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Abstract: The integration of metabolomics data with sequencing data is a key step towards improving the 18 

diagnostic process for finding the disease-causing gene(s) in patients suspected of having an inborn error 19 

of metabolism (IEM). The measured metabolite levels could provide additional phenotypical evidence to 20 

elucidate the degree of pathogenicity for variants found in metabolic genes. We present a computational 21 

approach, called Reafect, that calculates for each reaction in a metabolic pathway a score indicating whether 22 

that reaction is being deficient or not. When calculating this score, Reafect takes multiple factors into 23 

account: the magnitude and sign of alterations in the metabolite levels, the reaction distances between 24 

metabolites and reactions in the pathway, and the biochemical directionality of the reactions. We applied 25 

Reafect to untargeted metabolomics data of 72 patient samples with a known IEM and found that in 80% 26 

of the cases the correct deficient enzyme was ranked within the top 5% of all considered enzyme 27 

deficiencies. Next, we integrated Reafect with CADD scores (a measure for variant deleteriousness) and 28 

ranked the potential disease-causing genes of 27 IEM patients. We observed that this integrated approach 29 

significantly improved the prioritization of the disease-causing genes when compared with the two 30 

approaches individually. For 15/27 IEM patients the correct disease-causing gene was ranked within the 31 

top 0.2% of the set of potential disease-causing genes. Together, our findings suggest that metabolomics 32 

data improves the identification of disease-causing genetic variants in patients suffering from IEM. 33 
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Introduction 34 

DNA sequencing methods such as whole exome sequencing (WES) and whole genome sequencing (WGS) 35 

are powerful techniques to identify the pathogenic genetic variant(s) in patients suspected of a genetic 36 

disease (Pronicka, et al., 2016) (Wright, et al., 2018) (Stavropoulos, et al., 2016). Nevertheless, a single 37 

WES typically generates tens of thousands of variants (Wright, et al., 2018). With the reduced costs for 38 

sequencing, WGS becomes increasingly popular, generating even a few million of variants per patient 39 

(Wright, et al., 2018). Numerous filtering strategies have been developed to reduce the number of variants 40 

which need to be manually inspected. The Combined Annotation Dependent Depletion (CADD) score is 41 

widely explored as one of these filtering strategies (Rentzsch, et al., 2018); prioritizing variants such as 42 

single nucleotide variants (SNV), deletions and insertions (InDels) in patients. CADD scores employ a 43 

machine learning based approach where 63 conservational - and functional genomic metrics are combined 44 

into a single metric. After various filtering steps, the investigator still needs to evaluate a substantial number 45 

of variants manually. The pathogenicity of these rare or novel variants is often unknown, leading to a 46 

clinically dissatisfactory classification. 47 

 48 

Functional studies may provide evidence whether a variant of unknown significance should be considered 49 

pathogenic or not. For this purpose, metabolomics is catching more and more interest since it has the 50 

potential to resolve the degree of pathogenicity for genetic variants which are expected to have an effect on 51 

the patient’s metabolism, i.e. inborn errors of metabolism (IEM) (Kerkhofs, et al., 2020)  (Alaimo, et al., 52 

2020) (Linck, et al., 2020). Some strategies have already been developed for this purpose; Haijes et al. 53 

applied expert knowledge to develop an algorithm that matches metabolic signatures obtained from 54 

metabolomics with expected metabolic signatures caused by each IEM, thereby ranking potential enzymatic 55 

deficiencies (Haijes, et al., 2020). Similarly, Baumgartner et al. explored the use of classification algorithms 56 

to distinguish multiple IEM based on differences in metabolite levels (Baumgartner, et al., 2004). However, 57 

training such a classifier requires data from multiple patients having the same IEM and since more than a 58 

1000 different IEM exist with an overall birth prevalence of 51 per 100.000 (Waters, et al., 2018) the 59 

creation of large cohorts is challenging, thereby hampering the use of classification algorithms.  To 60 

overcome this limitation, Messa et al. explored the use of metabolic networks to simulate IEM specific 61 

metabolic profiles, which they then compared with real IEM profiles using a Siamese neural network to 62 

rank the most probable matching (simulated) IEM (Messa, et al., 2020). Another strategy involves the use 63 

of gene-metabolite sets for which an enrichment score can be calculated to rank potential affected genes 64 

(Kerkhofs, et al., 2020). Similarly, MetPropagate  (Linck, et al., 2020) uses gene-metabolite set enrichment 65 

scores, but additionally propagates these scores through a protein-protein network to rank potentially 66 

affected genes. The main concern with these approaches is that enrichment scores require (Z-score) cutoffs 67 
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for metabolite levels, potentially excluding subtle aberrations that do not exceed the thresholds. In a 68 

different approach, Pirhaji et al. developed a tool, called PIUMet, that integrates metabolomics data with 69 

other omics data (Pirhaji, et al., 2016). PIUMet automatically annotates mass spectrometry (MS) features 70 

while inferring disease-associated pathways using a prize-collecting Steiner Forest algorithm. Still, we 71 

believe that most approaches did not fully exploited some crucial interconnected characteristics of IEM, 72 

i.e.: 1) the direction (increased or decreased) and 2) the magnitude of alterations in the metabolite levels, 73 

3) pathway information including the biochemical directionality of reactions, and 4) reaction distances 74 

between metabolites and reactions. 75 

 76 

To integrate metabolomics in WES, and potentially WGS, analysis, we developed an algorithm, called 77 

Reafect (Reaction defect). Reafect combines information of metabolic pathways from KEGG (Kanehisa, 78 

2000) and the metabolite Z-scores obtained from annotated metabolomics data to calculate a ‘deficient 79 

reaction score’ for each reaction. Higher scores imply that there is more evidence of that reaction being 80 

deficient and vice versa. Our algorithm differs fundamentally from the approaches mentioned earlier, since 81 

it is solely based on pathway information, and uses the metabolite Z-scores in a continuous fashion without 82 

using cutoff values. Reafect furthermore takes the directionality of the reactions and the sign of the Z-scores 83 

into account when calculating the deficient reaction scores. We evaluated Reafect’s performance on 36 84 

distinct IEM using 72 plasma samples from patients diagnosed with an IEM. 85 

 86 

Since each reaction is associated with genes coding for the enzyme catalyzing that reaction, we used 87 

