) 5.2 (-5.9 to 16.3) 

21.5y to 24.0y (ALSPAC); 19.3y to 22.1y (BMDCS) 20.1 (-7.0 to 47.2) 19.5 (11.1 to 27.8) - 

24.0y to 26.5y (ALSPAC) 15.2 (3.0 to 27.5) - - 

Males    

8.8y to 12.3y (ALSPAC); 5.0y to 8.6y (BMDCS); 7.8y to 12.5y (PBMAS) 148.5 (144.2 to 150.8) 70.2 (61.7 to 78.7) 157.5 (144.2 to 170.8) 

12.3y to 15.9y (ALSPAC); 8.6y to 12.3y (BMDCS); 12.5y to 17.1y (PBMAS) 305.6 (302.5 to 308.8) 107.4 (101.7 to 113.1) 247.1 (238.7 to 255.4) 

15.9y to 19.4y (ALSPAC); 12.3y to 16.0y (BMDCS); 17.1y to 21.7y (PBMAS) 103.3 (98.6 to 108.0) 253.2 (248.4 to 258.0) 19.3 (8.9 to 29.7) 

19.4y to 23.0y (ALSPAC); 16.0y to 19.6y (BMDCS); 21.7y to 26.3y (PBMAS) 93.5 (84.1 to 102.8) 71.4 (63.3 to 79.5) 11.2 (0.8 to 21.6) 

23.0y to 26.5y (ALSPAC); 19.6y to 23.3y (BMDCS); 26.3y to 31.0y (PBMAS) 11.7 (-6.4 to 29.9) 8.0 (-3.5 to 19.6) 10.7 (-1.5 to 22.8) 

31.0y to 35.6y (PBMAS) - - -7.9 (-26.4 to 10.7) 

35.6y to 40.2y (PBMAS) - - -0.4 (-32.7 to 32.0) 

Age windows are defined by the number and position of the knots, which were placed at quantiles of the age distribution.  
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Table 4 Estimated mean age at peak BMC velocity from the selected natural cubic spline LME models, and selected SITAR models. For 

comparison, the age windows for peak BMC velocity from the linear spline LME models are also presented. 

 Females  Males 

 ALSPAC BMDCS PBMAS  ALSPAC BMDCS PBMAS 

Mean age at peak BMC velocity (years)        

Natural cubic spline LME model 12.5 12.4 12.2  13.9 14.4 14.1 

SITAR model 12.1 12.5 12.0  13.8 14.1 13.9 

        

age window for peak BMC velocity from 

the linear spline LME model (years) 

11.4 to 13.9 10.7 to 13.6 7.9 to 14.2  12.3 to 15.9 12.3 to 16.0 12.5 to 17.1 
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Fig. 1 Example illustrating the limitations of using polynomial functions to approximate a 

nonlinear growth trajectory. 

 

Coloured lines represent predicted trajectories from LME models with age as (a) linear term 

and as (b) quadratic polynomial and (c) cubic polynomial. Points display weight measurements 

taken from 70 females in the Berkeley Child Guidance Study. Dataset was originally provided 

as an appendix to the book by Tuddenham and Snyder (1954). The data used in this example 

were taken from the freely accessible ‘Berkeley’ dataset provided with the sitar package. 
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Fig. 2 Plots of the cohort datasets used in the trajectory modelling showing (a) bone mineral 

content (BMC) values at each age, and (b) BMC individual trajectories. 
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Fig. 3 Mean BMC growth trajectory from the selected linear spline LME models. 

 

 

Shaded areas around the mean trajectories represent 95% confidence intervals. 
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Fig. 4 Mean BMC growth trajectory (left panels) and mean BMC growth velocity and age at 

peak velocity (right panels) from the selected natural cubic spline LME models. 

 

Shaded areas around the mean growth trajectories represent 95% confidence 
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Fig. 5 Mean BMC growth trajectory (solid black curves), mean BMC growth velocity 

(dashed blue curves), and mean age at peak BMC velocity (vertical red lines) from the 

selected SITAR models. 
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Fig. 6 Overlayed mean BMC growth trajectories from the selected linear spline LME models, 

natural cubic spline LME models, and SITAR models. 
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Fig. 7 Mean BMC growth trajectories by subgroup (latent class) from the selected growth 

mixture models. 

 

Colours distinguish between latent trajectory subgroups within subplots and should not be 

used to compare between subplots. Shaded areas around the mean trajectories represent 

95% confidence intervals. The numbers in each class are: ALSPAC females (class 1: 

n=2337, class 2: n=531, class 3: n=1139), ALSPAC males (class 1: n=1339, class 2: 

n=2549), BMDCS females (class 1: n=101, class 2: n=93, class 3: n=294), BMDCS males 

(class 1: n=176, class 2: n=289), PBMAS females (class 1: n=50, class 2: n=19, class 3: 

n=41, class 4: n=17), PBMAS males (class 1: n=42, class 2: n=40, class 3: n=30). 
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Fig. 8 Effects of increasing the number of knots in the random effects spline on the 

individual growth velocity curves from the natural cubic spline LME model. 

 

Plot shows the velocity curves for 5 randomly selected individuals, obtained from natural 

cubic spline LME models in PBMAS males with 2, 4, and 6 knots for the random effects 

spline curve. All models included 6 knots in the fixed effects spline curve. All knots were 

placed at quantiles of age distribution. 
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Fig. 9 Pooled mean BMC growth trajectory (solid black curves), mean BMC growth velocity 

(dashed blue curves), and mean age at peak BMC velocity (vertical red lines) from SITAR 

models applied to individual participant data (ALSPAC, BMDCS and PBMAS). 

 

Sex-specific individual participant data SITAR models were fitted to ALSPAC, BMDCS 

and PBMAS combined, to obtained pooled estimates of the timing of peak BMC growth. 
This analysis included individuals with overlapping measurements (8.8 to 22.1 years) 

from the 3 cohorts (n=4431 for females and n=4359 for males.) To mitigate the cohort 

differences in BMC (higher values in ALSPAC due to Lunar machine), we modelled 

BMC in cohort-specific standardised units (mean=0 and SD=1), and the models were 

adjusted for cohort (as a fixed effect). Note it is not advised to fit SITAR to SD units as 

this distorts the underlying biology – though in our example, results are consistent with 

cohort-specific natural unit results. 
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