Reafect’s deficient reaction scores in combination with CADD scores as an integrated model for prioritizing 88 

potentially disease-causing metabolic genes. To evaluate this approach, we studied 27 IEM patients for 89 

which the pathogenic variant was identified and untargeted metabolomics data was obtained. This 90 

integrated model showed a significant improvement on ranking the correct disease-causing genes when 91 

compared with using solely Reafect or CADD scores. 92 

 93 

  94 
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Results 95 

Reafect 96 

An enzymatic deficiency generally leads to a build-up of the reaction substrate(s) and shortages of the 97 

product(s) formed by that reaction. Z-scores obtained from annotated metabolomics (see Methods) can be 98 

used to detect the accumulation of these substrates (i.e. positive Z-scores) as well as shortages of the 99 

products (i.e. negative Z-scores). Although the accumulation and shortage of metabolites occur for the 100 

metabolites directly involved in the deficient reaction, aberrant metabolite levels will also propagate 101 

through a biochemical pathway, leading to changes in metabolite levels that are multiple reaction steps 102 

away from the deficient reaction. We used this dogma to develop an algorithm, called Reafect, that 103 

calculates for each reaction in a pathway a score that reflects how deficient that reaction is. We called this 104 

score the deficient reaction score or SR score (see Methods for details).  To calculate this score, Reafect 105 

weighs metabolite levels (Z-scores) which are further away from the considered reaction to a lesser extent 106 

than metabolite levels closer to the putative reaction, since we assume that more distant metabolites give 107 

less information about the reaction deficiency. For this purpose, Reafect uses a weighted version of the 108 

observed Z-scores, called ‘effective Z-scores’, and which are always relative to the considered reaction for 109 

which the deficient reaction score is calculated (see Figure 1). The effective Z-score is determined by 110 

calculating a total decay factor over a reaction path when going from the metabolite (with Z-score) to that 111 

reaction. The more steps away from the considered reaction, the more the observed Z-score is decayed, 112 

thereby resulting in a lower (absolute) effective Z-score. To constrain the number of model parameters, we 113 

used three different decay factors (a,b,c) and distinguished five different decay types: 1) a decay factor a 114 

for a metabolite with a positive Z-score taking a step downstream towards the considered reaction, 2) a 115 

decay factor b for a metabolite with a positive Z-score taking a step upstream towards the considered 116 

reaction, 3) a decay factor a for a metabolite with a negative Z-score taking a step upstream, 4) a decay 117 

factor b for a metabolite with a negative Z-score taking a step downstream and 5) a decay factor c for 118 

reversible reactions (independent of the Z-score sign) taking one step in the direction of the considered 119 

reaction. We want to emphasize that Reafect describes reaction paths as a chain of metabolite and reaction 120 

nodes (in a graph) to track all pathway information (see Figure 1). Consequently, a reaction step is either a 121 

step from metabolite to reaction, or from reaction to metabolite. For example, consider a metabolite with a 122 

positive Z-score which takes three downstream steps to get to the considered reaction (Figure 1a, m2 to R3). 123 

The effective Z-score for this metabolite would then be given by the Z-score multiplied by a3, thus having 124 

a total decay factor of a3
.  Similarly, if this metabolite had a negative Z-score the total decay factor for this 125 

reaction path would have been b3. Obviously, a reaction path could also be more complex, resulting for 126 

example in a total decay factor of c2 b a2. We justify the introduction of a and b, by realizing that when a>b 127 
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the effective Z-scores remain relatively high for positive Z-scores located upstream of a deficiency, and the 128 

same holds for negative Z-scores downstream of the deficiency. The values of these decay factors (a, b and 129 

c) are selected using the metabolomics data from 72 IEM patient samples (see Section Tuning the model 130 

parameters). Subsequently, Reafect aggregates all effective Z-scores resulting in the deficient reaction score 131 

(or SR 
 score) where it takes into account whether a certain effective Z-score was located downstream or 132 

upstream of the considered reaction (see Methods, Equation 6). 133 

Finally, Reafect prioritizes all reactions by sorting the SR 
 scores on their magnitude, with higher scores 134 

indicating that a reaction is more likely to be deficient. Next to prioritizing the reactions, Reafect can 135 

prioritize enzymes and corresponding genes on their potential of being deficient. As enzymes can be 136 

involved in multiple reactions the final SR 
 score for an enzyme is taken to be the maximum SR score of the 137 

set of reactions the enzyme may catalyze (Method). 138 

 139 

 140 

Figure 1. Illustration of Reafect. A circle indicates a metabolite and a square a reaction (node), with the horizontal arrows indicating 141 

the directionality of the reaction. The vertical grey bars (with dot) indicate the observed Z-scores; pointing upwards indicating a 142 

positive Z-score and vice versa. The black dotted bars indicate the effective Z-score from the perspective of reaction R3. Note that 143 
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Reafect determines for each reaction a deficient reaction score but in these figures only the results are shown for R3. A) Reaction 144 

R3 is deficient. The effective Z-scores decay when going away from R3 as visualized by the reduced magnitude of the black bars. 145 

The deficient reaction score, illustrated by the blue bar on R3, is high since we observe net positive effective Z-scores upstream of 146 

R3 and net negative effective Z-scores downstream of R3. B) R3 is not deficient and metabolite Z-scores around the reaction are 147 

normal, thereby resulting in a low deficient reaction score. Note that the blue bar at R3 is small. C) R3 is not deficient, but has still 148 

a relatively high deficient reaction score. Note that although the observed Z-scores for m3 and m4 are equal, the resulting effective 149 

Z-scores are different since the decay of the Z-scores also depends on the biochemical directionality (and also applies to m2 and 150 

m5). Metabolite m1 has a relatively high observed Z-score, but its effective Z-scores is reduced since it is 5 reaction steps away 151 

from R3. Reafect calculates per side of the reaction the net effective Z-scores. For example, the effective Z-scores for m4 and m5 152 

roughly counter balance each other when looking at the downstream side of R3. The upstream side has net positive effective Z-153 

scores, therefore resulting in a positive deficient reaction score. 154 

 155 

Tuning the model parameters 156 

Per IEM patient, potential deficient enzymes were ranked by their maximum associated SR score (Methods) 157 

and the rank of the true deficient enzyme in that patient was reported (Figure 4, Absolute rank). Since the 158 

total number of enzymes on which the ranking was based varied among the patients, we determined the 159 

percentile rank (PR) by dividing by the total number of enzymes multiplied by 100% (Methods). A lower 160 

PR indicates an improved ranking performance and vice versa. The overall performance of Reafect was 161 

measured by calculating how often a PR was smaller or equal than a predefined value across the 72 IEM 162 

patient samples. When increasing this predefined value a curve is generated as displayed in Figure 3. We 163 

used the area under this curve (AUC) to indicate the overall performance of Reafect, where higher AUCs 164 

imply better performances.   165 

 166 

Since Reafect uses three model parameters (a, b, c), we used a parameter sweep over these parameters to 167 

explore how the performance (AUC) was affected. We performed a bootstrap procedure to obtain a robust 168 

performance AUC (Methods). Figure 2 shows these bootstrapped AUCs for each combination of (a, b, c). 169 

For region b > a, Reafect performs less than for region b < a. This can be understood by realizing that when 170 

a > b the effective Z-scores for metabolites having positive Z-scores decay faster for downstream steps than 171 

for upstream steps (and the opposite for negative Z-scores), resulting in reduced evidence for the deficient 172 

reaction. Furthermore, for region c < 0.5, Reafect’s overall performance is poor. The highest performance 173 

was reached for a = 0.85, b = 0.35, and c = 0.75 (see Figure 2B). In further evaluations of Reafect, we set 174 

the parameters a, b, c to these values.  175 

 176 
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 177 

Figure 2. A) Bootstrapped AUCs (Methods) for different combinations of Reafect’s hyper parameters (a,b,c). The colors indicate 178 

the percentage of the maximum obtained AUC. B) Contour plot of the (cubic interpolated) bootstrapped AUCs while fixing c=0.75 179 

and varying a and b. The contour levels indicate the percentage of the maximum AUC reached at a = 0.85, b = 0.35, c = 0.75.  180 

 181 

Enzyme ranking for IEM patients 182 

We applied Reafect to 72 IEM patient samples and determined the percentile rank (PR) of the true enzyme 183 

deficiency. For 61% of these samples the PR was within the top 2.5% of all considered enzyme deficiencies, 184 

and for 80% of the samples the PR was within the top 5% (Figure 3). Additionally, we compared Reafect 185 

with MetPropagate (Linck, et al., 2020), while taking several factors into account such as overlapping 186 

metabolites and genes between the two approaches to objectively compare the performances (Methods). 187 

Based on 65 IEM patient samples, we found that Reafect has a 19% increase in the AUC when compared 188 

to MetPropagate. Considering that lower percentile ranks (<10%) are more interesting (Figure 3B), we 189 

observe that for this region the partial AUC of Reafect is 69% higher than the partial AUC of MetPropagate. 190 

A detailed overview of the PRs per IEM patient for both approaches can be found in Supplement 1.  191 

 192 
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 193 

Figure 3.  IEM ranking performances for different approaches as indicated by the legend. Each curve shows the percentage of IEM 194 

patient samples for which the percentile rank (PR) of the true enzyme deficiency is within the top x % (horizontal axis) of all 195 

considered enzyme deficiencies. Model settings for Reafect: a = 0.85, b = 0.35 and c = 0.75. A) Full performance curves. B) 196 

Performance curves with PR <= 10%. To perform a meaningful comparison between Reafect and MetPropagate a subset of the 197 

data was analyzed that contained only metabolites and genes that were included in both approaches (Methods). Note that this 198 

selection reduced the performance of Reafect to 91% of its original performance. 199 

 200 

Figure 4. shows a detailed overview of the results per IEM patient. From this figure it is clear that for the 201 

same IEM but different patients, Reafect can return different PRs.  For example, one patient with maple 202 

syrup urine disease (BCKDH) has a PR of 0.36%, whereas for the other patient this is 4.19%. This can be 203 

explained by the difference in the magnitude of the Z-scores for the disease-related metabolites leucine and 204 

isoleucine, namely for the patient with the low rank Z = 6.7 and Z = 5.4, respectively, and for the patient 205 

with the higher rank these Z-scores were less extreme, Z = 2.49 and Z = 2.65, respectively. Similarly, for 206 

two patients having long-chain-3-hydroxyacyl-CoA dehydrogenase deficiency (HADHA), one has a PR of 207 

0.54% and for the other this is 1.62%. Again, this difference in PRs can be understood by differences in for 208 

example 3-hydroxyhexadecanoylcarnitine, which had a Z-score of Z = 13.3 for the patient with the lower 209 

PR, while the other was more subtle with Z = 6.4. Also, one patient with carbamoyl phosphate synthetase 210 

I deficiency (CPS1) ranked at 1.73%,  had Z = 1.8 for L-glutamine, while the other patient (ranked at 211 

19.37%)  seemed to have a normal L-glutamine level (Z = 0.2), thereby explaining also the difference 212 

between these ranks.  213 
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 214 

Figure 4.  Detailed overview of the ranks of the correct IEM per patient. The first column indicates the PR (for the known deficient 215 

enzyme) for a given patient. Blue colors indicate PRs lower than 5%, orange/red colors indicate PRs above 5% (see color bar). The 216 

second column shows the absolute rank of the deficient enzyme. The third column indicates the total number of the ranks/ unique 217 

enzymes on which the ranking was based (this number varies across patients due to differences in metabolite annotations). The 218 

fourth column indicates the number of annotated metabolites in the pathway on which the deficient reaction score was based.  The 219 

fifth column shows the total number of metabolites present in that pathway. For the HADHA gene, which encodes two enzymatic 220 

functions, we selected enzyme EC 1.1.1.211. The patient samples ASSa and ASSb originate from the same patient, but were acquired 221 

on different dates. The same holds for the samples IVDa and IVDb. 222 

 223 

Some IEM were poorly ranked due to the absence of clear aberrations in the metabolomics data. For both 224 

patients with alkaptonuria (homogentisate 1,2-dioxygenase deficiency, HGD), homogentisic acid was not 225 

increased in our analysis (Z = 0.4 and Z = 0.5), which clarifies why Reafect poorly ranked these patients. 226 

The patient with mevalonate kinase deficiency (MVK) was also ranked poorly, which was a consequence 227 
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of two reasons: 1) only one metabolite involved in calculating the SR score i.e. mevalonic acid, was 228 

annotated in the metabolomics data and 2) the Z-score of this metabolite was Z = 0.7.  229 

 230 

Reafect ranked the patient with arginase I deficiency (ARG1) at 0.36%. This was considered to be a 231 

relatively good ranking, since 14 metabolites were found to have a Z-score above 2.1, while the disease 232 

related metabolites arginine and ornithine had Z=2.1 and Z= -2.4 respectively. From a naive perspective 233 

we would expect about 14 other enzyme deficiencies to have lower (better) rank than arginase I. However, 234 

this relatively good performance can be explained by the fact that arginase I catalyzes the conversion of 235 

arginine into ornithine (plus urea), and the substrate (arginine) is increased while the product (ornithine) is 236 

reduced. Consequently, Reafect assigned a relatively high SR score to this reaction. To strengthen this 237 

explanation, we used Reafect while flipping all Z-score signs (positive Z-scores become negative Z-scores 238 

and vice versa), and we observe that for this patient the PR increased from 0.36% to 26.11% (Supplement 239 

2, Figure S3). This demonstrates that the obtained PR (0.36%) was a consequence of taking the Z-score 240 

signs and biochemical directionality into account. 241 

 242 

Another interesting observation is the poor rank obtained for the patient having guanidinoacetate N-243 

methyltransferase deficiency (GAMT). This patient was under treatment with creatine supplementation, 244 

which explains the poor rank. Although guanidinoacetate (Z = 3.1) was high in this patient, the presence of 245 

the high creatine level (Z = 6.7) led to high Z-scores on both sides of the GAMT reaction R01883 which 246 

reduces the SR score, as can be observed in Equation 6 (Methods),  247 

 248 

Gene prioritization for IEM patients using CADD scores and Reafect 249 

We hypothesized that potentially affected (metabolic) genes could be better prioritized when we combine 250 

the CADD (Phred) scores obtained from variants in WES data with the deficient reaction scores obtained 251 

from Reafect. Since an increase in both scores is expected to be associated with increased pathogenicity we 252 

chose to multiply the deficient reaction score with the maximum CADD score observed in the variants of 253 

the gene corresponding to that enzyme. Next, we used this combined score to rank the genes (Methods).  254 

 255 

Since WES data was only available for two IEM patients, we evaluated this gene ranking based on two 256 

approaches: 1) using the WES background belonging to that patient if the WES was available (see asterisks 257 

in Table 1) and 2) using 15 random WES backgrounds while inserting the (known) disease-causing variant 258 

of the patient (Methods). Table 1 shows the PRs for 28 IEM patients for which the pathogenic variant was 259 

identified, using solely Reafect, solely CADD scores as well as the integrated approach. For 12/28 patients 260 

Reafect scored better than CADD (marked blue). For 21/28 and 20/28 patients, the integrated approach led 261 
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to improved ranking when compared only to Reafect or CADD scores, respectively. Especially the gain in 262 

ranking performance for patients 5 (ACADVL), 7 (ACAT1), 15 and 16 (GLDC), and 23 (OGDH) is 263 

noteworthy (marked orange).  264 

 265 

Table 1. Overview of the IEM and disease-causing gene ranks for 28 IEM patients using Reafect, CADD scores and the integrated 266 

approach. The first column indicates the patient, second columns the deficient enzyme with EC identifier. The third columns refers 267 

to the affected gene. Next columns contain the PRs for each method as indicated by the column name; Reafect (only), CADD (only), 268 

and the integrated approach. The approaches using the 15 random WES backgrounds report the mean, minimum and maximum 269 

obtained PR across the 15 backgrounds. Blue marked results indicate that the PR of Reafect is lower than the PR of CADD. Orange 270 

marked results indicate a clear improvement of the integrated approach over the individual approaches.  271 
*
 The PR for CADD was 0.24% using the real WES, and 0.0% for Reafect with CADD using the real WES. 272 

**
 The PR for CADD was 0.58% using the real WES, and 0.35% for Reafect with CADD using the real WES. 273 

 274 

Patient Enzyme Gene Reafect  

Percentile rank (%) 

 

CADD  

Percentile rank (%) 

mean [min, max] 

 

15 random WES 

backgrounds 

Reafect with CADD   

Percentile rank (%) 

mean [min, max] 

 

15 random WES backgrounds 

Patient 1 1.3.8.7 ACADM 1.71 0.4 [0.12,0.59] 0.0 [0.0,0.0] 

Patient 2 1.3.8.7 ACADM 0.51 6.04 [5.33,7.16] 0.25 [0.11,0.36] 

Patient 3 1.3.8.7 ACADM 3.59 0.41 [0.12,0.59] 0.11 [0.0,0.12] 

Patient 4 1.3.8.7 ACADM 1.53 0.45 [0.12,0.64] 0.04 [0.0,0.12] 

Patient 5 1.3.8.9 ACADVL 1.42 3.2 [1.85,4.22] 0.3 [0.12,0.5] 

Patient 6 1.3.8.9 ACADVL 0.18 1.57 [1.03,2.07] 0.06 [0.0,0.24] 

Patient 7 2.3.1.9 ACAT1 1.11 2.47 [1.33,3.52] 0.36 [0.24,0.62] 

Patient 8 2.3.1.9 ACAT1 1.24 0.06 [0.0,0.23] 0.01 [0.0,0.12] 

Patient 9 4.3.2.1 ASL 2.93 1.88 [1.19,2.6] 2.29 [2.02,2.59] 

Patient 10 2.3.1.21 CPT2 9.01 0.73 [0.35,1.3] 4.3 [3.53,4.87] 

Patient 11 2.3.1.21 CPT2 0 4.05 [2.78,5.15] 0.12 [0.0,0.25] 

Patient 12 3.7.1.2 FAH 4.64 4.06 [2.41,5.38] 5.02 [4.48,5.59] 

Patient 13 2.1.1.2 GAMT 28.99 0.05 [0.0,0.13] 5.26 [4.33,6.34] 

Patient 14 1.3.8.6 GCDH 0.53 0.35 [0.11,0.59] 0.18 [0.0,0.46] 

Patient 15 1.4.4.2 GLDC 4.09 2.26 [1.28,3.0] 0.64 [0.35,0.94] 

Patient 16 1.4.4.2 GLDC 2.86 2.4 [1.31,3.17] 0.39 [0.11,0.66] 

Patient 17 1.1.1.211 HADHA 0.54 1.04 [0.63,1.59] 0.11 [0.0,0.25] 

Patient 17 4.2.1.17 HADHA 0.18 1.04 [0.63,1.59] 0.11 [0.0,0.25] 

Patient 18* 3.2.1.25 MANBA 0 0.42  [0.12,0.71] 0.0* [0.0,0.0] 

Patient 19 6.4.1.4 MCCC2 0 7.0 [6.11,8.31] 0.04 [0.0,0.12] 

Patient 20 5.4.99.2 MMUT 7.89 0.83 [0.35,1.42] 0.99 [0.46,1.27] 

Patient 21 1.5.1.20 MTHFR 3.03 0.53 [0.12,0.97] 0.63 [0.35,0.93] 

Patient 22 2.7.1.36 MVK 31.89 0.67 [0.35,1.3] 10.86 [9.78,11.59] 

Patient 23 1.2.4.2 OGDH 1.83 8.04 [2.71,9.91] 0.13 [0.0,0.35] 

Patient 24 2.1.3.3 OTC 6.7 0.51 [0.12,0.84] 1.32 [0.82,1.64] 

Patient 25 1.14.16.1 PAH 0.18 2.08 [1.27,2.65] 0.0 [0.0,0.0] 

Patient 26 1.14.16.1 PAH 0 1.22 [0.75,1.71] 0.0 [0.0,0.0] 

Patient 27** 1.2.4.1 PDHA1 3.92 0.65 [0.34,1.09] 0.17 [0.11,0.36] 

Patient 28 2.4.2.4 TYMP 0 0.46 [0.23,0.73] 0.0 [0.0,0.0] 

 275 

To explore the overall differences in ranking performances between the three methods, we plotted the PRs 276 

in a boxplot (Figure 5). We removed the patient with guanidinoacetate N-methyltransferase deficiency from 277 

this analysis, arguing that the metabolic profile of this patient was not representative for this IEM because 278 
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of the treatment. Using the Mann-Whitney U test, we observe that the performance between Reafect and 279 

CADD did not significantly differ (p-value > 0.05). However, the integrated approach significantly 280 

(Wilcoxon signed-rank test, p-value < 0.05) improved the ranking performance when compared with solely 281 

using Reafect or CADD scores. In other words, by combining the two scores we gained improved IEM 282 

ranking/ gene prioritization.   283 

 284 

 285 

 286 

 287 

Figure 5.  Boxplots of the percentile ranks (PRs) obtained from the different approaches; Reafect (only), CADD (only), and the 288 

integrated approach. For CADD and the integrated approach we used the average PR obtained from the 15 random WES. 289 

Significance was determined using the Wilcoxon signed-rank test (WSR) when comparing Reafect with CADD with CADD or 290 

Reafect. We used the Mann-Whitney U test (MWU) for comparing CADD with Reafect, arguing that the PRs for CADD and Reafect 291 

are independent since they are obtained from two separate datasets and approaches.   292 

  293 
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Discussion 294 

Our aim was to use metabolomics data as additional evidence for filtering genetic variants found in WES 295 

data. For this purpose, we developed Reafect, an algorithm that scores the efficacy of each reaction in a 296 

pathway. To calculate these scores, Reafect combines four types of information: 1) the magnitude and 2) 297 

sign of the metabolite Z-scores, 3) the biochemical directionality of reactions, and 4) the reaction distances 298 

between the metabolites and a reactions in a pathway. We observed that Reafect ranked the true deficient 299 

enzyme for 80% of the 72 IEM patient samples within the top 5% of all considered enzyme deficiencies. 300 

Reafect showed improved ranking performance when compared to MetPropagate. We anticipate that this 301 

improvement may at least partially be explained by three differences between Reafect and MetPropagate. 302 

First, since MetPropagate uses cutoff values for the metabolite Z-scores when calculating the enrichment 303 

scores, we expect relevant but subtle aberrant metabolites to be neglected. Reafect uses the Z-scores in a 304 

continuous fashion, therefore even subtle aberrations contribute to the deficient reaction scores and 305 

positively impact IEM ranking (see Supplement 6). Secondly, metabolite-gene set enrichment approaches 306 

only consider metabolites which have a direct relationship with a gene, such as well-known biomarkers. 307 

Metabolite levels which are multiple reaction steps away from the deficiency may still be informative but 308 

will not contribute to the enrichment score when these metabolites are not included in the metabolite-gene 309 

set. Thirdly, MetPropagate, and approaches like the ones suggested by Pirhaji et al. and Kerkhofs et al., do 310 

not explicitly take the directionality of reactions and the sign of metabolite levels (decreased/increased) into 311 

account. We showed that Reafect’s IEM ranking performance was greatly reduced by flipping the sign of 312 

the metabolite Z-scores (Supplement 2), emphasizing that the Z-score sign and reaction directionality are 313 

important for Reafect. We furthermore showed that by choosing optimal values for our model parameters 314 

(a,b,c), we were able to improve the IEM ranking performance. Since these model parameters relate to the 315 

interaction of the Z-score signs with reaction directionality, this again confirms that including this 316 

information is valuable.  317 

   318 

Integration of metabolomics with WES was achieved by multiplying the maximum deficient reaction scores 319 

with the maximum CADD score found for each enzyme and corresponding gene respectively (Methods). 320 

This integrated approach resulted in a significant improvement of ranking the true disease-causing genes 321 

(see Figure 5), where the median percentile rank (PR) was 1.36% lower than the median PR obtained from 322 

Reafect, and was 0.87% lower than the median PR obtained from using solely CADD scores.  323 

 324 

In reality the human metabolome is one interconnected network of metabolites and reactions. In this study 325 

we have chosen to use isolated metabolic modules/pathways for two reasons. First, the (KEGG) pathways 326 
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are clusters of highly interdependent reactions, for which we expect multiple metabolite levels to be affected 327 

if a pathway contains an enzymatic deficiency. Secondly, the direct use of a complete metabolic network 328 

would introduce metabolic ‘hubs’ that would connect more distinct parts of the metabolism. This 329 

entanglement of pathways/reactions may have unwanted consequences for the deficient reaction scores 330 

since also less relevant metabolite Z-scores would be involved in the calculation of these scores. A negative 331 

consequence of using isolated modules/pathways might be that some important reactions are not included. 332 

Although the goal was to develop an algorithm with minimum manual adjustments, we needed to add 333 

several reactions, such as glycine conjugation and carnitine esterification, to increase the overlap between 334 

metabolites measured in plasma and the metabolites included in the pathways (Supplement 4).  335 

 336 

Reafect also has some limitations. First, if not all metabolites in the KEGG pathway are measured and 337 

annotated, this may lead to wrong conclusions. A single metabolite with a relatively high Z-score will cause 338 

all (downstream) reactions to have high deficient reaction scores. The inclusion of more measured 339 

metabolites could prevent this behavior, since metabolite Z-scores with the same sign on both sides of the 340 

reaction reduce the deficient reaction score (Methods, Equation 6). The IEM ranking performance of 341 

Reafect is therefore affected by the number of metabolites being measured within each pathway. Secondly, 342 

Reafect is based on the assumption that IEM have the signature where substrates of the deficient reaction 343 

become more abundant and the products decrease in abundancy. In case such signature does not hold for a 344 

certain IEM, we expect Reafect to detect these kinds of IEM poorly. At last, Reafect ignores 345 

compartmentalization of different metabolic processes. A substantial number of metabolic reactions occur 346 

within certain compartments of the cell such as the mitochondrion. Similarly, different organs contain 347 

different sets of metabolic reactions, therefore the concentration of the affected metabolites for an IEM may 348 

be very different from the concentrations measured in plasma on which our Z-scores are based. 349 

 350 

For most IEM patients with an identified disease-causing variant in this study, the putative gene was directly 351 

sequenced, and therefore no WES data was obtained. We inserted the identified disease-causing variant in 352 

15 random WES backgrounds, to enable the inclusion of these patients in our study. We assumed that the 353 

average ranking obtained from these 15 backgrounds was still a good estimate of the ranking which would 354 

have been obtained when the real WES data was used. Due to our limited number of patients with real WES 355 

data (N=2), a reliable comparison between both rankings is not possible, and thus we cannot validate the 356 

accuracy of this assumption. Note that the PRs obtained from the real WES fall within the minimum and 357 

maximum PR obtained from the 15 WES backgrounds (Table 1). 358 

 359 
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Reafect uses only three decay factors (a, b, c) which we optimized using an overall performance metric (see 360 

Results, Figure 2). Ideally, these decay factors are optimized using a training set while using a separate 361 

validation set for evaluating the IEM ranking performances. Due to the low number of IEM patients 362 

included in this study we decided to use all samples for optimization and validation, arguing that splitting 363 

the dataset into a training - and validation set would lead to less accurate estimates of the decay factors and  364 

would give less insights into the overall performance of Reafect on distinct IEM. Note that we did use a 365 

bootstrap procedure to prevent overfitting of the decay factors (Methods). To further support our findings, 366 

we separately optimized the decay factors using a subset of the 72 IEM patient samples; the 44 samples for 367 

which the disease-causing variant was unknown. Using the same bootstrap procedure, we obtained an 368 

optimum close to the one found when using all 72 samples (Supplement 5).   369 

 370 

We realize that the use of three decay factors is a simplification, and that these factors should ideally be 371 

reaction specific. Kinetic parameters, such as the Michaelis–Menten constant, could be used to establish 372 

such reaction dependent decay factor. Currently accurate kinetic parameters are only available for a subset 373 

of reactions. Besides the additional complexity introduced by these reaction specific decay factors, the use 374 

of just three decay factors offered us the opportunity to demonstrate the overall importance of choosing 375 

different decay factors for reaction directionality and the sign of the Z-score, as we clearly observed in 376 

Figure 2. Still, we anticipate that Reafect’s performance on ranking IEM/genes could improve when 377 

reaction specific decay factors are incorporated.  378 

 379 

Reafect may not only be useful in the context of IEM but could be applicable in a wider context since the 380 

deficient reaction scores are a direct readout of potential accumulations and/or reductions of metabolites 381 

before/after a reaction. For example, Reafect is potentially useful in drug screening research for generating 382 

an overview of drug candidates which have the potential to inhibit metabolic enzymes. Namely, we expect 383 

that the inhibition of an enzyme by a drug will result in metabolic signatures similar to the ones caused by 384 

an IEM where the same enzyme is affected. 385 

 386 

In conclusion, the integration of metabolomics data with WES data by using Reafect’s deficient reaction 387 

scores and CADD scores, significantly improved the prioritization of pathogenic genes in patients suffering 388 

from an IEM.   389 

 390 

  391 
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Method 392 

 393 

Untargeted metabolomics data and Z-scores 394 

Metabolomics data was obtained as described by Bonte et al. Samples obtained from IEM patients were 395 

measured in 20 separate batches and features were annotated using an in-house database having MS/MS 396 

spectra and retention times of each metabolite (Bonte, et al., 2019). For the 72 patient samples, a median of 397 

119 annotated metabolites was obtained (when combining positive – and negative ion mode), and a 398 

minimum of 95 annotated metabolites was available for each sample. In agreement with national legislation 399 

and institutional guidelines, all patients or their guardians approved the possible anonymous use of the 400 

remainder of their samples for method validation and research purposes. The study was conducted in 401 

accordance with the Declaration of Helsinki. Z-scores were calculated using two different approaches: 1) 402 

metabolites which were annotated in at least 7 batches were merged, a Box-Cox transform was applied, 403 

normalized using Metchalizer (Bongaerts, et al., 2020) and the Z-scores were determined using a regression 404 

model with age and sex as covariates (Bongaerts, et al., 2020),  2) for metabolites which were annotated in 405 

less than 7 batches, the Z-scores were determined from 15 within-batch samples, where abundancies were 406 

first Box-Cox transformed and normalized using Probabilistic Quotient Normalization (PQN). When a 407 

metabolite was annotated in both positive- and negative ion mode, the Z-score of the ion mode with the 408 

largest median abundancy (over all samples) was taken. Since three technical replicates were measured for 409 

all patient samples, we used the average of these three Z-scores as the final Z-score (which was then 410 

transformed using Equation 1).  411 

 412 

Z-score transformation 413 

To prevent extreme Z-scores to dominate the deficient reaction scores, we transformed the Z-score by 414 

applying: 415 

 416 

        1) 417 

      418 

This transform behaves linear for the region 0 < |Z| < 2, but scales down Z-scores when |Z| >> 2 (Figure 6).  419 

 420 
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 421 

Figure 6. The effect of the transformation given by Equation 1 on the Z-scores.    422 

 423 

WES data  424 

Whole Exome Sequencing (WES) data was acquired over a longer time period (2013-2021), and was 425 

performed either using the Agilent Clinical Research Exome V1 (sureselect SSCRE V1) or Agilent Clinical 426 

Research Exome V2 (sureselect SSCRE V2) on a Illumina NovaSeq sequencer using paired-end reads with 427 

a read-length of 150 bp. Reads were aligned to human reference genome build GRCh37/ hg19 428 

(ucsc.hg19.nohap.fasta) using the BWA alignment algorithm (Li & Durbin, 2009). The VCF-files were 429 

obtained using GATK3 (McKenna, et al., 2010) and ANNOVAR was used to annotate gene names and 430 

variants (Wang, et al., 2010). All patients included in this study from which WES data was used gave 431 

consent for anonymous use of their data for research purposes. 432 

 433 

Retrieving human metabolic reactions 434 

We used the KGML parser from https://github.com/biopython/biopython (20-03-2020) to process KEGG 435 

(Kanehisa, 2000) pathways and modules, where we filtered on reactions involved in humans (using the hsa 436 

pre-fix). When retrieving the KEGG networks, some reactions were associated with more than one enzyme, 437 

for which KEGG returns the same unique reaction as many times as it is associated with the different 438 

enzymes, leading to a multiplicity for these reactions. We removed this multiplicity but we remained all the 439 

associated enzymes with this reaction. In other words, in these cases the same SR score for that reaction was 440 

assigned to all associated enzymes.  441 

 442 

To increase the overlap between the metabolites measured in plasma and metabolites in in the 443 

pathways/modules (from KEGG), we manually added some reactions. These can be found in Supplement 444 

4. Most of these reactions were obtained from Recon / Virtual Metabolic Human (Noronha, et al., 2018).  445 
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Reafect 446 

To determine the deficient reaction score for a certain reaction, we first consider the decay of the Z-score 447 

over a path p leading for metabolite m to reaction R: 448 

 449 

       2) 450 

 451 

Here,   is the effective Z-score for metabolite m from the perspective of reaction R  along reaction 452 

path p.  is the decay factor for step s and depends on the biochemical directionality of the step 453 

( ) (upstream, downstream, reversible) and the sign of the Z-score ( ):  454 

 455 

     3) 456 

 457 

For irreversible reactions, a is the decay factor for the Z-score when the sign of the Z-score is positive and 458 

the reaction step is downstream, or when the Z-score is negative and the reaction step is upstream. The 459 

parameter b is the decay factor for the opposite cases; the sign of the Z-score is positive (negative) and the 460 

reaction step is upstream (downstream). For reversible reactions we introduce parameter c as decay factor. 461 

Note that this decay is independent of the sign of the Z-score. 462 

 463 

Since more paths (p’s) could be possible between metabolite m and reaction R, and these could have 464 

different lengths, we calculated a normalized effective Z-score for every path:  465 

 466 

        4)  467 

 468 

where  is the normalized effective Z-score for path p. The summation over p’ indicates all paths 469 

leading from m to R. In this way, paths originating from m with (relatively) low effective Z-score strengths 470 

(such as longer paths) are weighted less in the normalized effective Z-score whereas short paths get more 471 

weight since their effective Z-score is relatively large (when compared to the other paths).  All paths (p’s) 472 
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were determined by constructing an ‘ego graph’ around each metabolite, selecting a subset of neighboring 473 

metabolites and reactions around this central metabolite. To reduce computational cost, we set a limit of 15 474 

reaction steps (metabolite-reaction or reaction-metabolite) around this ego graph, and a maximum of 10 475 

paths for travelling from m to R.  476 

 477 

Next, we summed all normalized effective Z-scores but we made a distinction between normalized effective 478 

Z-scores where its path is connected to the upstream or the downstream side of reaction R. For clarity, let 479 

us consider a direct substrate m of reaction R, which has a direct connection at the upstream side of the 480 

reaction. Let us also assume that there is a path going from m, via other reactions, which ends at the 481 

downstream side of the reaction. Since we have two paths, we have two normalized effective Z-scores; one 482 

belonging to the direct connection, the other belonging to the longer path. Since the latter path is longer, its 483 

normalized effective Z-score will be less than the normalized effective Z-score of the direct connection 484 

(Equation 4). We aggregated all metabolite normalized effective Z-scores based on the Z-score sign and 485 

connection to the reaction (downstream or upstream): 486 

 487 

         5) 488 

 489 

with ,  .  indicates the set of  490 

metabolites having a Z-score sign equal to x and  indicates the set of paths from m to R which are 491 

connected to the y-side of reaction R (downstream or upstream). Since reversible reactions lack a clear 492 

defined up – and downstream side, we assigned one of each side to the up – or downstream side while 493 

making sure that product/substrate information was conserved. 494 

 495 

Finally, we defined the deficient reaction score for reaction  as: 496 

 497 

  6) 498 

 499 

where we replaced ‘positive Z-score’ and ‘negative Z-score’ for the symbol ‘+’ and ‘-‘, respectively. We 500 

replaced ‘downstream’ and ‘upstream’ for ‘down’ and ‘up’, respectively. We observe that SR increases for 501 

net positive normalized effective Z-scores located at the upstream side of the reaction and for net negative 502 

normalized effective Z-scores located at the downstream side of the reaction, while SR decreases for the 503 
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opposite cases. When a reaction is reversible we decided to take the absolute value, arguing that we are 504 

interested in an imbalance of the net positive and negative normalized effective Z-scores across the reaction 505 

regardless of which side of the reaction these normalized effective Z-scores were positioned. 506 

 507 

We need to realize that some enzymes catalyze multiple (unique) reactions, which leads to a multiplicity of 508 

the SR scores per enzyme and (potentially) shared reactions with other enzymes catalyzing the same 509 

reaction(s). In this study we dealt with this issue by taking the maximum occurring SR score for each 510 

enzyme, even if that same SR score was already assigned to another enzyme. Alternatively, we could have 511 

considered the use of another metric (other than the maximum) such as the average of all associated SR 512 

scores, but since some associated reactions were considered poor, this average score could affect the 513 

performance negatively.  514 

 515 

Overall performance of Reafect using bootstrapped AUC 516 

Annotation of metabolites in the metabolomics data was performed per batch, which resulted in an unequal 517 

number of annotations per batch. This difference also affected the number of unique enzymes on which 518 

ranking was based per patient (Figure 4, Total number of enzymes).  To correct for this, we expressed the 519 

(absolute) rank in as a percentile by dividing by the total number of enzymes multiplied by 100%. The 520 

overall performance of Reafect for a certain choice of (a, b, c) was measured by displaying the percentage 521 

(vertical axis) of the IEM patients having the percentile rank of the correct IEM within the top x (horizontal 522 

axis). Calculating the area under the curve (AUC) for this relationship gives a measure for the overall 523 

performance, since a higher AUC indicates that a larger percentage of the IEM patients have a lower rank 524 

(steeper increase of the curve).  We used a bootstrap procedure where we selected 1000 times a random 525 

75% of the total IEM patients for which we calculated the AUC. By taking the 50th percentile of these 1000 526 

AUCs we obtained a more robust overall performance for each (a, b, c).  527 

 528 

MetPropagate and comparison with Reafect 529 

We downloaded the weighted STRING network (v11) from https://github.com/emmagraham/metPropagate  530 

(07-08-2020). ME scores were calculated in the exact same manner as described by Linck et al. Using the 531 

same terminology,  metabolites having |Z-score| > 1.5 where considered as ‘differentially abundant 532 

metabolites’. ME scores were propagated using the Local and Global Consistency (LGC) algorithm with 533 

settings max_iter=30 and alpha=0.99.  534 

 535 

To objectively compare Reafect with MetPropagate we took several factors into account: 536 
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1) Only metabolites were included with (HMDB) identifiers in the pathways/modules used by Reafect 537 

and which were also present in the gene-metabolite sets used by MetPropagate. 538 

2) Before determining ranks,  the propagated ME scores for every gene were assigned to the associated 539 

enzyme(s). We removed genes (and thus enzymes) which did not overlap in the output of both 540 

algorithms. Thus, both outputs contained the exact same number of unique enzymes on which 541 

ranking was performed. 542 

3) The ranks for MetPropagate were calculated using the propagated ME scores on the enzyme level. 543 

Note that we took the maximum propagated ME score for an enzyme when more genes were 544 

associated with that enzyme. Similarly, the ranks for Reafect were determined from the SR scores 545 

(as described above). 546 

 547 

CADD scores 548 

Variants called by GATK3 (see Method, WES data) were annotated with CADD scores from Genome build 549 

GRCh37/ hg19 v1.6 (https://cadd.gs.washington.edu/download) for both SNVs and InDels.  In this study 550 

we used the CADD (Phred) scores in two manners: 1) ranking genes based solely on the maximum CADD 551 

score occurring in each gene and 2) ranking genes using the deficient reaction score (SR score) from Reafect 552 

combined with the CADD scores. Note, that only genes were included in this ranking for which a SR score 553 

was determined and which were present in the WES data. 554 

 555 

Gene ranking using Reafect in combination with CADD scores was done as follow: 556 

1) Per enzyme the maximum SR score was determined for all associated reactions. For each enzyme, all 557 

associated genes were determined and the same maximum SR score was assigned to these genes. 558 

2) The maximum CADD (Phred) score per gene was determined.  559 

3) The SR score (step 1) was multiplied with the CADD score (Phred) for each gene.  560 

4) Genes were ranked on their integrated score (step 3). 561 

 562 

For a subset of the IEM patients included in this study the disease-causing variant was identified either 563 

using whole exome sequencing (WES), Sanger sequencing or using an SNP array. Since WES data was not 564 

available for most IEM patients where the disease-causing variant(s) is identified, we assumed that we 565 

could include these patients using 15 random WES backgrounds while inserting the known disease-causing 566 

variant in each background. Consequently, we obtained 15 different rankings for each disease-causing gene. 567 

We assumed that the average of these 15 rankings is a good estimate of the rank when a real WES 568 

background was used (Discussion). 569 

 570 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.21.21257573doi: medRxiv preprint 

https://cadd.gs.washington.edu/download
https://doi.org/10.1101/2021.05.21.21257573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

Excluded IEM patients which were initially measured  571 

Although some IEM patients were initially measured they were not included in this study, which had two 572 

main reasons. First,  in some cases there was no (clear) associated reaction related to the metabolites known 573 

as biomarkers for that IEM, e.g. defects in cofactor metabolism. For example, we left out a patient with a 574 

mutation in the MMACHC gene, one with a mutation in the MOCS3 gene and two patients with glutaric 575 

acidemia type 2 (ETFDH, ETFA, ETFB). Secondly, since Reafect does not make a distinction between 576 

different compartments within the body or cell, the inclusion of enzymatic deficiencies related to transport 577 

proteins is complicated. In these transport reactions the metabolite itself does not change, only its location 578 

changes, and therefore build-up of these metabolites are expected only in certain parts of the body or cell ( 579 

Discussion). For this reason, we were not able to include a few patients with lysinuric protein intolerance 580 

(SLC7A7), and a patient with organic cation transporter 2 deficiency (SLC22A5) 581 
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Code availability 604 

Reafect is available at https://github.com/mbongaerts/Reafect  605 

 606 
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Supplementary data 608 

 609 

Supplement 1. Comparison of ranks IEM patients Reafect versus MetPropagate 610 

 611 

 612 

 613 

Figure S1. Comparison of the percentile ranks between Reafect and MetPropagate per IEM patient. 614 

  615 
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Supplement 2. The effect of flipping the Z-score on IEM ranking performance 616 

 617 

To explore the importance of taking the biochemical directionality and the sign of the Z-scores into account, 618 

we flipped the sign for all Z-scores (in all patients), and used Reafect to rank the enzymatic deficiencies 619 

(Figure S2). We observe that the AUC was reduced by 26%, and for the lower region of the performance 620 

curve (<10%), the partial AUC even dropped by 61%. These results underline the importance of including 621 

this information when considering IEM ranking algorithms. A detailed comparison between the ranks 622 

obtained from both approaches can be found in Figure S3.  623 

 624 

 625 

 626 

Figure S2.  A) Full performance curves for Reafect and Reafect with flipped Z-score signs. B) Percentile ranks <= 10%.  627 

 628 
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 629 

Figure S3. Comparison of the percentile ranks between Reafect and Reafect with flipped Z-score signs per IEM patient. We clearly 630 

observe the negative effect of reversing the sign of the Z-scores on ranking. 631 

 632 

  633 
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Supplement 3. CADD scores for WES and pathogenic variants 634 

 635 

 636 

Figure S4.  Each boxplot indicates the distribution of the CADD (Phred) scores for variants in metabolic genes obtained in 15 637 

random WES files. The last boxplot shows the CADD scores (Phred) for the disease-causing variants found in the IEM patients 638 

(Table 1). 639 

  640 
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Supplement 4. Manually added reactions 641 

 642 

The KEGG pathways and modules were extended with some additional reactions (see Table S1) to increase 643 

the overlap between metabolites present in the pathways/modules and metabolites measured in plasma. 644 

Note, that a reaction is defined as a graph which also includes a reaction node. 645 

 646 

Table S1. Manually added reactions. The second and fourth column indicate the directionality of the reaction. ‘<=>’ indicates that 647 

the reaction is reversible whereas ‘=>’ indicates the direction of an irreversible reaction. Note that these ‘reactions’ passes through 648 

a reaction node (Reaction ID). Most reactions originate from Recon3D. 649 

Metabolite 1   Reaction ID  Metabolite 2 

3-Hydroxypyruvic acid => HPYRR2x => Glyceric acid 

2-Methylbutyrylglycine <=> RE2428M <=> 2-Methylbutanoyl-CoA 

2-Methylbutyrylglycine <=> RE2428M <=> Glycine 

C16OH | 3-Hydroxyhexadecanoylcarnitine <=> C16OHc <=> (S)-3-Hydroxyhexadecanoyl-CoA 

3-Methylcrotonylglycine <=> RE2111M <=> 3-Methylcrotonyl-CoA 

3-Methylcrotonylglycine <=> RE2111M <=> Glycine 

glcnac-man => B_MANNASEly => N-Acetyl-D-glucosamine 

glcnac-man => B_MANNASEly => D-Mannose 

C10 | Decanoylcarnitine <=> C100CPT1 <=> Decanoyl-CoA 

Glycylproline <=> GLYPROPRO1c <=> Glycine 

Glycylproline <=> GLYPROPRO1c <=> Proline 

C6 | Hexanoylcarnitine <=> C60CPT1 <=> Hexanoyl-CoA 

Homocysteine thiolactone <=> RE1933C <=> Homocysteine 

Isobutyrylglycine <=> RE2429M <=> Glycine 

Isobutyrylglycine <=> RE2429M <=> 2-Methylpropanoyl-CoA 

C5 | Isovalerylcarnitine <=> C50CPT1 <=> 3-Methylbutanoyl-CoA 

Isovalerylglycine <=> RE2427M <=> Glycine 

Isovalerylglycine <=> RE2427M <=> 3-Methylbutanoyl-CoA 

Malonyl-CoA => r0430 => C3DC | Malonylcarnitine 

N-Acetylasparagine <=> RE2032M <=> Asparagine 

C14 | Tetradecanoylcarnitine <=> C140CPT1 <=> Tetradecanoyl-CoA 

C5:1 | Tiglylcarnitine <=> C51CPT1 <=> 2-Methylbut-2-enoyl-CoA 

Octanoyl-CoA <=> C80CPT1 <=> C8 | Octanoylcarnitine 

Butanoyl-CoA <=> C40CPT1 <=> C4 | Butyrylcarnitine 

Propanoyl-CoA <=> C30CPT1 <=> C3 | Propionylcarnitine 

(2S,3S)-3-Hydroxy-2-methylbutanoyl-CoA <=> R_2M3HBUc <=> 2-Methyl-3-hydroxybutyric acid 

2-Methylbut-2-enoyl-CoA <=> R_TIGGLYc <=> Tiglylglycine 

N-Acetylmethionine <=> RE2640C <=> Methionine 

N-Acetylalanine <=> RE2642C <=> L-Alanine 

Glutaryl-CoA <=> FAOXC5C5DCc <=> C5DC | Glutarylcarnitine 

3-Methylglutaconyl-CoA <=> 3mgcoac61dcmgccrn <=> C6:1DC | 3-Methylglutaconylcarnitine 

3-Methylglutaconyl-CoA <=> MGCHrm <=> (S)-3-Hydroxy-3-methylglutaryl-CoA 

(S)-3-Hydroxy-3-methylglutaryl-CoA <=> hmgcoac6dcmgcrn <=> C6DC | 3-Methylglutarylcarnitine 

3-Hydroxyisovaleryl-CoA <=> C059983ivcrn <=> C5OH | 3-Hydroxyisovalerylcarnitine 

3-Hydroxyisovaleryl-CoA <=> C059983CE2028 <=> 3-Hydroxyisovaleric acid 

Adenylosuccinate => C03794succinyladenosine => Succinyladenosine 

L-Aspartate => ASPCTr => N-Carbamoyl-L-aspartate 

Carbamoylphosphate => ASPCTr => N-Carbamoyl-L-aspartate 

Dihydroorotic acid => DHORTS => N-Carbamoyl-L-aspartate 

Dihydroorotic acid <=> DHORD9 <=> Orotic acid 

Malonate => C00383malcoa => Malonyl-CoA 

Malonyl-CoA => MCDm => Acetyl-CoA 

7-Dehydrocholesterol => HMR_2114 => Vitamine D3 

Cholesterol sulfate <=> RE1100L <=> Cholesterol 

 650 

 651 

 652 
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Supplement 5. Optimizing the decay factors while excluding the samples with an identified disease-653 

causing variant 654 

 655 

In this study we used all 72 IEM patients samples to optimize the decay factors and to evaluate Reafect’s 656 

performance on IEM/gene ranking. To support our findings, especially for the results where we integrated 657 

the deficient reaction scores with CADD scores (Table 1), we optimized the decay factors on 44/72 samples 658 

where we excluded the patients with an identified disease-causing variant. We used the same bootstrap 659 

procedure for determining the optimal values for the decay factors (Methods). We found that the optimum 660 

was at a = 0.85, b = 0.45, c = 0.75 (100%), and the second best combination was a = 0.85, b = 0.35, c = 661 

0.75 (99.96%) (Figure S5). However, we also observe that the optimum is wider and less well-defined as 662 

the one observed in Figure 2. 663 

 664 

 665 

Figure S5.  A) Bootstrapped AUCs (Methods) for given combinations of (a,b,c) indicating the performance of Reafect. The colors 666 

indicate the percentage of the maximum obtained AUC. For this analysis we used 44/72 IEM patients samples, where we excluded 667 

the patients with an identified disease-causing variant. B) Contour plot of the (cubic interpolated) bootstrapped AUCs while fixing 668 

c=0.75 and varying a and b. The contour levels indicate the percentage of the maximum AUC reached at a = 0.85, b = 0.45, c = 669 

0.75. 670 

 671 
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Supplement 6. Contribution of subtle metabolite Z-scores on IEM ranking 672 

 673 

We explored the contribution of more subtle metabolite Z-scores to the IEM ranking performance of 674 

Reafect. This was investigated by creating performance curves for various Z-score cutoffs, where we 675 

included only metabolite Z-scores for which |Z-score| < cutoff (Figure S6A) or |Z-score|  > cutoff (Figure 676 

S6B). These results show that for decreasing cutoff values and |Z-score| < cutoff, the overall performance 677 

on IEM ranking also declines. This can be understood by realizing that for decreasing cutoff values, also 678 

more informative (disease-related) metabolites are excluded. More importantly, we observe that even for 679 

the lower cutoff values the overall performance is still positive (above the diagonal line), suggesting that 680 

more subtle metabolite Z-scores also contribute to IEM ranking.  The same conclusion can be drawn from 681 

the experiment where we included only metabolites having a |Z-score| > cutoff. When increasing the cutoff 682 

values, we observe that the IEM ranking performance also decreases. Since in these cases only more 683 

extreme Z-scores are available for ranking, we conclude that more subtle metabolite Z-scores normally also 684 

contribute to IEM ranking. 685 

 686 

  687 

Figure S6. A) Full performance curves for Reafect for various Z-score cutoff values, and |Z-score| < cutoff. Cutoff values are 688 

indicated by the legend. B) Full performance curves for Reafect for various Z-score cutoff values, and |Z-score| > cutoff. 689 
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